首页 > 最新文献

Statistics in Biopharmaceutical Research最新文献

英文 中文
Rejoinder to Commentaries on “Estimands for Recurrent Event Endpoints in the Presence of a Terminal Event” 对“在存在终止事件的情况下对重复事件终点的估计”评论的答复
4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-04-03 DOI: 10.1080/19466315.2023.2166098
Heinz Schmidli, James H. Roger, Mouna Akacha
{"title":"Rejoinder to Commentaries on “Estimands for Recurrent Event Endpoints in the Presence of a Terminal Event”","authors":"Heinz Schmidli, James H. Roger, Mouna Akacha","doi":"10.1080/19466315.2023.2166098","DOIUrl":"https://doi.org/10.1080/19466315.2023.2166098","url":null,"abstract":"","PeriodicalId":51280,"journal":{"name":"Statistics in Biopharmaceutical Research","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135717238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistics in Biopharmaceutical Research Best Papers Award 2023 生物制药研究统计学最佳论文奖2023
IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-04-03 DOI: 10.1080/19466315.2023.2200112
T. Hamasaki, Freda Cooner
We are pleased to announce the recipients of the 2023 Best Paper Award for the articles published in Statistics in Biopharmaceutical Research (SBR). The following five articles were selected from those published in the 2021 and 2022 issues. These articles exhibit excellent examples of current statistical advancements in biopharmaceutical research. In selecting the winners, the editors reflected SBRs goal of publishing articles that focus on the development of novel statistical methods, advanced applications of existing methods
我们很高兴地宣布2023年最佳论文奖的获得者,他们发表在《生物制药研究统计》(SBR)上的文章。以下五篇文章是从2021年和2022年出版的文章中挑选出来的。这些文章展示了生物制药研究中当前统计进展的极好例子。在选择获奖者时,编辑们反映了sbr的目标,即发表专注于发展新颖统计方法和现有方法的先进应用的文章
{"title":"Statistics in Biopharmaceutical Research Best Papers Award 2023","authors":"T. Hamasaki, Freda Cooner","doi":"10.1080/19466315.2023.2200112","DOIUrl":"https://doi.org/10.1080/19466315.2023.2200112","url":null,"abstract":"We are pleased to announce the recipients of the 2023 Best Paper Award for the articles published in Statistics in Biopharmaceutical Research (SBR). The following five articles were selected from those published in the 2021 and 2022 issues. These articles exhibit excellent examples of current statistical advancements in biopharmaceutical research. In selecting the winners, the editors reflected SBRs goal of publishing articles that focus on the development of novel statistical methods, advanced applications of existing methods","PeriodicalId":51280,"journal":{"name":"Statistics in Biopharmaceutical Research","volume":"15 1","pages":"235 - 236"},"PeriodicalIF":1.8,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43517345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond the Cox Hazard Ratio: A Targeted Learning Approach to Survival Analysis in a Cardiovascular Outcome Trial Application 超越Cox风险比:一种有针对性的学习方法在心血管结局试验中的生存分析
IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-04-03 DOI: 10.1080/19466315.2023.2173644
David Chen, M. Petersen, H. Rytgaard, Randi Grøn, T. Lange, S. Rasmussen, R. Pratley, S. Marso, K. Kvist, J. Buse, M. J. van der Laan
Abstract The Hazard Ratio (HR) is a well-established treatment effect measure in randomized trials involving right-censored time-to-events, and the Cardiovascular Outcome Trials (CVOTs) conducted since the FDA’s 2008 guidance have indeed largely evaluated excess risk by estimating a Cox HR. On the other hand, the limitations of the Cox model and of the HR as a causal estimand are well known, and the FDA’s updated 2020 CVOT guidance invites us to reassess this default approach to survival analyses. We highlight the shortcomings of Cox HR-based analyses and present an alternative following the causal roadmap—moving in a principled way from a counterfactual causal question to identifying a statistical estimand, and finally to targeted estimation in a large statistical model. We show in simulations the robustness of Targeted Maximum Likelihood Estimation (TMLE) to informative censoring and model misspecification and demonstrate a targeted learning analogue of the original Cox HR-based analysis of the Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results (LEADER) trial. We discuss the potential reliability, interpretability, and efficiency gains to be had by updating our survival methods to incorporate the recent decades of advancements in formal causal frameworks and efficient nonparametricestimation.
摘要风险比(HR)是随机试验中一个公认的治疗效果指标,涉及事件发生时间的正确审查,自美国食品药品监督管理局2008年指导意见以来进行的心血管结果试验(CVOT)确实在很大程度上通过估计Cox HR来评估过度风险。另一方面,Cox模型和HR作为因果估计的局限性是众所周知的,美国食品药品监督管理局更新的2020年CVOT指南邀请我们重新评估这种默认的生存分析方法。我们强调了基于Cox HR的分析的缺点,并提出了一种遵循因果路线图的替代方案——从反事实因果问题到确定统计估计需求,最后到在大型统计模型中进行有针对性的估计。我们在模拟中展示了目标最大似然估计(TMLE)对信息审查和模型错误指定的稳健性,并展示了对利拉鲁肽在糖尿病中的作用和作用的原始Cox-HR分析的目标学习模拟:心血管结果评估(LEADER)试验。我们讨论了通过更新我们的生存方法,结合近几十年来在形式因果框架和有效非框架估计方面的进步,可以获得的潜在可靠性、可解释性和效率收益。
{"title":"Beyond the Cox Hazard Ratio: A Targeted Learning Approach to Survival Analysis in a Cardiovascular Outcome Trial Application","authors":"David Chen, M. Petersen, H. Rytgaard, Randi Grøn, T. Lange, S. Rasmussen, R. Pratley, S. Marso, K. Kvist, J. Buse, M. J. van der Laan","doi":"10.1080/19466315.2023.2173644","DOIUrl":"https://doi.org/10.1080/19466315.2023.2173644","url":null,"abstract":"Abstract The Hazard Ratio (HR) is a well-established treatment effect measure in randomized trials involving right-censored time-to-events, and the Cardiovascular Outcome Trials (CVOTs) conducted since the FDA’s 2008 guidance have indeed largely evaluated excess risk by estimating a Cox HR. On the other hand, the limitations of the Cox model and of the HR as a causal estimand are well known, and the FDA’s updated 2020 CVOT guidance invites us to reassess this default approach to survival analyses. We highlight the shortcomings of Cox HR-based analyses and present an alternative following the causal roadmap—moving in a principled way from a counterfactual causal question to identifying a statistical estimand, and finally to targeted estimation in a large statistical model. We show in simulations the robustness of Targeted Maximum Likelihood Estimation (TMLE) to informative censoring and model misspecification and demonstrate a targeted learning analogue of the original Cox HR-based analysis of the Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results (LEADER) trial. We discuss the potential reliability, interpretability, and efficiency gains to be had by updating our survival methods to incorporate the recent decades of advancements in formal causal frameworks and efficient nonparametricestimation.","PeriodicalId":51280,"journal":{"name":"Statistics in Biopharmaceutical Research","volume":"15 1","pages":"524 - 539"},"PeriodicalIF":1.8,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47801734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of group sequential methods to the 2-in-1 design and its extensions for interim monitoring 群序贯法在二合一设计中的应用及其在中期监测中的扩展
IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-03-30 DOI: 10.1080/19466315.2023.2197402
Xuekui Zhang, Haijun Jia, Li Xing, Cong Chen
{"title":"Application of group sequential methods to the 2-in-1 design and its extensions for interim monitoring","authors":"Xuekui Zhang, Haijun Jia, Li Xing, Cong Chen","doi":"10.1080/19466315.2023.2197402","DOIUrl":"https://doi.org/10.1080/19466315.2023.2197402","url":null,"abstract":"","PeriodicalId":51280,"journal":{"name":"Statistics in Biopharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45886466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Multiply Robust Weighted Generalized Estimating Equations for Incomplete Longitudinal Binary Data Using Empirical Likelihood 基于经验似然的不完全纵向二值数据的多重鲁棒加权广义估计方程
IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-03-16 DOI: 10.1080/19466315.2023.2191990
Hiroshi Komazaki, Masaaki Doi, N. Yonemoto, Tosiya Sato
{"title":"Multiply Robust Weighted Generalized Estimating Equations for Incomplete Longitudinal Binary Data Using Empirical Likelihood","authors":"Hiroshi Komazaki, Masaaki Doi, N. Yonemoto, Tosiya Sato","doi":"10.1080/19466315.2023.2191990","DOIUrl":"https://doi.org/10.1080/19466315.2023.2191990","url":null,"abstract":"","PeriodicalId":51280,"journal":{"name":"Statistics in Biopharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47856181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some multiplicity adjustment procedures for clinical trials with sequential design and multiple endpoints 序列设计和多终点临床试验的多重调整程序
IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-03-16 DOI: 10.1080/19466315.2023.2191989
Xiaodong Luo, H. Quan
{"title":"Some multiplicity adjustment procedures for clinical trials with sequential design and multiple endpoints","authors":"Xiaodong Luo, H. Quan","doi":"10.1080/19466315.2023.2191989","DOIUrl":"https://doi.org/10.1080/19466315.2023.2191989","url":null,"abstract":"","PeriodicalId":51280,"journal":{"name":"Statistics in Biopharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42820553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
From Logic-Respecting Efficacy Estimands to Logic-Ensuring Analysis Principle for Time-to-Event Endpoint in Randomized Clinical Trials with Subgroups 随机亚组临床试验中从尊重逻辑的疗效估计到保证逻辑的时间终点分析原则
IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-03-15 DOI: 10.1080/19466315.2023.2186945
Yi Liu, Miao Yang, Siyoen Kil, Jiangya Li, Shoubhik Mondal, Y. Shentu, Hong Tian, Liwei Wang, Godwin Yung
Abstract An important goal of precision medicine is to identify biomarkers that are predictive, and tailor the treatment according to the biomarker levels of individual patients. Differentiating prognostic versus predictive biomarkers impacts important decision makings for patients and treating physicians. Using Hazard Ratio (HR) can mistake a purely prognostic biomarker for a predictive one leading to a disheartening possibility of depriving patients of beneficial treatment as demonstrated in the OAK trial. This stems from the illogical issue of HR at population level where marginal HR in the overall population can be larger than those in both subgroups. Instead of trying to circumvent this issue by discouraging comparisons between marginal and conditional HRs, we propose to directly fix it by using alternative logic-respecting efficacy estimands such as ratio of medians, ratio and difference of restricted mean survival times and milestone probabilities. These measures are straightforward, easy to interpret and clinically meaningful. More importantly, they will guarantee agreement between marginal and conditional efficacy and provide cohesive message around efficacy profile of the drug in the presence of subgroups. A step further is the application of Subgroup Mixable Estimation (SME) principle to ensure logical estimates when analyzing real clinical trial data. Detailed guidance is provided for the aforementioned logic-respecting estimands using either parametric, semiparametric or nonparametric approaches. Simultaneous inference can be provided with proper multiplicity adjustment to facilitate joint decision making with user-friendly apps.
精准医学的一个重要目标是识别具有预测性的生物标志物,并根据个体患者的生物标志物水平定制治疗。区分预后与预测性生物标志物影响患者和治疗医生的重要决策。使用风险比(HR)可能会将纯粹的预后生物标志物误认为预测性生物标志物,导致令人沮丧的剥夺患者有益治疗的可能性,正如OAK试验所证明的那样。这源于人口水平上的不合逻辑的人力资源问题,即总体人口的边际人力资源可能大于两个亚组的边际人力资源。与其试图通过不鼓励边际hr和条件hr之间的比较来规避这个问题,我们建议通过使用尊重疗效估计的替代逻辑来直接解决这个问题,例如中位数比率,限制平均生存时间和里程碑概率的比率和差异。这些指标简单易懂,易于解释,具有临床意义。更重要的是,它们将保证边际疗效和条件疗效之间的一致性,并在存在亚组的情况下提供有关药物疗效概况的连贯信息。进一步是应用亚组混合估计(SME)原则,在分析实际临床试验数据时确保逻辑估计。为上述使用参数、半参数或非参数方法的逻辑相关估计提供了详细的指导。同时推理可以提供适当的多重调整,方便与用户友好的应用程序共同决策。
{"title":"From Logic-Respecting Efficacy Estimands to Logic-Ensuring Analysis Principle for Time-to-Event Endpoint in Randomized Clinical Trials with Subgroups","authors":"Yi Liu, Miao Yang, Siyoen Kil, Jiangya Li, Shoubhik Mondal, Y. Shentu, Hong Tian, Liwei Wang, Godwin Yung","doi":"10.1080/19466315.2023.2186945","DOIUrl":"https://doi.org/10.1080/19466315.2023.2186945","url":null,"abstract":"Abstract An important goal of precision medicine is to identify biomarkers that are predictive, and tailor the treatment according to the biomarker levels of individual patients. Differentiating prognostic versus predictive biomarkers impacts important decision makings for patients and treating physicians. Using Hazard Ratio (HR) can mistake a purely prognostic biomarker for a predictive one leading to a disheartening possibility of depriving patients of beneficial treatment as demonstrated in the OAK trial. This stems from the illogical issue of HR at population level where marginal HR in the overall population can be larger than those in both subgroups. Instead of trying to circumvent this issue by discouraging comparisons between marginal and conditional HRs, we propose to directly fix it by using alternative logic-respecting efficacy estimands such as ratio of medians, ratio and difference of restricted mean survival times and milestone probabilities. These measures are straightforward, easy to interpret and clinically meaningful. More importantly, they will guarantee agreement between marginal and conditional efficacy and provide cohesive message around efficacy profile of the drug in the presence of subgroups. A step further is the application of Subgroup Mixable Estimation (SME) principle to ensure logical estimates when analyzing real clinical trial data. Detailed guidance is provided for the aforementioned logic-respecting estimands using either parametric, semiparametric or nonparametric approaches. Simultaneous inference can be provided with proper multiplicity adjustment to facilitate joint decision making with user-friendly apps.","PeriodicalId":51280,"journal":{"name":"Statistics in Biopharmaceutical Research","volume":"15 1","pages":"560 - 573"},"PeriodicalIF":1.8,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46379730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copula-based model for incorporating single-agent historical data into dual-agent phase I cancer trials 将单药历史数据纳入双药I期癌症试验的copula模型
IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-03-13 DOI: 10.1080/19466315.2023.2190932
Koichi Hashizume, Jun Tsuchida, T. Sozu
{"title":"Copula-based model for incorporating single-agent historical data into dual-agent phase I cancer trials","authors":"Koichi Hashizume, Jun Tsuchida, T. Sozu","doi":"10.1080/19466315.2023.2190932","DOIUrl":"https://doi.org/10.1080/19466315.2023.2190932","url":null,"abstract":"","PeriodicalId":51280,"journal":{"name":"Statistics in Biopharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46604725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Bayesian Borrowing Methods for Count Data: Analysis of Incontinence Episodes in Patients with Overactive Bladder 计数数据的贝叶斯借用方法:膀胱过度活动患者失禁发作的分析
IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-03-13 DOI: 10.1080/19466315.2023.2190933
Akalu Banbeta, E. Lesaffre, R. Martina, Joost van Rosmalen
{"title":"Bayesian Borrowing Methods for Count Data: Analysis of Incontinence Episodes in Patients with Overactive Bladder","authors":"Akalu Banbeta, E. Lesaffre, R. Martina, Joost van Rosmalen","doi":"10.1080/19466315.2023.2190933","DOIUrl":"https://doi.org/10.1080/19466315.2023.2190933","url":null,"abstract":"","PeriodicalId":51280,"journal":{"name":"Statistics in Biopharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42649019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A test of the dependence assumptions for the Simes-test-based multiple test procedures 基于Simes检验的多重检验程序的相关性假设检验
IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-03-13 DOI: 10.1080/19466315.2023.2190930
Jiangtao Gou
{"title":"A test of the dependence assumptions for the Simes-test-based multiple test procedures","authors":"Jiangtao Gou","doi":"10.1080/19466315.2023.2190930","DOIUrl":"https://doi.org/10.1080/19466315.2023.2190930","url":null,"abstract":"","PeriodicalId":51280,"journal":{"name":"Statistics in Biopharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49434033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Statistics in Biopharmaceutical Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1