Pub Date : 2021-09-18DOI: 10.1007/s00035-021-00270-x
Petr Sklenář, Katya Romoleroux, Priscilla Muriel, Ricardo Jaramillo, Antonella Bernardi, Mauricio Diazgranados, Pierre Moret
Climatic changes threaten the diverse and highly endemic páramo flora of the equatorial Andes with species loss and reduction of plant community diversity. Edward Whymper’s findings in his botanical exploration of the Ecuadorian Andes in 1880 offer an opportunity to examine the impact of climate changes on species distribution over time. To achieve these goals, we revised Whymper’s historical plant species collections, recorded elevational distribution of the same species along his 1880 sampling routes on two volcanoes, Chimborazo and Antisana, and applied to them ecological indicator values. Of the species recorded by Whymper, 24 on Antisana and 21 on Chimborazo, we resampled 21 and 14 of those species, respectively, in 2020. The highest record we found on Chimborazo was at 5385 m, seven meters above the zero-richness elevation predicted from Whymper’s distribution data, and at 4937 m on Antisana, 113 m below it. Mean upper range limits of species have shifted upward by 91.7 m on Chimborazo and by 27.1 m on Antisana, suggesting mean shift rates of 6.6 m and 1.9 m per decade, respectively. This rate of upslope migration ranks among the slowest reported worldwide. Humidity ecological indicator values suggest that species composition of páramo plant communities changed since 1880 in response not only to rising temperature, but also increasing dryness. Rather than a uniform upslope migration, the response of páramo plants to climate changes in the equatorial Andes has been species-specific, likely driven, among other factors, by coupled effects of increasing temperature and declining humidity.
{"title":"Distribution changes in páramo plants from the equatorial high Andes in response to increasing temperature and humidity variation since 1880","authors":"Petr Sklenář, Katya Romoleroux, Priscilla Muriel, Ricardo Jaramillo, Antonella Bernardi, Mauricio Diazgranados, Pierre Moret","doi":"10.1007/s00035-021-00270-x","DOIUrl":"10.1007/s00035-021-00270-x","url":null,"abstract":"<div><p>Climatic changes threaten the diverse and highly endemic páramo flora of the equatorial Andes with species loss and reduction of plant community diversity. Edward Whymper’s findings in his botanical exploration of the Ecuadorian Andes in 1880 offer an opportunity to examine the impact of climate changes on species distribution over time. To achieve these goals, we revised Whymper’s historical plant species collections, recorded elevational distribution of the same species along his 1880 sampling routes on two volcanoes, Chimborazo and Antisana, and applied to them ecological indicator values. Of the species recorded by Whymper, 24 on Antisana and 21 on Chimborazo, we resampled 21 and 14 of those species, respectively, in 2020. The highest record we found on Chimborazo was at 5385 m, seven meters above the zero-richness elevation predicted from Whymper’s distribution data, and at 4937 m on Antisana, 113 m below it. Mean upper range limits of species have shifted upward by 91.7 m on Chimborazo and by 27.1 m on Antisana, suggesting mean shift rates of 6.6 m and 1.9 m per decade, respectively. This rate of upslope migration ranks among the slowest reported worldwide. Humidity ecological indicator values suggest that species composition of páramo plant communities changed since 1880 in response not only to rising temperature, but also increasing dryness. Rather than a uniform upslope migration, the response of páramo plants to climate changes in the equatorial Andes has been species-specific, likely driven, among other factors, by coupled effects of increasing temperature and declining humidity.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50494299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-03DOI: 10.1007/s00035-021-00269-4
Hang Sun, Zhimin Li, Jacob B. Landis, Lishen Qian, Ticao Zhang, Tao Deng
The Sino-Himalaya region is located in the southeast margin of the Qinghai-Tibetan Plateau (QTP) with several Asian rivers in this area, namely the Yarlung Zangbo River (YZR), Salween, Mekong, and Jinshajiang River and their tributaries. All these rivers currently flow independently into the Indian Ocean, the South China Sea (Pacific Ocean) and the East China Sea (Pacific Ocean). In geologic history, however, these rivers flowed southward into the Paleo-Red River (PRR), forming a huge drainage system, which then flowed into the South China Sea. From the end of the Neogene to the beginning of the Quaternary, with further uplift of the QTP, the monsoon climate was formed and strengthened bringing abundant precipitation leading to river erosion, rapid undercutting and a series of river capture events resulting in modern drainage systems and the beheading of the huge PRR. The reorganization of the PRR led to changes in the spatial pattern of river systems, subsequently affecting the geographical distribution of plants in the river valley. This paper reviews the effects of drainage evolution on the genetic structure and geographical pattern of plants in this region, and summarizes the resulting four types of discontinuous distribution patterns observed, namely: (1) the discontinuous distribution pattern between the Three River Valleys (TRV) (Salween, Mekong, Jinshajiang and their tributaries) and the Red River Basin (RRB); (2) the discontinuity between the Yarlung Zangbo River and the TRV–RRB; (3) the discontinuity among the TRV, and (4) the discontinuity between the east and west ends of the QTP. The conclusions from this review, while providing botanical evidence supporting and confirming the drainage evolution in Sino-Himalaya China, are the following: (1) the reorganization of drainage systems made the original continuous distribution pattern discontinuous, forming unique genetic and biogeographical characteristics, promoting the genetic differentiation of species and the formation of new taxa; (2) river capture events link different river systems together, bringing together the genetic diversity of different river valley species, increasing the richness of genetic diversity and the exchange of genes among populations; (3) the reorganization of river systems impacts the evolutionary history of valley plants and shapes their modern distribution patterns.
{"title":"Effects of drainage reorganization on phytogeographic pattern in Sino-Himalaya","authors":"Hang Sun, Zhimin Li, Jacob B. Landis, Lishen Qian, Ticao Zhang, Tao Deng","doi":"10.1007/s00035-021-00269-4","DOIUrl":"10.1007/s00035-021-00269-4","url":null,"abstract":"<div><p>The Sino-Himalaya region is located in the southeast margin of the Qinghai-Tibetan Plateau (QTP) with several Asian rivers in this area, namely the Yarlung Zangbo River (YZR), Salween, Mekong, and Jinshajiang River and their tributaries. All these rivers currently flow independently into the Indian Ocean, the South China Sea (Pacific Ocean) and the East China Sea (Pacific Ocean). In geologic history, however, these rivers flowed southward into the Paleo-Red River (PRR), forming a huge drainage system, which then flowed into the South China Sea. From the end of the Neogene to the beginning of the Quaternary, with further uplift of the QTP, the monsoon climate was formed and strengthened bringing abundant precipitation leading to river erosion, rapid undercutting and a series of river capture events resulting in modern drainage systems and the beheading of the huge PRR. The reorganization of the PRR led to changes in the spatial pattern of river systems, subsequently affecting the geographical distribution of plants in the river valley. This paper reviews the effects of drainage evolution on the genetic structure and geographical pattern of plants in this region, and summarizes the resulting four types of discontinuous distribution patterns observed, namely: (1) the discontinuous distribution pattern between the Three River Valleys (TRV) (Salween, Mekong, Jinshajiang and their tributaries) and the Red River Basin (RRB); (2) the discontinuity between the Yarlung Zangbo River and the TRV–RRB; (3) the discontinuity among the TRV, and (4) the discontinuity between the east and west ends of the QTP. The conclusions from this review, while providing botanical evidence supporting and confirming the drainage evolution in Sino-Himalaya China, are the following: (1) the reorganization of drainage systems made the original continuous distribution pattern discontinuous, forming unique genetic and biogeographical characteristics, promoting the genetic differentiation of species and the formation of new taxa; (2) river capture events link different river systems together, bringing together the genetic diversity of different river valley species, increasing the richness of genetic diversity and the exchange of genes among populations; (3) the reorganization of river systems impacts the evolutionary history of valley plants and shapes their modern distribution patterns.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50447245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01DOI: 10.1007/s00035-021-00268-5
Abel Gizaw, Juan Manuel Gorospe, Martha Kandziora, Desalegn Chala, Lovisa Gustafsson, Abush Zinaw, Luciana Salomón, Gerald Eilu, Christian Brochmann, Filip Kolář, Roswitha Schmickl
Alpine plant radiations are common across all major mountain systems of the world, and have been regarded as the main explanation for the species diversity found within these areas. To study the mechanisms behind the origin of this diversity, it is necessary to determine phylogenetic relationships and species boundaries in radiating alpine groups. The genus Dendrosenecio (Asteraceae) is an iconic example of a tropical-alpine plant radiation in the East African high mountains. To this date, limited sampling of molecular markers has resulted in insufficient phylogenetic resolution and infrageneric classification, hindering a comprehensive understanding of the drivers of diversification. Here, we used Hyb-Seq and the Compositae1061 probe set to generate targeted nuclear and off-target plastid DNA data for 42 samples representing all currently accepted 11 species. We combined coalescent methods and paralogy analysis to infer phylogenetic relationships, estimate divergence times and evaluate species boundaries. Lineage differentiation in Dendrosenecio seems to have occurred between the Late Miocene and the Pleistocene, starting when the first high elevation habitats became available in East Africa. We retrieved four major clades corresponding to four geographically distant mountain groups, testifying the importance of allopatric speciation in the early diversification of the group. Cytonuclear discordance suggested the occurrence of historical hybridization following occasional long-distance dispersal between mountain groups. The species delimitation analysis favored 10 species, but only five were fully supported, suggesting that population-level studies addressing processes such as ecological speciation and hybridization after secondary contact are needed to determine the current diversity found in the genus.
{"title":"Afro-alpine flagships revisited II: elucidating the evolutionary relationships and species boundaries in the giant senecios (Dendrosenecio, Asteraceae)","authors":"Abel Gizaw, Juan Manuel Gorospe, Martha Kandziora, Desalegn Chala, Lovisa Gustafsson, Abush Zinaw, Luciana Salomón, Gerald Eilu, Christian Brochmann, Filip Kolář, Roswitha Schmickl","doi":"10.1007/s00035-021-00268-5","DOIUrl":"10.1007/s00035-021-00268-5","url":null,"abstract":"<div><p>Alpine plant radiations are common across all major mountain systems of the world, and have been regarded as the main explanation for the species diversity found within these areas. To study the mechanisms behind the origin of this diversity, it is necessary to determine phylogenetic relationships and species boundaries in radiating alpine groups. The genus <i>Dendrosenecio</i> (Asteraceae) is an iconic example of a tropical-alpine plant radiation in the East African high mountains. To this date, limited sampling of molecular markers has resulted in insufficient phylogenetic resolution and infrageneric classification, hindering a comprehensive understanding of the drivers of diversification. Here, we used Hyb-Seq and the Compositae1061 probe set to generate targeted nuclear and off-target plastid DNA data for 42 samples representing all currently accepted 11 species. We combined coalescent methods and paralogy analysis to infer phylogenetic relationships, estimate divergence times and evaluate species boundaries. Lineage differentiation in <i>Dendrosenecio</i> seems to have occurred between the Late Miocene and the Pleistocene, starting when the first high elevation habitats became available in East Africa. We retrieved four major clades corresponding to four geographically distant mountain groups, testifying the importance of allopatric speciation in the early diversification of the group. Cytonuclear discordance suggested the occurrence of historical hybridization following occasional long-distance dispersal between mountain groups. The species delimitation analysis favored 10 species, but only five were fully supported, suggesting that population-level studies addressing processes such as ecological speciation and hybridization after secondary contact are needed to determine the current diversity found in the genus.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50437563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-20DOI: 10.1007/s00035-021-00267-6
Adrien Favre, Juraj Paule, Jana Ebersbach
Mountains are reservoirs for a tremendous biodiversity which was fostered by a suite of factors acting in concert throughout evolutionary times. These factors can be climatic, geological, or biotic, but the way they combine through time to generate diversity remains unknown. Here, we investigate these factors as correlates of diversification of three closely related sections of Gentiana in the European Alpine System. Based upon phylogenetic approaches coupled with divergence dating and ancestral state reconstructions, we attempted to identify the role of bedrock preferences, chromosome numbers coupled with relative genome sizes estimates, as well as morphological features through time. We also investigated extant climatic preferences using a heavily curated set of occurrence records individually selected for superior precision, and quantified rates of climatic niche evolution in each section. We found that a number of phylogenetic incongruences derail the identification of correlates of diversification, yet a number of patterns persist regardless of the topology considered. All the studied correlates are likely to have contributed to the diversification of Gentiana in Europe, however, their respective importance varied through time and across clades. Chromosomal variation and divergence of climatic preferences appear to correlate with diversification throughout the evolution of European Gentiana (Oligocene to present), whereas shifts in bedrock preferences appear to have been more defining during recent diversification (Pliocene). Overall, a complex interaction among climatic, geological and biotic attributes appear to have supported the diversification of Gentiana across the mountains of Europe, which based upon phylogenetic as well as other evidence, was probably also bolstered by hybridization.
{"title":"Incongruences between nuclear and plastid phylogenies challenge the identification of correlates of diversification in Gentiana in the European Alpine System","authors":"Adrien Favre, Juraj Paule, Jana Ebersbach","doi":"10.1007/s00035-021-00267-6","DOIUrl":"10.1007/s00035-021-00267-6","url":null,"abstract":"<div><p>Mountains are reservoirs for a tremendous biodiversity which was fostered by a suite of factors acting in concert throughout evolutionary times. These factors can be climatic, geological, or biotic, but the way they combine through time to generate diversity remains unknown. Here, we investigate these factors as correlates of diversification of three closely related sections of <i>Gentiana</i> in the European Alpine System. Based upon phylogenetic approaches coupled with divergence dating and ancestral state reconstructions, we attempted to identify the role of bedrock preferences, chromosome numbers coupled with relative genome sizes estimates, as well as morphological features through time. We also investigated extant climatic preferences using a heavily curated set of occurrence records individually selected for superior precision, and quantified rates of climatic niche evolution in each section. We found that a number of phylogenetic incongruences derail the identification of correlates of diversification, yet a number of patterns persist regardless of the topology considered. All the studied correlates are likely to have contributed to the diversification of <i>Gentiana</i> in Europe, however, their respective importance varied through time and across clades. Chromosomal variation and divergence of climatic preferences appear to correlate with diversification throughout the evolution of European <i>Gentiana</i> (Oligocene to present), whereas shifts in bedrock preferences appear to have been more defining during recent diversification (Pliocene). Overall, a complex interaction among climatic, geological and biotic attributes appear to have supported the diversification of <i>Gentiana</i> across the mountains of Europe, which based upon phylogenetic as well as other evidence, was probably also bolstered by hybridization.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00035-021-00267-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50498265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-11DOI: 10.1007/s00035-021-00265-8
Christian Körner, Davnah Urbach , Jens Paulsen
Mountains are rugged structures in the landscape that are difficult to delineate. Given that they host an overproportional fraction of biodiversity of high ecological and conservational value, conventions on what is mountainous and what not are in need. This short communication aims at explaining the differences among various popular mountain definitions. Defining mountainous terrain is key for global assessments of plant species richness in mountains and their likely responses to climatic change, as well as for assessing the human population density in and around mountainous terrain.
{"title":"Mountain definitions and their consequences","authors":"Christian Körner, Davnah Urbach\u0000, Jens Paulsen","doi":"10.1007/s00035-021-00265-8","DOIUrl":"10.1007/s00035-021-00265-8","url":null,"abstract":"<div><p>Mountains are rugged structures in the landscape that are difficult to delineate. Given that they host an overproportional fraction of biodiversity of high ecological and conservational value, conventions on what is mountainous and what not are in need. This short communication aims at explaining the differences among various popular mountain definitions. Defining mountainous terrain is key for global assessments of plant species richness in mountains and their likely responses to climatic change, as well as for assessing the human population density in and around mountainous terrain.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00035-021-00265-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50470531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-04DOI: 10.1007/s00035-021-00266-7
Jalil Noroozi, Sina Khalvati, Haniyeh Nafisi, Akram Kaveh, Behnaz Nazari, Golshan Zare, Masoud Minaei, Ernst Vitek, Gerald M. Schneeweiss
Alpine habitats are characterized by a high rate of range restricted species compared to those of lower elevations. This is also the case for the Irano-Anatolian global biodiversity hotspot in South-West Asia, which is a mountainous area harbouring a high amount of endemic species. Using two quantitative approaches, Endemicity Analysis and Network-Clustering, we want to identify areas of concordant species distribution patterns in the alpine zone of this region as well as to test the hypothesis that, given the high proportion of endemics among alpine species, delimitation of these areas is determined mainly by endemic alpine species, i.e., areas of concordant species distribution patterns are congruent with areas of endemism. Endemicity Analysis identified six areas of concordant species distribution patterns irrespective of dataset (total alpine species versus endemic alpine species), whereas the Network-Clustering approach identified five and four Bioregions from total alpine species and endemic alpine species, respectively. Most of these areas have been previously identified using the endemic flora of different elevational zones. The identified units using both methods and both datasets are strongly congruent, proposing that they reveal meaningful distribution patterns. Bioregionalization in the Irano-Anatolian biodiversity hotspot appears to be strongly influenced by the endemic alpine species, a pattern likely to hold in alpine regions outside the Irano-Anatolian hotspot.
{"title":"Endemics determine bioregionalization in the alpine zone of the Irano-Anatolian biodiversity hotspot (South-West Asia)","authors":"Jalil Noroozi, Sina Khalvati, Haniyeh Nafisi, Akram Kaveh, Behnaz Nazari, Golshan Zare, Masoud Minaei, Ernst Vitek, Gerald M. Schneeweiss","doi":"10.1007/s00035-021-00266-7","DOIUrl":"10.1007/s00035-021-00266-7","url":null,"abstract":"<div><p>Alpine habitats are characterized by a high rate of range restricted species compared to those of lower elevations. This is also the case for the Irano-Anatolian global biodiversity hotspot in South-West Asia, which is a mountainous area harbouring a high amount of endemic species. Using two quantitative approaches, Endemicity Analysis and Network-Clustering, we want to identify areas of concordant species distribution patterns in the alpine zone of this region as well as to test the hypothesis that, given the high proportion of endemics among alpine species, delimitation of these areas is determined mainly by endemic alpine species, i.e., areas of concordant species distribution patterns are congruent with areas of endemism. Endemicity Analysis identified six areas of concordant species distribution patterns irrespective of dataset (total alpine species versus endemic alpine species), whereas the Network-Clustering approach identified five and four Bioregions from total alpine species and endemic alpine species, respectively. Most of these areas have been previously identified using the endemic flora of different elevational zones. The identified units using both methods and both datasets are strongly congruent, proposing that they reveal meaningful distribution patterns. Bioregionalization in the Irano-Anatolian biodiversity hotspot appears to be strongly influenced by the endemic alpine species, a pattern likely to hold in alpine regions outside the Irano-Anatolian hotspot.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00035-021-00266-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39579067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-29DOI: 10.1007/s00035-021-00263-w
Dennis J. Larsson, Da Pan, Gerald M. Schneeweiss
Phylogeographic studies of alpine plants have evolved considerably in the last two decades from ad hoc interpretations of genetic data to statistical model-based approaches. In this review we outline the developments in alpine plant phylogeography focusing on the recent approach of integrative distributional, demographic and coalescent (iDDC) modeling. By integrating distributional data with spatially explicit demographic modeling and subsequent coalescent simulations, the history of alpine species can be inferred and long-standing hypotheses, such as species-specific responses to climate change or survival on nunataks during the last glacial maximum, can be efficiently tested as exemplified by available case studies. We also discuss future prospects and improvements of iDDC.
{"title":"Addressing alpine plant phylogeography using integrative distributional, demographic and coalescent modeling","authors":"Dennis J. Larsson, Da Pan, Gerald M. Schneeweiss","doi":"10.1007/s00035-021-00263-w","DOIUrl":"10.1007/s00035-021-00263-w","url":null,"abstract":"<div><p>Phylogeographic studies of alpine plants have evolved considerably in the last two decades from ad hoc interpretations of genetic data to statistical model-based approaches. In this review we outline the developments in alpine plant phylogeography focusing on the recent approach of integrative distributional, demographic and coalescent (iDDC) modeling. By integrating distributional data with spatially explicit demographic modeling and subsequent coalescent simulations, the history of alpine species can be inferred and long-standing hypotheses, such as species-specific responses to climate change or survival on nunataks during the last glacial maximum, can be efficiently tested as exemplified by available case studies. We also discuss future prospects and improvements of iDDC.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00035-021-00263-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50523341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-29DOI: 10.1007/s00035-021-00259-6
Christian Parisod
The main, continuous mountain range of the European Alpine System (i.e., the Alps) hosts a diversified pool of species whose evolution has long been investigated. The legacy of past climate changes on the distribution of high-elevation plants as well as taxa differentially adapted to the mosaic of edaphic conditions (i.e., surmised ecotypes on calcareous, siliceous, serpentine bedrocks) and the origin of new species are here discussed based on available evidence from endemic taxa across the Alps. The integration of main spatial and ecological patterns within and among species supports speciation driven by spatial isolation in main glacial refugia where plant populations survived during cold phases and hindered by intense gene flow along main expansion pathways during warm phases. Despite patterns of genetic differentiation matching environmental heterogeneity, processes underlying the dynamics of distribution ranges likely promoted recurrent homogenization of incipient divergence and generally hindered the completion of speciation (except for cases of hybrid speciation). Even intense selective pressures on toxic bedrocks such as serpentine seemingly fail to support the completion of speciation. Accordingly, typical scenarios of ecological speciation whereby local adaptation to environmental heterogeneity initiates and supports long-term reduction of gene flow may rarely be at the origin of stable species in the Alps. Although consistent with neutral processes whereby spatial isolation driven by past climate changes promoted reproductive isolation and yielded limited diversification, mechanisms at the origin of new species across heterogeneous landscapes of the Alps remain insufficiently known. Necessary advances to reliably understand the evolution of biodiversity in the Alps and identify possible museums or cradles of variation in face of climate changes are discussed.
{"title":"Plant speciation in the face of recurrent climate changes in the Alps","authors":"Christian Parisod","doi":"10.1007/s00035-021-00259-6","DOIUrl":"10.1007/s00035-021-00259-6","url":null,"abstract":"<div><p>The main, continuous mountain range of the European Alpine System (i.e., the Alps) hosts a diversified pool of species whose evolution has long been investigated. The legacy of past climate changes on the distribution of high-elevation plants as well as taxa differentially adapted to the mosaic of edaphic conditions (i.e., surmised ecotypes on calcareous, siliceous, serpentine bedrocks) and the origin of new species are here discussed based on available evidence from endemic taxa across the Alps. The integration of main spatial and ecological patterns within and among species supports speciation driven by spatial isolation in main glacial refugia where plant populations survived during cold phases and hindered by intense gene flow along main expansion pathways during warm phases. Despite patterns of genetic differentiation matching environmental heterogeneity, processes underlying the dynamics of distribution ranges likely promoted recurrent homogenization of incipient divergence and generally hindered the completion of speciation (except for cases of hybrid speciation). Even intense selective pressures on toxic bedrocks such as serpentine seemingly fail to support the completion of speciation. Accordingly, typical scenarios of ecological speciation whereby local adaptation to environmental heterogeneity initiates and supports long-term reduction of gene flow may rarely be at the origin of stable species in the Alps. Although consistent with neutral processes whereby spatial isolation driven by past climate changes promoted reproductive isolation and yielded limited diversification, mechanisms at the origin of new species across heterogeneous landscapes of the Alps remain insufficiently known. Necessary advances to reliably understand the evolution of biodiversity in the Alps and identify possible museums or cradles of variation in face of climate changes are discussed.\u0000</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00035-021-00259-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50523259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-27DOI: 10.1007/s00035-021-00264-9
Vera Margreiter, Janette Walde, Brigitta Erschbamer
Seed germination and seedling recruitment are key processes in the life cycle of plants. They enable populations to grow, migrate, or persist. Both processes are under environmental control and influenced by site conditions and plant–plant interactions. Here, we present the results of a seed-sowing experiment performed along an elevation gradient (2000–2900 m a.s.l.) in the European eastern Alps. We monitored the germination of seeds and seedling recruitment for 2 years. Three effects were investigated: effects of sites and home sites (seed origin), effects of gaps, and plant–plant interactions. Seeds of eight species originating from two home sites were transplanted to four sites (home site and ± in elevation). Seed sowing was performed in experimentally created gaps. These gap types (‘gap + roots’, ‘neighbor + roots’, and ‘no-comp’) provided different plant–plant interactions and competition intensities. We observed decreasing germination with increasing elevation, independent of the species home sites. Competition-released gaps favored recruitment, pointing out the important role of belowground competition and soil components in recruitment. In gaps with one neighboring species, neutral plant–plant interactions occurred (with one exception). However, considering the relative vegetation cover of each experimental site, high vegetation cover resulted in positive effects on recruitment at higher sites and neutral effects at lower sites. All tested species showed intraspecific variability when responding to the experimental conditions. We discuss our findings considering novel site and climatic conditions.
种子发芽和幼苗补充是植物生命周期中的关键过程。它们使种群能够增长、迁移或持续存在。这两个过程都处于环境控制之下,并受到现场条件和植物-植物相互作用的影响。在这里,我们展示了在欧洲东阿尔卑斯山沿海拔梯度(2000–2900 m a.s.l.)进行的种子播种实验的结果。我们对种子的发芽和幼苗的补充进行了2年的监测。研究了三种影响:地点和原址的影响(种子来源)、间隙的影响和植物-植物相互作用。来自两个原址的八个物种的种子被移植到四个原址(原址和 ± 高程)。种子播种是在实验创造的间隙中进行的。这些间隙类型('gap + 根,邻居 + 根和无comp)提供了不同的植物-植物相互作用和竞争强度。我们观察到发芽率随着海拔的升高而降低,与物种的家园无关。竞争释放了有利于招聘的缺口,指出了地下竞争和土壤成分在招聘中的重要作用。在与一个相邻物种的间隙中,发生了中性的植物-植物相互作用(只有一个例外)。然而,考虑到每个实验地点的相对植被覆盖率,高植被覆盖率对高地点的招聘产生了积极影响,而对低地点的招聘则产生了中性影响。所有测试物种在对实验条件作出反应时都表现出种内变异性。考虑到新的地点和气候条件,我们讨论了我们的发现。
{"title":"Competition-free gaps are essential for the germination and recruitment of alpine species along an elevation gradient in the European Alps","authors":"Vera Margreiter, Janette Walde, Brigitta Erschbamer","doi":"10.1007/s00035-021-00264-9","DOIUrl":"10.1007/s00035-021-00264-9","url":null,"abstract":"<div><p>Seed germination and seedling recruitment are key processes in the life cycle of plants. They enable populations to grow, migrate, or persist. Both processes are under environmental control and influenced by site conditions and plant–plant interactions. Here, we present the results of a seed-sowing experiment performed along an elevation gradient (2000–2900 m a.s.l.) in the European eastern Alps. We monitored the germination of seeds and seedling recruitment for 2 years. Three effects were investigated: effects of sites and home sites (seed origin), effects of gaps, and plant–plant interactions. Seeds of eight species originating from two home sites were transplanted to four sites (home site and ± in elevation). Seed sowing was performed in experimentally created gaps. These gap types (‘gap + roots’, ‘neighbor + roots’, and ‘no-comp’) provided different plant–plant interactions and competition intensities. We observed decreasing germination with increasing elevation, independent of the species home sites. Competition-released gaps favored recruitment, pointing out the important role of belowground competition and soil components in recruitment. In gaps with one neighboring species, neutral plant–plant interactions occurred (with one exception). However, considering the relative vegetation cover of each experimental site, high vegetation cover resulted in positive effects on recruitment at higher sites and neutral effects at lower sites. All tested species showed intraspecific variability when responding to the experimental conditions. We discuss our findings considering novel site and climatic conditions.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00035-021-00264-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50517809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-19DOI: 10.1007/s00035-021-00256-9
Christian Brochmann, Abel Gizaw, Desalegn Chala, Martha Kandziora, Gerald Eilu, Magnus Popp, Michael D. Pirie, Berit Gehrke
The monumental work of Olov Hedberg provided deep insights into the spectacular and fragmented tropical alpine flora of the African sky islands. Here we review recent molecular and niche modelling studies and re-examine Hedberg’s hypotheses and conclusions. Colonisation started when mountain uplift established the harsh diurnal climate with nightly frosts, accelerated throughout the last 5 Myr (Plio-Pleistocene), and resulted in a flora rich in local endemics. Recruitment was dominated by long-distance dispersals (LDDs) from seasonally cold, remote areas, mainly in Eurasia. Colonisation was only rarely followed by substantial diversification. Instead, most of the larger genera and even species colonised the afroalpine habitat multiple times independently. Conspicuous parallel evolution occurred among mountains, e.g., of gigantism in Lobelia and Dendrosenecio and dwarf shrubs in Alchemilla. Although the alpine habitat was ~ 8 times larger and the treeline was ~ 1000 m lower than today during the Last Glacial Maximum, genetic data suggest that the flora was shaped by strong intermountain isolation interrupted by rare LDDs rather than ecological connectivity. The new evidence points to a much younger and more dynamic island scenario than envisioned by Hedberg: the afroalpine flora is unsaturated and fragile, it was repeatedly disrupted by the Pleistocene climate oscillations, and it harbours taxonomic and genetic diversity that is unique but severely depauperated by frequent bottlenecks and cycles of colonisation, extinction, and recolonisation. The level of intrapopulation genetic variation is alarmingly low, and many afroalpine species may be vulnerable to extinction because of climate warming and increasing human impact.
Olov Hedberg的不朽作品深入了解了非洲天空群岛壮观而支离破碎的热带高山植物群。在这里,我们回顾了最近的分子和生态位建模研究,并重新审视了Hedberg的假设和结论。当山脉隆起形成了夜间霜冻的恶劣昼夜气候时,殖民就开始了,在最后5年(上新世-更新世)加速了,并形成了富含当地特有植物的植物群。招聘主要来自季节性寒冷的偏远地区,主要在欧亚大陆。殖民之后很少有实质性的多样化。相反,大多数较大的属甚至物种多次独立地在亚高山栖息地定居。在山脉之间发生了明显的平行进化,例如,半边莲和Dendrosenecio的巨人症,以及Alchemilla的矮灌木。尽管高山栖息地 ~ 8倍大,树线 ~ 在上一次冰川盛期,比今天低1000米,遗传数据表明,该植物群是由强烈的山间隔离所形成的,这种隔离被罕见的LDD打断,而不是生态连接。新的证据表明,一个比海德伯格设想的更年轻、更具活力的岛屿场景:非洲高山植物群是不饱和和脆弱的,它一再受到更新世气候振荡的破坏,它拥有独特的分类和遗传多样性,但由于殖民、灭绝和再殖民的频繁瓶颈和周期而严重削弱。种群内部基因变异水平低得惊人,由于气候变暖和人类影响的增加,许多非洲高山物种可能容易灭绝。
{"title":"History and evolution of the afroalpine flora: in the footsteps of Olov Hedberg","authors":"Christian Brochmann, Abel Gizaw, Desalegn Chala, Martha Kandziora, Gerald Eilu, Magnus Popp, Michael D. Pirie, Berit Gehrke","doi":"10.1007/s00035-021-00256-9","DOIUrl":"10.1007/s00035-021-00256-9","url":null,"abstract":"<div><p>The monumental work of Olov Hedberg provided deep insights into the spectacular and fragmented tropical alpine flora of the African sky islands. Here we review recent molecular and niche modelling studies and re-examine Hedberg’s hypotheses and conclusions. Colonisation started when mountain uplift established the harsh diurnal climate with nightly frosts, accelerated throughout the last 5 Myr (Plio-Pleistocene), and resulted in a flora rich in local endemics. Recruitment was dominated by long-distance dispersals (LDDs) from seasonally cold, remote areas, mainly in Eurasia. Colonisation was only rarely followed by substantial diversification. Instead, most of the larger genera and even species colonised the afroalpine habitat multiple times independently. Conspicuous parallel evolution occurred among mountains, e.g., of gigantism in <i>Lobelia</i> and <i>Dendrosenecio</i> and dwarf shrubs in <i>Alchemilla</i>. Although the alpine habitat was ~ 8 times larger and the treeline was ~ 1000 m lower than today during the Last Glacial Maximum, genetic data suggest that the flora was shaped by strong intermountain isolation interrupted by rare LDDs rather than ecological connectivity. The new evidence points to a much younger and more dynamic island scenario than envisioned by Hedberg: the afroalpine flora is unsaturated and fragile, it was repeatedly disrupted by the Pleistocene climate oscillations, and it harbours taxonomic and genetic diversity that is unique but severely depauperated by frequent bottlenecks and cycles of colonisation, extinction, and recolonisation. The level of intrapopulation genetic variation is alarmingly low, and many afroalpine species may be vulnerable to extinction because of climate warming and increasing human impact.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00035-021-00256-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50496549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}