首页 > 最新文献

Swarm Intelligence最新文献

英文 中文
ANTS 2020 Special Issue: Editorial 《蚂蚁2020》特刊:社论
IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-11-23 DOI: 10.1007/s11721-021-00208-3
M. Dorigo, T. Stützle, M. Blesa, C. Blum, Heiko Hamann, Mary Katherine Heinrich
{"title":"ANTS 2020 Special Issue: Editorial","authors":"M. Dorigo, T. Stützle, M. Blesa, C. Blum, Heiko Hamann, Mary Katherine Heinrich","doi":"10.1007/s11721-021-00208-3","DOIUrl":"https://doi.org/10.1007/s11721-021-00208-3","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"15 1","pages":"311 - 313"},"PeriodicalIF":2.6,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41710282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A machine education approach to swarm decision-making in best-of-n problems 一种机器教育方法在最优化问题中进行群体决策
IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-11-22 DOI: 10.1007/s11721-021-00206-5
Hussein, Aya, Elsawah, Sondoss, Petraki, Eleni, Abbass, Hussein A.

In swarm decision making, hand-crafting agents’ rules that use local information to achieve desirable swarm-level behaviours is a non-trivial design problem. Instead of relying entirely on swarm experts for designing these local rules, machine learning (ML) algorithms can be utilised for learning some of the local rules by mapping an agent’s perception to an appropriate action. To facilitate this process, we propose the use of Machine Education (ME) as a systematic approach for designing a curriculum for teaching the agents the required skills to autonomously select appropriate behaviours. We study the use of ME in the context of decision-making in best-of-n problems. The proposed approach draws on swarm robotics expertise for identifying agents’ capabilities and limitations, the skills required for generating the desirable behaviours, and the corresponding performance measures. In addition, ME utilises ML expertise for the selection and development of the ML algorithms suitable for each skill. The results of the experimental evaluations demonstrate the superior efficacy of the ME-based approach over the state-of-the-art approaches with respect to speed and accuracy. In addition, our approach shows considerable robustness to changes in swarm size and to changes in sensing and communication noise. Our findings promote the use of ME for teaching swarm members the required skills for achieving complex swarm tasks.

在群体决策中,使用局部信息来实现理想群体行为的人工智能规则是一个重要的设计问题。机器学习(ML)算法可以通过将代理的感知映射到适当的动作来学习一些局部规则,而不是完全依赖于群体专家来设计这些局部规则。为了促进这一过程,我们建议使用机器教育(ME)作为一种系统的方法来设计课程,教授智能体自主选择适当行为所需的技能。我们研究了在最优化问题的决策背景下使用ME。提出的方法利用群体机器人的专业知识来识别代理的能力和局限性,生成理想行为所需的技能,以及相应的性能度量。此外,ME利用ML专业知识来选择和开发适合每种技能的ML算法。实验评估的结果表明,基于模型的方法在速度和准确性方面优于最先进的方法。此外,我们的方法对群体大小的变化以及感知和通信噪声的变化显示出相当大的鲁棒性。我们的研究结果促进了使用ME来教授群体成员完成复杂群体任务所需的技能。
{"title":"A machine education approach to swarm decision-making in best-of-n problems","authors":"Hussein, Aya, Elsawah, Sondoss, Petraki, Eleni, Abbass, Hussein A.","doi":"10.1007/s11721-021-00206-5","DOIUrl":"https://doi.org/10.1007/s11721-021-00206-5","url":null,"abstract":"<p>In swarm decision making, hand-crafting agents’ rules that use local information to achieve desirable swarm-level behaviours is a non-trivial design problem. Instead of relying entirely on swarm experts for designing these local rules, machine learning (ML) algorithms can be utilised for learning some of the local rules by mapping an agent’s perception to an appropriate action. To facilitate this process, we propose the use of Machine Education (ME) as a systematic approach for designing a curriculum for teaching the agents the required skills to autonomously select appropriate behaviours. We study the use of ME in the context of decision-making in best-of-n problems. The proposed approach draws on swarm robotics expertise for identifying agents’ capabilities and limitations, the skills required for generating the desirable behaviours, and the corresponding performance measures. In addition, ME utilises ML expertise for the selection and development of the ML algorithms suitable for each skill. The results of the experimental evaluations demonstrate the superior efficacy of the ME-based approach over the state-of-the-art approaches with respect to speed and accuracy. In addition, our approach shows considerable robustness to changes in swarm size and to changes in sensing and communication noise. Our findings promote the use of ME for teaching swarm members the required skills for achieving complex swarm tasks.</p>","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"348 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Ant colony optimization for feasible scheduling of step-controlled smart grid generation 步进控制智能电网发电可行调度的蚁群优化
IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-10-19 DOI: 10.1007/s11721-021-00204-7
Jörg Bremer, S. Lehnhoff
{"title":"Ant colony optimization for feasible scheduling of step-controlled smart grid generation","authors":"Jörg Bremer, S. Lehnhoff","doi":"10.1007/s11721-021-00204-7","DOIUrl":"https://doi.org/10.1007/s11721-021-00204-7","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"15 1","pages":"403 - 425"},"PeriodicalIF":2.6,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42049252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reinforcement learning as a rehearsal for swarm foraging 强化学习作为群体觅食的预演
IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-09-29 DOI: 10.1007/s11721-021-00203-8
Nguyen, Trung, Banerjee, Bikramjit

Foraging in a swarm of robots has been investigated by many researchers, where the prevalent techniques have been hand-designed algorithms with parameters often tuned via machine learning. Our departure point is one such algorithm, where we replace a hand-coded decision procedure with reinforcement learning (RL), resulting in significantly superior performance. We situate our approach within the reinforcement learning as a rehearsal (RLaR) framework, that we have recently introduced. We instantiate RLaR for the foraging problem and experimentally show that a key component of RLaR—a conditional probability distribution function—can be modeled as a uni-modal distribution (with a lower memory footprint) despite evidence that it is multi-modal. Our experiments also show that the learned behavior has some degree of scalability in terms of variations in the swarm size or the environment.

许多研究人员已经对机器人群中的觅食进行了研究,其中流行的技术是手工设计的算法,其参数通常通过机器学习进行调整。我们的出发点就是这样一种算法,我们用强化学习(RL)取代手工编码的决策过程,从而产生显著的卓越性能。我们将我们的方法置于我们最近介绍的强化学习作为排练(RLaR)框架中。我们为觅食问题实例化了RLaR,并通过实验表明RLaR的一个关键组成部分——条件概率分布函数——可以建模为单峰分布(具有较低的内存占用),尽管有证据表明它是多峰分布。我们的实验还表明,就群体规模或环境的变化而言,学习行为具有一定程度的可扩展性。
{"title":"Reinforcement learning as a rehearsal for swarm foraging","authors":"Nguyen, Trung, Banerjee, Bikramjit","doi":"10.1007/s11721-021-00203-8","DOIUrl":"https://doi.org/10.1007/s11721-021-00203-8","url":null,"abstract":"<p>Foraging in a swarm of robots has been investigated by many researchers, where the prevalent techniques have been hand-designed algorithms with parameters often tuned via machine learning. Our departure point is one such algorithm, where we replace a hand-coded decision procedure with reinforcement learning (RL), resulting in significantly superior performance. We situate our approach within the reinforcement learning as a rehearsal (RLaR) framework, that we have recently introduced. We instantiate RLaR for the foraging problem and experimentally show that a key component of RLaR—a conditional probability distribution function—can be modeled as a uni-modal distribution (with a lower memory footprint) despite evidence that it is multi-modal. Our experiments also show that the learned behavior has some degree of scalability in terms of variations in the swarm size or the environment.</p>","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"371 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Discrete collective estimation in swarm robotics with distributed Bayesian belief sharing 基于分布式贝叶斯信念共享的群机器人离散集合估计
IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-09-05 DOI: 10.1007/s11721-021-00201-w
Qihao Shan, Sanaz Mostaghim
{"title":"Discrete collective estimation in swarm robotics with distributed Bayesian belief sharing","authors":"Qihao Shan, Sanaz Mostaghim","doi":"10.1007/s11721-021-00201-w","DOIUrl":"https://doi.org/10.1007/s11721-021-00201-w","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"15 1","pages":"377 - 402"},"PeriodicalIF":2.6,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47398175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Collective decision-making for dynamic environments with visual occlusions 具有视觉遮挡的动态环境下的集体决策
IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-08-25 DOI: 10.1007/s11721-021-00200-x
Fan Jiang, Hui Cheng, Guanrong Chen
{"title":"Collective decision-making for dynamic environments with visual occlusions","authors":"Fan Jiang, Hui Cheng, Guanrong Chen","doi":"10.1007/s11721-021-00200-x","DOIUrl":"https://doi.org/10.1007/s11721-021-00200-x","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"13 1","pages":"7 - 27"},"PeriodicalIF":2.6,"publicationDate":"2021-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11721-021-00200-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52793631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HuGoS: a virtual environment for studying collective human behavior from a swarm intelligence perspective HuGoS:从群体智能角度研究人类集体行为的虚拟环境
IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-08-03 DOI: 10.1007/s11721-021-00199-1
Nicolas Coucke, Mary Katherine Heinrich, A. Cleeremans, M. Dorigo
{"title":"HuGoS: a virtual environment for studying collective human behavior from a swarm intelligence perspective","authors":"Nicolas Coucke, Mary Katherine Heinrich, A. Cleeremans, M. Dorigo","doi":"10.1007/s11721-021-00199-1","DOIUrl":"https://doi.org/10.1007/s11721-021-00199-1","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"15 1","pages":"339 - 376"},"PeriodicalIF":2.6,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47099190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Achieving task allocation in swarm intelligence with bi-objective embodied evolution 基于双目标嵌入进化的群体智能任务分配
IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-07-04 DOI: 10.1007/s11721-021-00198-2
Qihao Shan, Sanaz Mostaghim
{"title":"Achieving task allocation in swarm intelligence with bi-objective embodied evolution","authors":"Qihao Shan, Sanaz Mostaghim","doi":"10.1007/s11721-021-00198-2","DOIUrl":"https://doi.org/10.1007/s11721-021-00198-2","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"15 1","pages":"287 - 310"},"PeriodicalIF":2.6,"publicationDate":"2021-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11721-021-00198-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42524837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Collective preference learning in the best-of-n problem 最优化问题中的集体偏好学习
IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-06-02 DOI: 10.1007/s11721-021-00191-9
Michael Crosscombe, Jonathan Lawry

Decentralised autonomous systems rely on distributed learning to make decisions and to collaborate in pursuit of a shared objective. For example, in swarm robotics the best-of-n problem is a well-known collective decision-making problem in which agents attempt to learn the best option out of n possible alternatives based on local feedback from the environment. This typically involves gathering information about all n alternatives while then systematically discarding information about all but the best option. However, for applications such as search and rescue in which learning the ranking of options is useful or crucial, best-of-n decision-making can be wasteful and costly. Instead, we investigate a more general distributed learning process in which agents learn a preference ordering over all of the n options. More specifically, we introduce a distributed rank learning algorithm based on three-valued logic. We then use agent-based simulation experiments to demonstrate the effectiveness of this model. In this context, we show that a population of agents are able to learn a total ordering over the n options and furthermore the learning process is robust to evidential noise. To demonstrate the practicality of our model, we restrict the communication bandwidth between the agents and show that this model is also robust to limited communications whilst outperforming a comparable probabilistic model under the same communication conditions.

分散的自治系统依靠分布式学习来做出决策,并在追求共同目标的过程中进行协作。例如,在群体机器人中,n个最优问题是一个众所周知的集体决策问题,在这个问题中,智能体试图根据环境的本地反馈从n个可能的替代方案中学习最佳选择。这通常包括收集关于所有n个选择的信息,然后系统地丢弃除了最佳选择之外的所有信息。然而,对于搜索和救援等应用来说,学习选项的排序是有用的或至关重要的,最佳决策可能是浪费和昂贵的。相反,我们研究了一个更一般的分布式学习过程,其中智能体学习所有n个选项的偏好顺序。更具体地说,我们介绍了一种基于三值逻辑的分布式排名学习算法。然后,我们使用基于智能体的仿真实验来证明该模型的有效性。在这种情况下,我们证明了智能体群体能够学习n个选项的总排序,并且学习过程对证据噪声具有鲁棒性。为了证明我们模型的实用性,我们限制了代理之间的通信带宽,并表明该模型对有限通信也具有鲁棒性,同时在相同的通信条件下优于可比的概率模型。
{"title":"Collective preference learning in the best-of-n problem","authors":"Michael Crosscombe, Jonathan Lawry","doi":"10.1007/s11721-021-00191-9","DOIUrl":"https://doi.org/10.1007/s11721-021-00191-9","url":null,"abstract":"<p>Decentralised autonomous systems rely on distributed learning to make decisions and to collaborate in pursuit of a shared objective. For example, in swarm robotics the best-of-<i>n</i> problem is a well-known collective decision-making problem in which agents attempt to learn the best option out of <i>n</i> possible alternatives based on local feedback from the environment. This typically involves gathering information about all <i>n</i> alternatives while then systematically discarding information about all but the best option. However, for applications such as search and rescue in which learning the ranking of options is useful or crucial, best-of-<i>n</i> decision-making can be wasteful and costly. Instead, we investigate a more general distributed learning process in which agents learn a preference ordering over all of the <i>n</i> options. More specifically, we introduce a distributed rank learning algorithm based on three-valued logic. We then use agent-based simulation experiments to demonstrate the effectiveness of this model. In this context, we show that a population of agents are able to learn a total ordering over the <i>n</i> options and furthermore the learning process is robust to evidential noise. To demonstrate the practicality of our model, we restrict the communication bandwidth between the agents and show that this model is also robust to limited communications whilst outperforming a comparable probabilistic model under the same communication conditions.</p>","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"326 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2021-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Quorum sensing without deliberation: biological inspiration for externalizing computation to physical spaces in multi-robot systems 未经审议的群体感应:在多机器人系统中将计算外部化到物理空间的生物学启示
IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-06-01 DOI: 10.1007/s11721-021-00196-4
Theodore P. Pavlic, J. Hanson, Gabriele Valentini, S. Walker, S. Pratt
{"title":"Quorum sensing without deliberation: biological inspiration for externalizing computation to physical spaces in multi-robot systems","authors":"Theodore P. Pavlic, J. Hanson, Gabriele Valentini, S. Walker, S. Pratt","doi":"10.1007/s11721-021-00196-4","DOIUrl":"https://doi.org/10.1007/s11721-021-00196-4","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"15 1","pages":"171 - 203"},"PeriodicalIF":2.6,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11721-021-00196-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52793481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Swarm Intelligence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1