首页 > 最新文献

Alpine Botany最新文献

英文 中文
Distribution changes in páramo plants from the equatorial high Andes in response to increasing temperature and humidity variation since 1880 自1880年以来,赤道安第斯山脉高海拔地区páramo植物在温度和湿度变化中的分布变化
IF 2.7 3区 生物学 Q2 Agricultural and Biological Sciences Pub Date : 2021-09-18 DOI: 10.1007/s00035-021-00270-x
Petr Sklenář, Katya Romoleroux, Priscilla Muriel, Ricardo Jaramillo, Antonella Bernardi, Mauricio Diazgranados, Pierre Moret

Climatic changes threaten the diverse and highly endemic páramo flora of the equatorial Andes with species loss and reduction of plant community diversity. Edward Whymper’s findings in his botanical exploration of the Ecuadorian Andes in 1880 offer an opportunity to examine the impact of climate changes on species distribution over time. To achieve these goals, we revised Whymper’s historical plant species collections, recorded elevational distribution of the same species along his 1880 sampling routes on two volcanoes, Chimborazo and Antisana, and applied to them ecological indicator values. Of the species recorded by Whymper, 24 on Antisana and 21 on Chimborazo, we resampled 21 and 14 of those species, respectively, in 2020. The highest record we found on Chimborazo was at 5385 m, seven meters above the zero-richness elevation predicted from Whymper’s distribution data, and at 4937 m on Antisana, 113 m below it. Mean upper range limits of species have shifted upward by 91.7 m on Chimborazo and by 27.1 m on Antisana, suggesting mean shift rates of 6.6 m and 1.9 m per decade, respectively. This rate of upslope migration ranks among the slowest reported worldwide. Humidity ecological indicator values suggest that species composition of páramo plant communities changed since 1880 in response not only to rising temperature, but also increasing dryness. Rather than a uniform upslope migration, the response of páramo plants to climate changes in the equatorial Andes has been species-specific, likely driven, among other factors, by coupled effects of increasing temperature and declining humidity.

气候变化威胁着赤道安第斯山脉的多样性和高度地方性的帕拉莫植物群,物种减少,植物群落多样性减少。爱德华·温珀在1880年对厄瓜多尔安第斯山脉的植物学探索中的发现为研究气候变化对物种分布的影响提供了一个机会。为了实现这些目标,我们修改了Whymper的历史植物物种集合,记录了同一物种在Chimborazo和Antisana两座火山1880年采样路线上的海拔分布,并将其应用于生态指标值。在Whymper记录的物种中,24个在Antisana,21个在Chimborazo,我们在2020年分别对其中21个和14个物种进行了重新采样。我们在Chimborazo上发现的最高记录是5385米,比Whymper分布数据预测的零丰富度海拔高出7米,在Antisana上发现的4937米,比零丰富度海拔低113米。Chimbora佐和Antisana的物种平均上限分别向上移动了91.7米和27.1米,表明平均移动率分别为每十年6.6米和1.9米。这种上坡迁移率是世界上报告的最慢的迁移率之一。湿度生态指标值表明,自1880年以来,帕拉莫植物群落的物种组成发生了变化,这不仅是对温度上升的反应,也是对干旱加剧的反应。páramo植物对赤道安第斯山脉气候变化的反应不是均匀的上坡迁移,而是特定物种的反应,可能是由温度升高和湿度下降的共同影响等因素驱动的。
{"title":"Distribution changes in páramo plants from the equatorial high Andes in response to increasing temperature and humidity variation since 1880","authors":"Petr Sklenář,&nbsp;Katya Romoleroux,&nbsp;Priscilla Muriel,&nbsp;Ricardo Jaramillo,&nbsp;Antonella Bernardi,&nbsp;Mauricio Diazgranados,&nbsp;Pierre Moret","doi":"10.1007/s00035-021-00270-x","DOIUrl":"10.1007/s00035-021-00270-x","url":null,"abstract":"<div><p>Climatic changes threaten the diverse and highly endemic páramo flora of the equatorial Andes with species loss and reduction of plant community diversity. Edward Whymper’s findings in his botanical exploration of the Ecuadorian Andes in 1880 offer an opportunity to examine the impact of climate changes on species distribution over time. To achieve these goals, we revised Whymper’s historical plant species collections, recorded elevational distribution of the same species along his 1880 sampling routes on two volcanoes, Chimborazo and Antisana, and applied to them ecological indicator values. Of the species recorded by Whymper, 24 on Antisana and 21 on Chimborazo, we resampled 21 and 14 of those species, respectively, in 2020. The highest record we found on Chimborazo was at 5385 m, seven meters above the zero-richness elevation predicted from Whymper’s distribution data, and at 4937 m on Antisana, 113 m below it. Mean upper range limits of species have shifted upward by 91.7 m on Chimborazo and by 27.1 m on Antisana, suggesting mean shift rates of 6.6 m and 1.9 m per decade, respectively. This rate of upslope migration ranks among the slowest reported worldwide. Humidity ecological indicator values suggest that species composition of páramo plant communities changed since 1880 in response not only to rising temperature, but also increasing dryness. Rather than a uniform upslope migration, the response of páramo plants to climate changes in the equatorial Andes has been species-specific, likely driven, among other factors, by coupled effects of increasing temperature and declining humidity.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50494299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Effects of drainage reorganization on phytogeographic pattern in Sino-Himalaya 水系重组对喜马拉雅山植物地理格局的影响
IF 2.7 3区 生物学 Q2 Agricultural and Biological Sciences Pub Date : 2021-09-03 DOI: 10.1007/s00035-021-00269-4
Hang Sun, Zhimin Li, Jacob B. Landis, Lishen Qian, Ticao Zhang, Tao Deng

The Sino-Himalaya region is located in the southeast margin of the Qinghai-Tibetan Plateau (QTP) with several Asian rivers in this area, namely the Yarlung Zangbo River (YZR), Salween, Mekong, and Jinshajiang River and their tributaries. All these rivers currently flow independently into the Indian Ocean, the South China Sea (Pacific Ocean) and the East China Sea (Pacific Ocean). In geologic history, however, these rivers flowed southward into the Paleo-Red River (PRR), forming a huge drainage system, which then flowed into the South China Sea. From the end of the Neogene to the beginning of the Quaternary, with further uplift of the QTP, the monsoon climate was formed and strengthened bringing abundant precipitation leading to river erosion, rapid undercutting and a series of river capture events resulting in modern drainage systems and the beheading of the huge PRR. The reorganization of the PRR led to changes in the spatial pattern of river systems, subsequently affecting the geographical distribution of plants in the river valley. This paper reviews the effects of drainage evolution on the genetic structure and geographical pattern of plants in this region, and summarizes the resulting four types of discontinuous distribution patterns observed, namely: (1) the discontinuous distribution pattern between the Three River Valleys (TRV) (Salween, Mekong, Jinshajiang and their tributaries) and the Red River Basin (RRB); (2) the discontinuity between the Yarlung Zangbo River and the TRV–RRB; (3) the discontinuity among the TRV, and (4) the discontinuity between the east and west ends of the QTP. The conclusions from this review, while providing botanical evidence supporting and confirming the drainage evolution in Sino-Himalaya China, are the following: (1) the reorganization of drainage systems made the original continuous distribution pattern discontinuous, forming unique genetic and biogeographical characteristics, promoting the genetic differentiation of species and the formation of new taxa; (2) river capture events link different river systems together, bringing together the genetic diversity of different river valley species, increasing the richness of genetic diversity and the exchange of genes among populations; (3) the reorganization of river systems impacts the evolutionary history of valley plants and shapes their modern distribution patterns.

中喜马拉雅地区位于青藏高原东南缘,境内有雅鲁藏布江、萨尔温江、湄公河、金沙江及其支流等亚洲河流。所有这些河流目前都独立流入印度洋、南中国海(太平洋)和东海(太平洋)。然而,在地质史上,这些河流向南流入古红河,形成了一个巨大的排水系统,然后流入南中国海。从新第三纪末到第四纪初,随着QTP的进一步抬升,季风气候的形成和加强,带来了充足的降水,导致河流侵蚀、快速下切和一系列河流捕获事件,形成了现代排水系统,并斩首了巨大的PRR。PRR的重组导致了河流系统空间格局的变化,随后影响了河谷中植物的地理分布。本文综述了流域演化对该地区植物遗传结构和地理格局的影响,总结了由此产生的四种不连续分布格局,即:(1)三江流域(萨尔温江、湄公河、金沙江及其支流)与红河流域(RRB)之间的不连续分布模式;(2) 雅鲁藏布江和TRV–RRB之间的不连续性;(3) TRV之间的不连续性以及(4)QTP的东端和西端之间的不间断性。本综述的结论在为支持和证实中喜马拉雅流域演化提供植物学证据的同时,主要有以下几点:(1)流域系统的重组使原有的连续分布格局不连续,形成了独特的遗传和生物地理学特征,促进物种的遗传分化和新分类群的形成;(2) 河流捕获事件将不同的河流系统连接在一起,汇集了不同河谷物种的遗传多样性,增加了遗传多样性的丰富性和种群之间的基因交换;(3) 河流系统的重组影响了河谷植物的进化史,并塑造了其现代分布格局。
{"title":"Effects of drainage reorganization on phytogeographic pattern in Sino-Himalaya","authors":"Hang Sun,&nbsp;Zhimin Li,&nbsp;Jacob B. Landis,&nbsp;Lishen Qian,&nbsp;Ticao Zhang,&nbsp;Tao Deng","doi":"10.1007/s00035-021-00269-4","DOIUrl":"10.1007/s00035-021-00269-4","url":null,"abstract":"<div><p>The Sino-Himalaya region is located in the southeast margin of the Qinghai-Tibetan Plateau (QTP) with several Asian rivers in this area, namely the Yarlung Zangbo River (YZR), Salween, Mekong, and Jinshajiang River and their tributaries. All these rivers currently flow independently into the Indian Ocean, the South China Sea (Pacific Ocean) and the East China Sea (Pacific Ocean). In geologic history, however, these rivers flowed southward into the Paleo-Red River (PRR), forming a huge drainage system, which then flowed into the South China Sea. From the end of the Neogene to the beginning of the Quaternary, with further uplift of the QTP, the monsoon climate was formed and strengthened bringing abundant precipitation leading to river erosion, rapid undercutting and a series of river capture events resulting in modern drainage systems and the beheading of the huge PRR. The reorganization of the PRR led to changes in the spatial pattern of river systems, subsequently affecting the geographical distribution of plants in the river valley. This paper reviews the effects of drainage evolution on the genetic structure and geographical pattern of plants in this region, and summarizes the resulting four types of discontinuous distribution patterns observed, namely: (1) the discontinuous distribution pattern between the Three River Valleys (TRV) (Salween, Mekong, Jinshajiang and their tributaries) and the Red River Basin (RRB); (2) the discontinuity between the Yarlung Zangbo River and the TRV–RRB; (3) the discontinuity among the TRV, and (4) the discontinuity between the east and west ends of the QTP. The conclusions from this review, while providing botanical evidence supporting and confirming the drainage evolution in Sino-Himalaya China, are the following: (1) the reorganization of drainage systems made the original continuous distribution pattern discontinuous, forming unique genetic and biogeographical characteristics, promoting the genetic differentiation of species and the formation of new taxa; (2) river capture events link different river systems together, bringing together the genetic diversity of different river valley species, increasing the richness of genetic diversity and the exchange of genes among populations; (3) the reorganization of river systems impacts the evolutionary history of valley plants and shapes their modern distribution patterns.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50447245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Afro-alpine flagships revisited II: elucidating the evolutionary relationships and species boundaries in the giant senecios (Dendrosenecio, Asteraceae) 非洲高山旗舰重访II:阐明巨型senecios(Dendrosenecio,Astraceae)的进化关系和物种边界
IF 2.7 3区 生物学 Q2 Agricultural and Biological Sciences Pub Date : 2021-09-01 DOI: 10.1007/s00035-021-00268-5
Abel Gizaw, Juan Manuel Gorospe, Martha Kandziora, Desalegn Chala, Lovisa Gustafsson, Abush Zinaw, Luciana Salomón, Gerald Eilu, Christian Brochmann, Filip Kolář, Roswitha Schmickl

Alpine plant radiations are common across all major mountain systems of the world, and have been regarded as the main explanation for the species diversity found within these areas. To study the mechanisms behind the origin of this diversity, it is necessary to determine phylogenetic relationships and species boundaries in radiating alpine groups. The genus Dendrosenecio (Asteraceae) is an iconic example of a tropical-alpine plant radiation in the East African high mountains. To this date, limited sampling of molecular markers has resulted in insufficient phylogenetic resolution and infrageneric classification, hindering a comprehensive understanding of the drivers of diversification. Here, we used Hyb-Seq and the Compositae1061 probe set to generate targeted nuclear and off-target plastid DNA data for 42 samples representing all currently accepted 11 species. We combined coalescent methods and paralogy analysis to infer phylogenetic relationships, estimate divergence times and evaluate species boundaries. Lineage differentiation in Dendrosenecio seems to have occurred between the Late Miocene and the Pleistocene, starting when the first high elevation habitats became available in East Africa. We retrieved four major clades corresponding to four geographically distant mountain groups, testifying the importance of allopatric speciation in the early diversification of the group. Cytonuclear discordance suggested the occurrence of historical hybridization following occasional long-distance dispersal between mountain groups. The species delimitation analysis favored 10 species, but only five were fully supported, suggesting that population-level studies addressing processes such as ecological speciation and hybridization after secondary contact are needed to determine the current diversity found in the genus.

高山植物辐射在世界上所有主要的山脉系统中都很常见,被认为是这些地区物种多样性的主要解释。为了研究这种多样性起源背后的机制,有必要确定辐射高山群落的系统发育关系和物种边界。Dendrosenecio属(菊科)是东非高山热带高山植物辐射的标志性例子。到目前为止,分子标记的有限采样导致系统发育分辨率和亚属分类不足,阻碍了对多样化驱动因素的全面理解。在这里,我们使用Hyb-Seq和Compositae1061探针组生成了42个样本的靶向细胞核和脱靶质体DNA数据,这些样本代表了目前接受的所有11个物种。我们结合了融合方法和亲缘关系分析来推断系统发育关系,估计分化时间和评估物种边界。Dendrosenecio的谱系分化似乎发生在中新世晚期和更新世之间,从东非第一个高海拔栖息地开始。我们检索了四个主要分支,对应于四个地理上遥远的山脉群,证明了异地物种形成在该群早期多样化中的重要性。细胞核不一致性表明,在山脉群之间偶尔长距离传播后,历史上发生了杂交。物种划界分析支持10个物种,但只有5个得到了充分支持,这表明需要进行种群层面的研究,解决生态物种形成和二次接触后的杂交等过程,以确定该属目前的多样性。
{"title":"Afro-alpine flagships revisited II: elucidating the evolutionary relationships and species boundaries in the giant senecios (Dendrosenecio, Asteraceae)","authors":"Abel Gizaw,&nbsp;Juan Manuel Gorospe,&nbsp;Martha Kandziora,&nbsp;Desalegn Chala,&nbsp;Lovisa Gustafsson,&nbsp;Abush Zinaw,&nbsp;Luciana Salomón,&nbsp;Gerald Eilu,&nbsp;Christian Brochmann,&nbsp;Filip Kolář,&nbsp;Roswitha Schmickl","doi":"10.1007/s00035-021-00268-5","DOIUrl":"10.1007/s00035-021-00268-5","url":null,"abstract":"<div><p>Alpine plant radiations are common across all major mountain systems of the world, and have been regarded as the main explanation for the species diversity found within these areas. To study the mechanisms behind the origin of this diversity, it is necessary to determine phylogenetic relationships and species boundaries in radiating alpine groups. The genus <i>Dendrosenecio</i> (Asteraceae) is an iconic example of a tropical-alpine plant radiation in the East African high mountains. To this date, limited sampling of molecular markers has resulted in insufficient phylogenetic resolution and infrageneric classification, hindering a comprehensive understanding of the drivers of diversification. Here, we used Hyb-Seq and the Compositae1061 probe set to generate targeted nuclear and off-target plastid DNA data for 42 samples representing all currently accepted 11 species. We combined coalescent methods and paralogy analysis to infer phylogenetic relationships, estimate divergence times and evaluate species boundaries. Lineage differentiation in <i>Dendrosenecio</i> seems to have occurred between the Late Miocene and the Pleistocene, starting when the first high elevation habitats became available in East Africa. We retrieved four major clades corresponding to four geographically distant mountain groups, testifying the importance of allopatric speciation in the early diversification of the group. Cytonuclear discordance suggested the occurrence of historical hybridization following occasional long-distance dispersal between mountain groups. The species delimitation analysis favored 10 species, but only five were fully supported, suggesting that population-level studies addressing processes such as ecological speciation and hybridization after secondary contact are needed to determine the current diversity found in the genus.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50437563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Incongruences between nuclear and plastid phylogenies challenge the identification of correlates of diversification in Gentiana in the European Alpine System 核系统发育和质体系统发育之间的不一致性挑战了欧洲高山系统龙胆多样化相关性的鉴定
IF 2.7 3区 生物学 Q2 Agricultural and Biological Sciences Pub Date : 2021-08-20 DOI: 10.1007/s00035-021-00267-6
Adrien Favre, Juraj Paule, Jana Ebersbach

Mountains are reservoirs for a tremendous biodiversity which was fostered by a suite of factors acting in concert throughout evolutionary times. These factors can be climatic, geological, or biotic, but the way they combine through time to generate diversity remains unknown. Here, we investigate these factors as correlates of diversification of three closely related sections of Gentiana in the European Alpine System. Based upon phylogenetic approaches coupled with divergence dating and ancestral state reconstructions, we attempted to identify the role of bedrock preferences, chromosome numbers coupled with relative genome sizes estimates, as well as morphological features through time. We also investigated extant climatic preferences using a heavily curated set of occurrence records individually selected for superior precision, and quantified rates of climatic niche evolution in each section. We found that a number of phylogenetic incongruences derail the identification of correlates of diversification, yet a number of patterns persist regardless of the topology considered. All the studied correlates are likely to have contributed to the diversification of Gentiana in Europe, however, their respective importance varied through time and across clades. Chromosomal variation and divergence of climatic preferences appear to correlate with diversification throughout the evolution of European Gentiana (Oligocene to present), whereas shifts in bedrock preferences appear to have been more defining during recent diversification (Pliocene). Overall, a complex interaction among climatic, geological and biotic attributes appear to have supported the diversification of Gentiana across the mountains of Europe, which based upon phylogenetic as well as other evidence, was probably also bolstered by hybridization.

山脉是巨大生物多样性的蓄水池,在整个进化时期,一系列因素共同作用,培育了巨大的生物多样性。这些因素可能是气候、地质或生物因素,但它们在时间上结合产生多样性的方式仍然未知。在这里,我们研究了这些因素作为欧洲高山系统龙胆三个密切相关部分多样化的相关因素。基于系统发育方法,结合分歧年代测定和祖先状态重建,我们试图确定基石偏好、染色体数量和相对基因组大小估计的作用,以及随时间的形态学特征。我们还使用一组精心策划的发生记录调查了现存的气候偏好,这些记录是为了获得更高的精度而单独选择的,并量化了每个部分的气候生态位进化率。我们发现,许多系统发育不一致破坏了多样化相关因素的识别,但无论所考虑的拓扑结构如何,许多模式都会持续存在。所有研究的相关性都可能有助于龙胆在欧洲的多样化,然而,它们各自的重要性随着时间和分支的不同而不同。在整个欧洲龙胆进化过程中(渐新世至今),染色体变异和气候偏好的差异似乎与多样化有关,而在最近的多样化过程中(上新世),基岩偏好的变化似乎更具决定性。总的来说,气候、地质和生物属性之间的复杂相互作用似乎支持了龙胆在欧洲山区的多样化,基于系统发育和其他证据,杂交可能也支持了这一点。
{"title":"Incongruences between nuclear and plastid phylogenies challenge the identification of correlates of diversification in Gentiana in the European Alpine System","authors":"Adrien Favre,&nbsp;Juraj Paule,&nbsp;Jana Ebersbach","doi":"10.1007/s00035-021-00267-6","DOIUrl":"10.1007/s00035-021-00267-6","url":null,"abstract":"<div><p>Mountains are reservoirs for a tremendous biodiversity which was fostered by a suite of factors acting in concert throughout evolutionary times. These factors can be climatic, geological, or biotic, but the way they combine through time to generate diversity remains unknown. Here, we investigate these factors as correlates of diversification of three closely related sections of <i>Gentiana</i> in the European Alpine System. Based upon phylogenetic approaches coupled with divergence dating and ancestral state reconstructions, we attempted to identify the role of bedrock preferences, chromosome numbers coupled with relative genome sizes estimates, as well as morphological features through time. We also investigated extant climatic preferences using a heavily curated set of occurrence records individually selected for superior precision, and quantified rates of climatic niche evolution in each section. We found that a number of phylogenetic incongruences derail the identification of correlates of diversification, yet a number of patterns persist regardless of the topology considered. All the studied correlates are likely to have contributed to the diversification of <i>Gentiana</i> in Europe, however, their respective importance varied through time and across clades. Chromosomal variation and divergence of climatic preferences appear to correlate with diversification throughout the evolution of European <i>Gentiana</i> (Oligocene to present), whereas shifts in bedrock preferences appear to have been more defining during recent diversification (Pliocene). Overall, a complex interaction among climatic, geological and biotic attributes appear to have supported the diversification of <i>Gentiana</i> across the mountains of Europe, which based upon phylogenetic as well as other evidence, was probably also bolstered by hybridization.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00035-021-00267-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50498265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Mountain definitions and their consequences 山区定义及其后果
IF 2.7 3区 生物学 Q2 Agricultural and Biological Sciences Pub Date : 2021-08-11 DOI: 10.1007/s00035-021-00265-8
Christian Körner, Davnah Urbach, Jens Paulsen

Mountains are rugged structures in the landscape that are difficult to delineate. Given that they host an overproportional fraction of biodiversity of high ecological and conservational value, conventions on what is mountainous and what not are in need. This short communication aims at explaining the differences among various popular mountain definitions. Defining mountainous terrain is key for global assessments of plant species richness in mountains and their likely responses to climatic change, as well as for assessing the human population density in and around mountainous terrain.

山脉是地形中崎岖不平的结构,难以描绘。鉴于它们拥有高生态和自然保护价值的生物多样性的比例过高,关于什么是山区和什么不是山区的公约是必要的。这篇简短的交流旨在解释各种流行的山脉定义之间的差异。确定山区地形对于全球评估山区植物物种丰富度及其对气候变化的可能反应,以及评估山区及其周围的人口密度至关重要。
{"title":"Mountain definitions and their consequences","authors":"Christian Körner,&nbsp;Davnah Urbach\u0000,&nbsp;Jens Paulsen","doi":"10.1007/s00035-021-00265-8","DOIUrl":"10.1007/s00035-021-00265-8","url":null,"abstract":"<div><p>Mountains are rugged structures in the landscape that are difficult to delineate. Given that they host an overproportional fraction of biodiversity of high ecological and conservational value, conventions on what is mountainous and what not are in need. This short communication aims at explaining the differences among various popular mountain definitions. Defining mountainous terrain is key for global assessments of plant species richness in mountains and their likely responses to climatic change, as well as for assessing the human population density in and around mountainous terrain.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00035-021-00265-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50470531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Endemics determine bioregionalization in the alpine zone of the Irano-Anatolian biodiversity hotspot (South-West Asia) 地方学决定了伊拉诺-安纳托利亚生物多样性热点(西南亚)高山地区的生物区域化
IF 2.7 3区 生物学 Q2 Agricultural and Biological Sciences Pub Date : 2021-08-04 DOI: 10.1007/s00035-021-00266-7
Jalil Noroozi, Sina Khalvati, Haniyeh Nafisi, Akram Kaveh, Behnaz Nazari, Golshan Zare, Masoud Minaei, Ernst Vitek, Gerald M. Schneeweiss

Alpine habitats are characterized by a high rate of range restricted species compared to those of lower elevations. This is also the case for the Irano-Anatolian global biodiversity hotspot in South-West Asia, which is a mountainous area harbouring a high amount of endemic species. Using two quantitative approaches, Endemicity Analysis and Network-Clustering, we want to identify areas of concordant species distribution patterns in the alpine zone of this region as well as to test the hypothesis that, given the high proportion of endemics among alpine species, delimitation of these areas is determined mainly by endemic alpine species, i.e., areas of concordant species distribution patterns are congruent with areas of endemism. Endemicity Analysis identified six areas of concordant species distribution patterns irrespective of dataset (total alpine species versus endemic alpine species), whereas the Network-Clustering approach identified five and four Bioregions from total alpine species and endemic alpine species, respectively. Most of these areas have been previously identified using the endemic flora of different elevational zones. The identified units using both methods and both datasets are strongly congruent, proposing that they reveal meaningful distribution patterns. Bioregionalization in the Irano-Anatolian biodiversity hotspot appears to be strongly influenced by the endemic alpine species, a pattern likely to hold in alpine regions outside the Irano-Anatolian hotspot.

与低海拔地区相比,阿尔卑斯山栖息地的特点是范围限制物种的比例很高。西南亚的伊拉诺-安纳托利亚全球生物多样性热点地区也是如此,该地区是一个拥有大量特有物种的山区。使用两种定量方法,即地方性分析和网络聚类,我们希望确定该地区高山地带物种分布模式一致的区域,并检验以下假设:鉴于高山物种中地方性的比例很高,这些区域的划界主要由高山特有物种决定,即:。,物种分布模式一致的区域与特有性区域一致。地方性分析确定了六个物种分布模式一致的区域,而不考虑数据集(高山总物种与高山特有物种),而网络聚类方法分别从高山总物种和高山特有物种中确定了五个和四个生物区。这些地区中的大多数以前都是利用不同海拔带的特有植物群确定的。使用两种方法和两个数据集确定的单元是强一致的,表明它们揭示了有意义的分布模式。伊拉诺-安纳托利亚生物多样性热点的生物区划似乎受到当地高山物种的强烈影响,这种模式可能在伊拉诺-阿纳托利亚热点以外的高山地区保持。
{"title":"Endemics determine bioregionalization in the alpine zone of the Irano-Anatolian biodiversity hotspot (South-West Asia)","authors":"Jalil Noroozi,&nbsp;Sina Khalvati,&nbsp;Haniyeh Nafisi,&nbsp;Akram Kaveh,&nbsp;Behnaz Nazari,&nbsp;Golshan Zare,&nbsp;Masoud Minaei,&nbsp;Ernst Vitek,&nbsp;Gerald M. Schneeweiss","doi":"10.1007/s00035-021-00266-7","DOIUrl":"10.1007/s00035-021-00266-7","url":null,"abstract":"<div><p>Alpine habitats are characterized by a high rate of range restricted species compared to those of lower elevations. This is also the case for the Irano-Anatolian global biodiversity hotspot in South-West Asia, which is a mountainous area harbouring a high amount of endemic species. Using two quantitative approaches, Endemicity Analysis and Network-Clustering, we want to identify areas of concordant species distribution patterns in the alpine zone of this region as well as to test the hypothesis that, given the high proportion of endemics among alpine species, delimitation of these areas is determined mainly by endemic alpine species, i.e., areas of concordant species distribution patterns are congruent with areas of endemism. Endemicity Analysis identified six areas of concordant species distribution patterns irrespective of dataset (total alpine species versus endemic alpine species), whereas the Network-Clustering approach identified five and four Bioregions from total alpine species and endemic alpine species, respectively. Most of these areas have been previously identified using the endemic flora of different elevational zones. The identified units using both methods and both datasets are strongly congruent, proposing that they reveal meaningful distribution patterns. Bioregionalization in the Irano-Anatolian biodiversity hotspot appears to be strongly influenced by the endemic alpine species, a pattern likely to hold in alpine regions outside the Irano-Anatolian hotspot.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00035-021-00266-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39579067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Addressing alpine plant phylogeography using integrative distributional, demographic and coalescent modeling 利用综合分布、人口统计和联合建模解决高山植物系统地理学问题
IF 2.7 3区 生物学 Q2 Agricultural and Biological Sciences Pub Date : 2021-07-29 DOI: 10.1007/s00035-021-00263-w
Dennis J. Larsson, Da Pan, Gerald M. Schneeweiss

Phylogeographic studies of alpine plants have evolved considerably in the last two decades from ad hoc interpretations of genetic data to statistical model-based approaches. In this review we outline the developments in alpine plant phylogeography focusing on the recent approach of integrative distributional, demographic and coalescent (iDDC) modeling. By integrating distributional data with spatially explicit demographic modeling and subsequent coalescent simulations, the history of alpine species can be inferred and long-standing hypotheses, such as species-specific responses to climate change or survival on nunataks during the last glacial maximum, can be efficiently tested as exemplified by available case studies. We also discuss future prospects and improvements of iDDC.

在过去的二十年里,高山植物的系统地理学研究从对遗传数据的特殊解释到基于统计模型的方法,已经有了很大的发展。在这篇综述中,我们概述了高山植物系统地理学的发展,重点是最近的综合分布、人口统计学和联合(iDDC)建模方法。通过将分布数据与空间明确的人口统计建模和随后的联合模拟相结合,可以推断出高山物种的历史,并可以有效地检验长期存在的假设,如物种对气候变化的特定反应或上一次冰川盛期努纳塔克人的生存,如可用的案例研究所示。我们还讨论了iDDC的未来前景和改进。
{"title":"Addressing alpine plant phylogeography using integrative distributional, demographic and coalescent modeling","authors":"Dennis J. Larsson,&nbsp;Da Pan,&nbsp;Gerald M. Schneeweiss","doi":"10.1007/s00035-021-00263-w","DOIUrl":"10.1007/s00035-021-00263-w","url":null,"abstract":"<div><p>Phylogeographic studies of alpine plants have evolved considerably in the last two decades from ad hoc interpretations of genetic data to statistical model-based approaches. In this review we outline the developments in alpine plant phylogeography focusing on the recent approach of integrative distributional, demographic and coalescent (iDDC) modeling. By integrating distributional data with spatially explicit demographic modeling and subsequent coalescent simulations, the history of alpine species can be inferred and long-standing hypotheses, such as species-specific responses to climate change or survival on nunataks during the last glacial maximum, can be efficiently tested as exemplified by available case studies. We also discuss future prospects and improvements of iDDC.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00035-021-00263-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50523341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Plant speciation in the face of recurrent climate changes in the Alps 面对阿尔卑斯山反复发生的气候变化,植物物种形成
IF 2.7 3区 生物学 Q2 Agricultural and Biological Sciences Pub Date : 2021-07-29 DOI: 10.1007/s00035-021-00259-6
Christian Parisod

The main, continuous mountain range of the European Alpine System (i.e., the Alps) hosts a diversified pool of species whose evolution has long been investigated. The legacy of past climate changes on the distribution of high-elevation plants as well as taxa differentially adapted to the mosaic of edaphic conditions (i.e., surmised ecotypes on calcareous, siliceous, serpentine bedrocks) and the origin of new species are here discussed based on available evidence from endemic taxa across the Alps. The integration of main spatial and ecological patterns within and among species supports speciation driven by spatial isolation in main glacial refugia where plant populations survived during cold phases and hindered by intense gene flow along main expansion pathways during warm phases. Despite patterns of genetic differentiation matching environmental heterogeneity, processes underlying the dynamics of distribution ranges likely promoted recurrent homogenization of incipient divergence and generally hindered the completion of speciation (except for cases of hybrid speciation). Even intense selective pressures on toxic bedrocks such as serpentine seemingly fail to support the completion of speciation. Accordingly, typical scenarios of ecological speciation whereby local adaptation to environmental heterogeneity initiates and supports long-term reduction of gene flow may rarely be at the origin of stable species in the Alps. Although consistent with neutral processes whereby spatial isolation driven by past climate changes promoted reproductive isolation and yielded limited diversification, mechanisms at the origin of new species across heterogeneous landscapes of the Alps remain insufficiently known. Necessary advances to reliably understand the evolution of biodiversity in the Alps and identify possible museums or cradles of variation in face of climate changes are discussed.

欧洲阿尔卑斯山系统(即阿尔卑斯山)的主要连续山脉拥有一个多样化的物种库,其进化早已被研究过。根据阿尔卑斯山特有类群的现有证据,讨论了过去气候变化对高海拔植物分布的影响,以及不同适应土壤条件镶嵌的类群(即钙质、硅质、蛇纹基岩上的推测生态型)和新物种的起源。物种内部和物种之间的主要空间和生态模式的整合支持了由主要冰川避难所的空间隔离驱动的物种形成,在那里,植物种群在寒冷阶段存活下来,在温暖阶段受到沿着主要扩张路径的强烈基因流的阻碍。尽管遗传分化模式与环境异质性相匹配,但分布范围动力学的基本过程可能会促进初始分化的反复同质化,并通常阻碍物种形成的完成(杂交物种形成的情况除外)。即使对蛇纹石等有毒基岩施加强烈的选择性压力,似乎也无法支持物种形成的完成。因此,生态物种形成的典型场景,即局部适应环境异质性启动并支持基因流的长期减少,可能很少是阿尔卑斯山稳定物种的起源。尽管与过去气候变化驱动的空间隔离促进生殖隔离并产生有限多样性的中性过程一致,但阿尔卑斯山异质景观中新物种起源的机制仍知之甚少。讨论了可靠地了解阿尔卑斯山生物多样性演变的必要进展,以及在气候变化面前确定可能的博物馆或变异发源地。
{"title":"Plant speciation in the face of recurrent climate changes in the Alps","authors":"Christian Parisod","doi":"10.1007/s00035-021-00259-6","DOIUrl":"10.1007/s00035-021-00259-6","url":null,"abstract":"<div><p>The main, continuous mountain range of the European Alpine System (i.e., the Alps) hosts a diversified pool of species whose evolution has long been investigated. The legacy of past climate changes on the distribution of high-elevation plants as well as taxa differentially adapted to the mosaic of edaphic conditions (i.e., surmised ecotypes on calcareous, siliceous, serpentine bedrocks) and the origin of new species are here discussed based on available evidence from endemic taxa across the Alps. The integration of main spatial and ecological patterns within and among species supports speciation driven by spatial isolation in main glacial refugia where plant populations survived during cold phases and hindered by intense gene flow along main expansion pathways during warm phases. Despite patterns of genetic differentiation matching environmental heterogeneity, processes underlying the dynamics of distribution ranges likely promoted recurrent homogenization of incipient divergence and generally hindered the completion of speciation (except for cases of hybrid speciation). Even intense selective pressures on toxic bedrocks such as serpentine seemingly fail to support the completion of speciation. Accordingly, typical scenarios of ecological speciation whereby local adaptation to environmental heterogeneity initiates and supports long-term reduction of gene flow may rarely be at the origin of stable species in the Alps. Although consistent with neutral processes whereby spatial isolation driven by past climate changes promoted reproductive isolation and yielded limited diversification, mechanisms at the origin of new species across heterogeneous landscapes of the Alps remain insufficiently known. Necessary advances to reliably understand the evolution of biodiversity in the Alps and identify possible museums or cradles of variation in face of climate changes are discussed.\u0000</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00035-021-00259-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50523259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Competition-free gaps are essential for the germination and recruitment of alpine species along an elevation gradient in the European Alps 无竞争间隙对于欧洲阿尔卑斯山脉海拔梯度上高山物种的发芽和繁殖至关重要
IF 2.7 3区 生物学 Q2 Agricultural and Biological Sciences Pub Date : 2021-07-27 DOI: 10.1007/s00035-021-00264-9
Vera Margreiter, Janette Walde, Brigitta Erschbamer

Seed germination and seedling recruitment are key processes in the life cycle of plants. They enable populations to grow, migrate, or persist. Both processes are under environmental control and influenced by site conditions and plant–plant interactions. Here, we present the results of a seed-sowing experiment performed along an elevation gradient (2000–2900 m a.s.l.) in the European eastern Alps. We monitored the germination of seeds and seedling recruitment for 2 years. Three effects were investigated: effects of sites and home sites (seed origin), effects of gaps, and plant–plant interactions. Seeds of eight species originating from two home sites were transplanted to four sites (home site and ± in elevation). Seed sowing was performed in experimentally created gaps. These gap types (‘gap + roots’, ‘neighbor + roots’, and ‘no-comp’) provided different plant–plant interactions and competition intensities. We observed decreasing germination with increasing elevation, independent of the species home sites. Competition-released gaps favored recruitment, pointing out the important role of belowground competition and soil components in recruitment. In gaps with one neighboring species, neutral plant–plant interactions occurred (with one exception). However, considering the relative vegetation cover of each experimental site, high vegetation cover resulted in positive effects on recruitment at higher sites and neutral effects at lower sites. All tested species showed intraspecific variability when responding to the experimental conditions. We discuss our findings considering novel site and climatic conditions.

种子发芽和幼苗补充是植物生命周期中的关键过程。它们使种群能够增长、迁移或持续存在。这两个过程都处于环境控制之下,并受到现场条件和植物-植物相互作用的影响。在这里,我们展示了在欧洲东阿尔卑斯山沿海拔梯度(2000–2900 m a.s.l.)进行的种子播种实验的结果。我们对种子的发芽和幼苗的补充进行了2年的监测。研究了三种影响:地点和原址的影响(种子来源)、间隙的影响和植物-植物相互作用。来自两个原址的八个物种的种子被移植到四个原址(原址和 ± 高程)。种子播种是在实验创造的间隙中进行的。这些间隙类型('gap + 根,邻居 + 根和无comp)提供了不同的植物-植物相互作用和竞争强度。我们观察到发芽率随着海拔的升高而降低,与物种的家园无关。竞争释放了有利于招聘的缺口,指出了地下竞争和土壤成分在招聘中的重要作用。在与一个相邻物种的间隙中,发生了中性的植物-植物相互作用(只有一个例外)。然而,考虑到每个实验地点的相对植被覆盖率,高植被覆盖率对高地点的招聘产生了积极影响,而对低地点的招聘则产生了中性影响。所有测试物种在对实验条件作出反应时都表现出种内变异性。考虑到新的地点和气候条件,我们讨论了我们的发现。
{"title":"Competition-free gaps are essential for the germination and recruitment of alpine species along an elevation gradient in the European Alps","authors":"Vera Margreiter,&nbsp;Janette Walde,&nbsp;Brigitta Erschbamer","doi":"10.1007/s00035-021-00264-9","DOIUrl":"10.1007/s00035-021-00264-9","url":null,"abstract":"<div><p>Seed germination and seedling recruitment are key processes in the life cycle of plants. They enable populations to grow, migrate, or persist. Both processes are under environmental control and influenced by site conditions and plant–plant interactions. Here, we present the results of a seed-sowing experiment performed along an elevation gradient (2000–2900 m a.s.l.) in the European eastern Alps. We monitored the germination of seeds and seedling recruitment for 2 years. Three effects were investigated: effects of sites and home sites (seed origin), effects of gaps, and plant–plant interactions. Seeds of eight species originating from two home sites were transplanted to four sites (home site and ± in elevation). Seed sowing was performed in experimentally created gaps. These gap types (‘gap + roots’, ‘neighbor + roots’, and ‘no-comp’) provided different plant–plant interactions and competition intensities. We observed decreasing germination with increasing elevation, independent of the species home sites. Competition-released gaps favored recruitment, pointing out the important role of belowground competition and soil components in recruitment. In gaps with one neighboring species, neutral plant–plant interactions occurred (with one exception). However, considering the relative vegetation cover of each experimental site, high vegetation cover resulted in positive effects on recruitment at higher sites and neutral effects at lower sites. All tested species showed intraspecific variability when responding to the experimental conditions. We discuss our findings considering novel site and climatic conditions.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00035-021-00264-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50517809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
History and evolution of the afroalpine flora: in the footsteps of Olov Hedberg 非洲高山植物群的历史和进化:跟随Olov Hedberg的脚步
IF 2.7 3区 生物学 Q2 Agricultural and Biological Sciences Pub Date : 2021-07-19 DOI: 10.1007/s00035-021-00256-9
Christian Brochmann, Abel Gizaw, Desalegn Chala, Martha Kandziora, Gerald Eilu, Magnus Popp, Michael D. Pirie, Berit Gehrke

The monumental work of Olov Hedberg provided deep insights into the spectacular and fragmented tropical alpine flora of the African sky islands. Here we review recent molecular and niche modelling studies and re-examine Hedberg’s hypotheses and conclusions. Colonisation started when mountain uplift established the harsh diurnal climate with nightly frosts, accelerated throughout the last 5 Myr (Plio-Pleistocene), and resulted in a flora rich in local endemics. Recruitment was dominated by long-distance dispersals (LDDs) from seasonally cold, remote areas, mainly in Eurasia. Colonisation was only rarely followed by substantial diversification. Instead, most of the larger genera and even species colonised the afroalpine habitat multiple times independently. Conspicuous parallel evolution occurred among mountains, e.g., of gigantism in Lobelia and Dendrosenecio and dwarf shrubs in Alchemilla. Although the alpine habitat was ~ 8 times larger and the treeline was ~ 1000 m lower than today during the Last Glacial Maximum, genetic data suggest that the flora was shaped by strong intermountain isolation interrupted by rare LDDs rather than ecological connectivity. The new evidence points to a much younger and more dynamic island scenario than envisioned by Hedberg: the afroalpine flora is unsaturated and fragile, it was repeatedly disrupted by the Pleistocene climate oscillations, and it harbours taxonomic and genetic diversity that is unique but severely depauperated by frequent bottlenecks and cycles of colonisation, extinction, and recolonisation. The level of intrapopulation genetic variation is alarmingly low, and many afroalpine species may be vulnerable to extinction because of climate warming and increasing human impact.

Olov Hedberg的不朽作品深入了解了非洲天空群岛壮观而支离破碎的热带高山植物群。在这里,我们回顾了最近的分子和生态位建模研究,并重新审视了Hedberg的假设和结论。当山脉隆起形成了夜间霜冻的恶劣昼夜气候时,殖民就开始了,在最后5年(上新世-更新世)加速了,并形成了富含当地特有植物的植物群。招聘主要来自季节性寒冷的偏远地区,主要在欧亚大陆。殖民之后很少有实质性的多样化。相反,大多数较大的属甚至物种多次独立地在亚高山栖息地定居。在山脉之间发生了明显的平行进化,例如,半边莲和Dendrosenecio的巨人症,以及Alchemilla的矮灌木。尽管高山栖息地 ~ 8倍大,树线 ~ 在上一次冰川盛期,比今天低1000米,遗传数据表明,该植物群是由强烈的山间隔离所形成的,这种隔离被罕见的LDD打断,而不是生态连接。新的证据表明,一个比海德伯格设想的更年轻、更具活力的岛屿场景:非洲高山植物群是不饱和和脆弱的,它一再受到更新世气候振荡的破坏,它拥有独特的分类和遗传多样性,但由于殖民、灭绝和再殖民的频繁瓶颈和周期而严重削弱。种群内部基因变异水平低得惊人,由于气候变暖和人类影响的增加,许多非洲高山物种可能容易灭绝。
{"title":"History and evolution of the afroalpine flora: in the footsteps of Olov Hedberg","authors":"Christian Brochmann,&nbsp;Abel Gizaw,&nbsp;Desalegn Chala,&nbsp;Martha Kandziora,&nbsp;Gerald Eilu,&nbsp;Magnus Popp,&nbsp;Michael D. Pirie,&nbsp;Berit Gehrke","doi":"10.1007/s00035-021-00256-9","DOIUrl":"10.1007/s00035-021-00256-9","url":null,"abstract":"<div><p>The monumental work of Olov Hedberg provided deep insights into the spectacular and fragmented tropical alpine flora of the African sky islands. Here we review recent molecular and niche modelling studies and re-examine Hedberg’s hypotheses and conclusions. Colonisation started when mountain uplift established the harsh diurnal climate with nightly frosts, accelerated throughout the last 5 Myr (Plio-Pleistocene), and resulted in a flora rich in local endemics. Recruitment was dominated by long-distance dispersals (LDDs) from seasonally cold, remote areas, mainly in Eurasia. Colonisation was only rarely followed by substantial diversification. Instead, most of the larger genera and even species colonised the afroalpine habitat multiple times independently. Conspicuous parallel evolution occurred among mountains, e.g., of gigantism in <i>Lobelia</i> and <i>Dendrosenecio</i> and dwarf shrubs in <i>Alchemilla</i>. Although the alpine habitat was ~ 8 times larger and the treeline was ~ 1000 m lower than today during the Last Glacial Maximum, genetic data suggest that the flora was shaped by strong intermountain isolation interrupted by rare LDDs rather than ecological connectivity. The new evidence points to a much younger and more dynamic island scenario than envisioned by Hedberg: the afroalpine flora is unsaturated and fragile, it was repeatedly disrupted by the Pleistocene climate oscillations, and it harbours taxonomic and genetic diversity that is unique but severely depauperated by frequent bottlenecks and cycles of colonisation, extinction, and recolonisation. The level of intrapopulation genetic variation is alarmingly low, and many afroalpine species may be vulnerable to extinction because of climate warming and increasing human impact.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00035-021-00256-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50496549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
期刊
Alpine Botany
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1