Pub Date : 2023-01-01DOI: 10.1016/bs.vh.2022.10.004
Maria Fernanda Hornos Carneiro, Monica P Colaiácovo
This chapter focuses on preclinical and clinical studies conducted in recent years that contribute to increasing knowledge on the role of Coenzyme Q10 in female reproductive health. General aspects of CoQ10, such as its role as an antioxidant and in mitochondrial bioenergetics are considered. The age-dependent decline in human female reproductive potential is associated with cellular mitochondrial dysfunction and oxidative stress, and in some cases accompanied by a decrease in CoQ10 levels. Herein, we discuss experimental and clinical evidence on CoQ10 protective effects on reproductive health. We also address the potential of supplementation with this coenzyme to rescue reprotoxicity induced by exposure to environmental xenobiotics. This review not only contributes to our general understanding of the effects of aging on female reproduction but also provides new insights into strategies promoting reproductive health. The use of CoQ10 supplementation can improve reproductive performance through the scavenging of reactive oxygen species and free radicals. This strategy can constitute a low-risk and low-cost strategy to attenuate the impact on fertility related to aging and exposure to environmental chemicals.
{"title":"Beneficial antioxidant effects of Coenzyme Q10 on reproduction.","authors":"Maria Fernanda Hornos Carneiro, Monica P Colaiácovo","doi":"10.1016/bs.vh.2022.10.004","DOIUrl":"https://doi.org/10.1016/bs.vh.2022.10.004","url":null,"abstract":"<p><p>This chapter focuses on preclinical and clinical studies conducted in recent years that contribute to increasing knowledge on the role of Coenzyme Q10 in female reproductive health. General aspects of CoQ10, such as its role as an antioxidant and in mitochondrial bioenergetics are considered. The age-dependent decline in human female reproductive potential is associated with cellular mitochondrial dysfunction and oxidative stress, and in some cases accompanied by a decrease in CoQ10 levels. Herein, we discuss experimental and clinical evidence on CoQ10 protective effects on reproductive health. We also address the potential of supplementation with this coenzyme to rescue reprotoxicity induced by exposure to environmental xenobiotics. This review not only contributes to our general understanding of the effects of aging on female reproduction but also provides new insights into strategies promoting reproductive health. The use of CoQ10 supplementation can improve reproductive performance through the scavenging of reactive oxygen species and free radicals. This strategy can constitute a low-risk and low-cost strategy to attenuate the impact on fertility related to aging and exposure to environmental chemicals.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"121 ","pages":"143-167"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10589893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The number of the patients with chronic kidney disease is now increasing in the world. The pathophysiology of renal hyperparathyroidism is closely associated with Klotho-FGF-endocrine axes, which must be solved definitively as early as possible. It was revealed that the expression of fgf23 is activated by calciprotein particles, which induces vascular ossification. And it is well known that phosphorus overload directly increases parathyroid hormone and hyperparathyroid bone disease develops in those subjects. On the other hand, low turnover bone disease is often recently. Both the patients with chronic kidney disease suffering from hyperparathyroid bone disease or low turnover bone disease are associated with increased fracture risk. Micropetrosis may be one of the causes of increased fracture risk in the subjects with low turnover bone disease. In this chapter, we now describe the diagnosis, pathophysiology and treatments of renal hyperparathyroidism.
{"title":"Renal hyperparathyroidism.","authors":"Aiji Yajima, Ken Tsuchiya, Makoto Kuro-O, Pablo Urena, Yoshihiro Tominaga, Manabu Okada, Toshihiro Ichimori, Toshihide Tomosugi, Takahisa Hiramitsu, Taro Murata, Masaki Nakamura, Masahiko Sasaki, Akemi Ito, Kosaku Nitta","doi":"10.1016/bs.vh.2022.04.010","DOIUrl":"https://doi.org/10.1016/bs.vh.2022.04.010","url":null,"abstract":"<p><p>The number of the patients with chronic kidney disease is now increasing in the world. The pathophysiology of renal hyperparathyroidism is closely associated with Klotho-FGF-endocrine axes, which must be solved definitively as early as possible. It was revealed that the expression of fgf23 is activated by calciprotein particles, which induces vascular ossification. And it is well known that phosphorus overload directly increases parathyroid hormone and hyperparathyroid bone disease develops in those subjects. On the other hand, low turnover bone disease is often recently. Both the patients with chronic kidney disease suffering from hyperparathyroid bone disease or low turnover bone disease are associated with increased fracture risk. Micropetrosis may be one of the causes of increased fracture risk in the subjects with low turnover bone disease. In this chapter, we now describe the diagnosis, pathophysiology and treatments of renal hyperparathyroidism.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":" ","pages":"305-343"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40603076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2022-01-17DOI: 10.1016/bs.vh.2021.12.001
Jennifer Mytych
Klotho gene was originally recognized as a putative aging-suppressor and its prominent age-regulating effects are mostly attributed to the modulation of mineral homeostasis in the kidney. However, recent studies link alterations in hippocampal Klotho expression with cognitive impairment and neurodegenerative diseases. This suggests that hippocampal neurons require Klotho for health and proper functionality. Klotho protects against neuronal dysfunction and regulates several intracellular signaling pathways including oxidative stress response, inflammation, DNA damage, autophagy, endoplasmic reticulum stress response, and multiple types of cell death. Specifically, this chapter covers the current knowledge as to how Klotho protein affects the hippocampal neuronal cells, with special attention paid to underlying molecular mechanisms, and thus influences hippocampal development, hippocampal-dependent cognition, behavior, and motor skills as well as mediates neurodegenerative processes.
{"title":"Actions of Klotho on hippocampal neuronal cells.","authors":"Jennifer Mytych","doi":"10.1016/bs.vh.2021.12.001","DOIUrl":"https://doi.org/10.1016/bs.vh.2021.12.001","url":null,"abstract":"<p><p>Klotho gene was originally recognized as a putative aging-suppressor and its prominent age-regulating effects are mostly attributed to the modulation of mineral homeostasis in the kidney. However, recent studies link alterations in hippocampal Klotho expression with cognitive impairment and neurodegenerative diseases. This suggests that hippocampal neurons require Klotho for health and proper functionality. Klotho protects against neuronal dysfunction and regulates several intracellular signaling pathways including oxidative stress response, inflammation, DNA damage, autophagy, endoplasmic reticulum stress response, and multiple types of cell death. Specifically, this chapter covers the current knowledge as to how Klotho protein affects the hippocampal neuronal cells, with special attention paid to underlying molecular mechanisms, and thus influences hippocampal development, hippocampal-dependent cognition, behavior, and motor skills as well as mediates neurodegenerative processes.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"118 ","pages":"223-246"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39811685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2021-12-07DOI: 10.1016/bs.vh.2021.11.001
Jose Ezekiel C Espina, Pia D Bagamasbad
The hippocampus is considered the center for learning and memory in the brain, and its development and function is greatly affected by the thyroid and stress axes. Thyroid hormone (TH) and glucocorticoids (GC) are known to have a synergistic effect on developmental programs across several vertebrate species, and their effects on hippocampal structure and function are well-documented. However, there are few studies that focus on the processes and genes that are cooperatively regulated by the two hormone axes. Cross-regulation of the thyroid and stress axes in the hippocampus occurs on multiple levels such that TH can regulate the expression of the GC receptor (GR) while GC can modulate tissue sensitivity to TH by controlling the expression of TH receptor (TR) and enzymes involved in TH biosynthesis. Thyroid hormone and GC are also known to synergistically regulate the transcription of genes associated with neuronal function and development. Synergistic gene regulation by TH and GC may occur through the direct, cooperative action of TR and GR on common target genes, or by indirect mechanisms involving gene regulatory cascades activated by TR and GR. In this chapter, we describe the known physiological effects and underlying molecular mechanisms of TH and GC synergistic gene regulation in the hippocampus.
{"title":"Synergistic gene regulation by thyroid hormone and glucocorticoid in the hippocampus.","authors":"Jose Ezekiel C Espina, Pia D Bagamasbad","doi":"10.1016/bs.vh.2021.11.001","DOIUrl":"https://doi.org/10.1016/bs.vh.2021.11.001","url":null,"abstract":"<p><p>The hippocampus is considered the center for learning and memory in the brain, and its development and function is greatly affected by the thyroid and stress axes. Thyroid hormone (TH) and glucocorticoids (GC) are known to have a synergistic effect on developmental programs across several vertebrate species, and their effects on hippocampal structure and function are well-documented. However, there are few studies that focus on the processes and genes that are cooperatively regulated by the two hormone axes. Cross-regulation of the thyroid and stress axes in the hippocampus occurs on multiple levels such that TH can regulate the expression of the GC receptor (GR) while GC can modulate tissue sensitivity to TH by controlling the expression of TH receptor (TR) and enzymes involved in TH biosynthesis. Thyroid hormone and GC are also known to synergistically regulate the transcription of genes associated with neuronal function and development. Synergistic gene regulation by TH and GC may occur through the direct, cooperative action of TR and GR on common target genes, or by indirect mechanisms involving gene regulatory cascades activated by TR and GR. In this chapter, we describe the known physiological effects and underlying molecular mechanisms of TH and GC synergistic gene regulation in the hippocampus.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"118 ","pages":"35-81"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39644199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2021-12-07DOI: 10.1016/bs.vh.2021.11.007
Enrique Juárez-Aguilar, Juan David Olivares-Hernández, Citlalli Regalado-Santiago, Fabio García-García
Growth hormone is a multifunctional molecule with broad cellular targets. This pituitary hormone is currently used as a therapeutic agent against several brain injuries due to its neurotrophic activity. The hippocampus is one of the brain regions where the growth hormone plays a role in normal and pathologic conditions. This brain structure is associated with several cognitive functions such as learning, memory, and mood, which are frequently affected by brain traumatism. The present chapter describes the experimental and clinical evidence that supports a central role of growth hormone in the hippocampus functionality.
{"title":"The role of growth hormone in hippocampal function.","authors":"Enrique Juárez-Aguilar, Juan David Olivares-Hernández, Citlalli Regalado-Santiago, Fabio García-García","doi":"10.1016/bs.vh.2021.11.007","DOIUrl":"https://doi.org/10.1016/bs.vh.2021.11.007","url":null,"abstract":"<p><p>Growth hormone is a multifunctional molecule with broad cellular targets. This pituitary hormone is currently used as a therapeutic agent against several brain injuries due to its neurotrophic activity. The hippocampus is one of the brain regions where the growth hormone plays a role in normal and pathologic conditions. This brain structure is associated with several cognitive functions such as learning, memory, and mood, which are frequently affected by brain traumatism. The present chapter describes the experimental and clinical evidence that supports a central role of growth hormone in the hippocampus functionality.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"118 ","pages":"289-313"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39644196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2022-03-01DOI: 10.1016/bs.vh.2022.01.016
Jean-Louis Guéant, Rosa-Maria Guéant-Rodriguez, David H Alpers
Vitamin B12 is assimilated and transported by complex mechanisms that involve three transport proteins, intrinsic factor (IF), haptocorrin (HC) and transcobalamin (TC) and their respective membrane receptors. Vitamin deficiency is mainly due to inadequate dietary intake in vegans, and B12 malabsorption is related to digestive diseases. This review explores the physiology of vitamin B12 absorption and the mechanisms and diseases that produce malabsorption. In the stomach, B12 is released from food carrier proteins and binds to HC. The degradation of HC by pancreatic proteases and the pH change trigger the transfer of B12 to IF in the duodenum. Cubilin and amnionless are the two components of the receptor that mediates the uptake of B12 in the distal ileum. Part of liver B12 is excreted in bile, and undergoes an enterohepatic circulation. The main causes of B12 malabsorption include inherited disorders (Intrinsic factor deficiency, Imerslund-Gräsbeck disease, Addison's pernicious anemia, obesity, bariatric surgery and gastrectomies. Other causes include pancreatic insufficiency, obstructive Jaundice, tropical sprue and celiac disease, bacterial overgrowth, parasitic infestations, Zollinger-Ellison syndrome, inflammatory bowel diseases, chronic radiation enteritis of the distal ileum and short bowel. The assessment of B12 deficit is recommended in the follow-up of subjects with bariatric surgery. The genetic causes of B12 malabsorption are probably underestimated in adult cases with B12 deficit. Despite its high prevalence in the general population and in the elderly, B12 malabsorption cannot be anymore assessed by the Schilling test, pointing out the urgent need for an equivalent reliable test.
{"title":"Vitamin B12 absorption and malabsorption.","authors":"Jean-Louis Guéant, Rosa-Maria Guéant-Rodriguez, David H Alpers","doi":"10.1016/bs.vh.2022.01.016","DOIUrl":"https://doi.org/10.1016/bs.vh.2022.01.016","url":null,"abstract":"<p><p>Vitamin B12 is assimilated and transported by complex mechanisms that involve three transport proteins, intrinsic factor (IF), haptocorrin (HC) and transcobalamin (TC) and their respective membrane receptors. Vitamin deficiency is mainly due to inadequate dietary intake in vegans, and B12 malabsorption is related to digestive diseases. This review explores the physiology of vitamin B12 absorption and the mechanisms and diseases that produce malabsorption. In the stomach, B12 is released from food carrier proteins and binds to HC. The degradation of HC by pancreatic proteases and the pH change trigger the transfer of B12 to IF in the duodenum. Cubilin and amnionless are the two components of the receptor that mediates the uptake of B12 in the distal ileum. Part of liver B12 is excreted in bile, and undergoes an enterohepatic circulation. The main causes of B12 malabsorption include inherited disorders (Intrinsic factor deficiency, Imerslund-Gräsbeck disease, Addison's pernicious anemia, obesity, bariatric surgery and gastrectomies. Other causes include pancreatic insufficiency, obstructive Jaundice, tropical sprue and celiac disease, bacterial overgrowth, parasitic infestations, Zollinger-Ellison syndrome, inflammatory bowel diseases, chronic radiation enteritis of the distal ileum and short bowel. The assessment of B12 deficit is recommended in the follow-up of subjects with bariatric surgery. The genetic causes of B12 malabsorption are probably underestimated in adult cases with B12 deficit. Despite its high prevalence in the general population and in the elderly, B12 malabsorption cannot be anymore assessed by the Schilling test, pointing out the urgent need for an equivalent reliable test.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"119 ","pages":"241-274"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40331644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2022-03-15DOI: 10.1016/bs.vh.2022.02.001
Luciana Hannibal, Donald W Jacobsen
Vitamin B12 (cobalamin, Cbl, B12) is a water-soluble micronutrient synthesized exclusively by a group of microorganisms. Human beings are unable to make B12 and thus obtain the vitamin via intake of animal products, fermented plant-based foods or supplements. Vitamin B12 obtained from the diet comprises three major chemical forms, namely hydroxocobalamin (HOCbl), methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl). The most common form of B12 present in supplements is cyanocobalamin (CNCbl). Yet, these chemical forms cannot be utilized directly as they come, but instead, they undergo chemical processing by the MMACHC protein, also known as CblC. Processing of dietary B12 by CblC involves removal of the upper-axial ligand (beta-ligand) yielding the one-electron reduced intermediate cob(II)alamin. Newly formed cob(II)alamin undergoes trafficking and delivery to the two B12-dependent enzymes, cytosolic methionine synthase (MS) and mitochondrial methylmalonyl-CoA mutase (MUT). The catalytic cycles of MS and MUT incorporate cob(II)alamin as a precursor to regenerate the coenzyme forms MeCbl and AdoCbl, respectively. Mutations and epimutations in the MMACHC gene result in cblC disease, the most common inborn error of B12 metabolism, which manifests with combined homocystinuria and methylmalonic aciduria. Elevation of metabolites homocysteine and methylmalonic acid occurs because the lack of an active CblC blocks formation of the indispensable precursor cob(II)alamin that is necessary to activate MS and MUT. Thus, in patients with cblC disease, vitamin B12 is absorbed and present in circulation in normal to high concentrations, yet, cells are unable to make use of it. Mutations in seemingly unrelated genes that modify MMACHC gene expression also result in clinical phenotypes that resemble cblC disease. We review current knowledge on structural and functional aspects of intracellular processing of vitamin B12 by the versatile protein CblC, its partners and possible regulators.
{"title":"Intracellular processing of vitamin B<sub>12</sub> by MMACHC (CblC).","authors":"Luciana Hannibal, Donald W Jacobsen","doi":"10.1016/bs.vh.2022.02.001","DOIUrl":"https://doi.org/10.1016/bs.vh.2022.02.001","url":null,"abstract":"<p><p>Vitamin B<sub>12</sub> (cobalamin, Cbl, B<sub>12</sub>) is a water-soluble micronutrient synthesized exclusively by a group of microorganisms. Human beings are unable to make B<sub>12</sub> and thus obtain the vitamin via intake of animal products, fermented plant-based foods or supplements. Vitamin B<sub>12</sub> obtained from the diet comprises three major chemical forms, namely hydroxocobalamin (HOCbl), methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl). The most common form of B<sub>12</sub> present in supplements is cyanocobalamin (CNCbl). Yet, these chemical forms cannot be utilized directly as they come, but instead, they undergo chemical processing by the MMACHC protein, also known as CblC. Processing of dietary B<sub>12</sub> by CblC involves removal of the upper-axial ligand (beta-ligand) yielding the one-electron reduced intermediate cob(II)alamin. Newly formed cob(II)alamin undergoes trafficking and delivery to the two B<sub>12</sub>-dependent enzymes, cytosolic methionine synthase (MS) and mitochondrial methylmalonyl-CoA mutase (MUT). The catalytic cycles of MS and MUT incorporate cob(II)alamin as a precursor to regenerate the coenzyme forms MeCbl and AdoCbl, respectively. Mutations and epimutations in the MMACHC gene result in cblC disease, the most common inborn error of B<sub>12</sub> metabolism, which manifests with combined homocystinuria and methylmalonic aciduria. Elevation of metabolites homocysteine and methylmalonic acid occurs because the lack of an active CblC blocks formation of the indispensable precursor cob(II)alamin that is necessary to activate MS and MUT. Thus, in patients with cblC disease, vitamin B<sub>12</sub> is absorbed and present in circulation in normal to high concentrations, yet, cells are unable to make use of it. Mutations in seemingly unrelated genes that modify MMACHC gene expression also result in clinical phenotypes that resemble cblC disease. We review current knowledge on structural and functional aspects of intracellular processing of vitamin B<sub>12</sub> by the versatile protein CblC, its partners and possible regulators.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"119 ","pages":"275-298"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40331645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2022-02-25DOI: 10.1016/bs.vh.2022.01.011
Henry H L Wu, Angela Yee-Moon Wang
Chronic Kidney Disease (CKD) is an emerging public health issue with a fast-growing global prevalence. Impairment in vitamin B12 metabolism is considered a nontraditional risk factor of poor outcomes associated with CKD, and there is greater interest from the scientific community than ever before to explore the role and influence of vitamin B12 in CKD. Homocysteine metabolism forms an important component of the vitamin B12 metabolic pathway. Hyperhomocysteinemia is frequently observed in CKD and End-Stage Kidney Disease (ESKD), but its representation as a prognostic marker for CKD outcomes is still not fully clear. This chapter reviews the vitamin B12 and homocysteine metabolic pathways and their dysfunction in CKD states. Biochemical factors and the MTHFR genetic polymorphisms which disrupt vitamin B12 and homocysteine metabolism are explored. The mechanisms of homocysteine-mediated and vitamin B12-mediated tissue damage in CKD are discussed. This chapter reviews current perspective on definition and measurement of plasma vitamin B12 levels in the CKD population. Updated evidence investigating the prognostic role of vitamin B12 for CKD outcomes is presented. Findings from major clinical trials conducted relating to outcomes from multivitamin (including folic acid and vitamin B12) supplementation in nondialysis and dialysis-dependent CKD are highlighted. The prognostic value of vitamin B12 and effects of vitamin B12 supplementation in the context of kidney transplantation and acute kidney injury is also reviewed. Future research considerations are summarized based on evidence gaps in our knowledge base of this topic. Greater abundance of high-level evidence to guide an approach toward vitamin B12 measurement, monitoring and supplementation in CKD may contribute to improved clinical outcomes.
{"title":"Vitamin B12 and chronic kidney disease.","authors":"Henry H L Wu, Angela Yee-Moon Wang","doi":"10.1016/bs.vh.2022.01.011","DOIUrl":"https://doi.org/10.1016/bs.vh.2022.01.011","url":null,"abstract":"<p><p>Chronic Kidney Disease (CKD) is an emerging public health issue with a fast-growing global prevalence. Impairment in vitamin B12 metabolism is considered a nontraditional risk factor of poor outcomes associated with CKD, and there is greater interest from the scientific community than ever before to explore the role and influence of vitamin B12 in CKD. Homocysteine metabolism forms an important component of the vitamin B12 metabolic pathway. Hyperhomocysteinemia is frequently observed in CKD and End-Stage Kidney Disease (ESKD), but its representation as a prognostic marker for CKD outcomes is still not fully clear. This chapter reviews the vitamin B12 and homocysteine metabolic pathways and their dysfunction in CKD states. Biochemical factors and the MTHFR genetic polymorphisms which disrupt vitamin B12 and homocysteine metabolism are explored. The mechanisms of homocysteine-mediated and vitamin B12-mediated tissue damage in CKD are discussed. This chapter reviews current perspective on definition and measurement of plasma vitamin B12 levels in the CKD population. Updated evidence investigating the prognostic role of vitamin B12 for CKD outcomes is presented. Findings from major clinical trials conducted relating to outcomes from multivitamin (including folic acid and vitamin B12) supplementation in nondialysis and dialysis-dependent CKD are highlighted. The prognostic value of vitamin B12 and effects of vitamin B12 supplementation in the context of kidney transplantation and acute kidney injury is also reviewed. Future research considerations are summarized based on evidence gaps in our knowledge base of this topic. Greater abundance of high-level evidence to guide an approach toward vitamin B12 measurement, monitoring and supplementation in CKD may contribute to improved clinical outcomes.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"119 ","pages":"325-353"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40331647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2022-02-25DOI: 10.1016/bs.vh.2022.01.002
Hadi Goubran, Gaafar Ragab, Waleed Sabry
Thrombotic microangiopathies (TMAs) are a group of life-threatening conditions requiring urgent management and characterized by a clinical triad of microangiopathic hemolytic anemia, thrombocytopenia, and ischemic tissue injury. Severe vitamin B12 (Cobalamin-Cbl) deficiency or defective cobalamin metabolism, particularly defects in intracellular B12 metabolism, may lead to a TMA-like picture. The latter has been termed metabolism-mediated TMA (MM-TMA). This confusing picture is mediated partly by ineffective erythropoiesis with significant red cell fragmentation resulting in a hemolytic pattern, coupled with reduced platelet production and endothelial injury with organ damage resulting from accumulated toxic byproducts of B12 dysmetabolism. However, unlike in classic thrombotic thrombocytopenic purpura, where therapeutic plasma exchange has to be initiated promptly, cases of MM-TMA can be treated, if diagnosed properly, with adequate B12 replacement.
{"title":"Metabolism-mediated thrombotic microangiopathy and B12.","authors":"Hadi Goubran, Gaafar Ragab, Waleed Sabry","doi":"10.1016/bs.vh.2022.01.002","DOIUrl":"https://doi.org/10.1016/bs.vh.2022.01.002","url":null,"abstract":"<p><p>Thrombotic microangiopathies (TMAs) are a group of life-threatening conditions requiring urgent management and characterized by a clinical triad of microangiopathic hemolytic anemia, thrombocytopenia, and ischemic tissue injury. Severe vitamin B12 (Cobalamin-Cbl) deficiency or defective cobalamin metabolism, particularly defects in intracellular B12 metabolism, may lead to a TMA-like picture. The latter has been termed metabolism-mediated TMA (MM-TMA). This confusing picture is mediated partly by ineffective erythropoiesis with significant red cell fragmentation resulting in a hemolytic pattern, coupled with reduced platelet production and endothelial injury with organ damage resulting from accumulated toxic byproducts of B12 dysmetabolism. However, unlike in classic thrombotic thrombocytopenic purpura, where therapeutic plasma exchange has to be initiated promptly, cases of MM-TMA can be treated, if diagnosed properly, with adequate B12 replacement.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"119 ","pages":"441-455"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40331106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}