首页 > 最新文献

Swarm Intelligence最新文献

英文 中文
A simplified multi-objective particle swarm optimization algorithm 一种简化的多目标粒子群算法
IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2019-07-15 DOI: 10.1007/s11721-019-00170-1
Vibhu Trivedi, Pushkar Varshney, Manojkumar Ramteke
Particle swarm optimization is a popular nature-inspired metaheuristic algorithm and has been used extensively to solve single- and multi-objective optimization problems over the last two decades. Several local and global search strategies, and learning and parameter adaptation strategies have been included in particle swarm optimization to improve its performance over the years. Most of these approaches are observed to increase the number of user-defined parameters and algorithmic steps resulting in an increased complexity of the algorithm. This paper presents a simplified multi-objective particle swarm optimization algorithm in which the exploitation (guided) and exploration (random) moves are simplified using a detailed qualitative analysis of similar existing operators present in the real-coded elitist non-dominated sorting genetic algorithm and the particle swarm optimization algorithm. The developed algorithm is then tested quantitatively on 30 well-known benchmark problems and compared with a real-coded elitist non-dominated sorting genetic algorithm, and its variant with a simulated binary jumping gene operator and multi-objective non-dominated sorting particle swarm optimization algorithm. In the comparison, the developed algorithm is found to be superior in terms of convergence speed. It is also found to be better with respect to four recent multi-objective particle swarm optimization algorithms and four differential evolution variants in an extended comparative analysis. Finally, it is applied to a newly formulated industrial multi-objective optimization problem of a residue (bottom product from the crude distillation unit) fluid catalytic cracking unit where it shows a better performance than the other compared algorithms.
粒子群优化是一种流行的自然启发的元启发式算法,在过去的二十年中被广泛用于解决单目标和多目标优化问题。近年来,粒子群算法中引入了局部和全局搜索策略、学习策略和参数自适应策略来提高算法的性能。这些方法中的大多数都增加了用户定义参数和算法步骤的数量,从而增加了算法的复杂性。本文提出了一种简化的多目标粒子群优化算法,通过对实编码精英非支配排序遗传算法和粒子群优化算法中相似算子的详细定性分析,简化了开发(引导)和探索(随机)操作。在30个知名基准问题上对该算法进行了定量测试,并与实编码精英非支配排序遗传算法、模拟二元跳跃基因算子和多目标非支配排序粒子群优化算法进行了比较。通过比较,发现所提出的算法在收敛速度上具有优势。在扩展的比较分析中,发现该算法对于最近的四种多目标粒子群优化算法和四种差分进化变体具有更好的性能。最后,将该方法应用于一个新制定的工业渣油(原油蒸馏装置的底产物)催化裂化装置的多目标优化问题,结果表明该方法比其他比较算法具有更好的性能。
{"title":"A simplified multi-objective particle swarm optimization algorithm","authors":"Vibhu Trivedi, Pushkar Varshney, Manojkumar Ramteke","doi":"10.1007/s11721-019-00170-1","DOIUrl":"https://doi.org/10.1007/s11721-019-00170-1","url":null,"abstract":"Particle swarm optimization is a popular nature-inspired metaheuristic algorithm and has been used extensively to solve single- and multi-objective optimization problems over the last two decades. Several local and global search strategies, and learning and parameter adaptation strategies have been included in particle swarm optimization to improve its performance over the years. Most of these approaches are observed to increase the number of user-defined parameters and algorithmic steps resulting in an increased complexity of the algorithm. This paper presents a simplified multi-objective particle swarm optimization algorithm in which the exploitation (guided) and exploration (random) moves are simplified using a detailed qualitative analysis of similar existing operators present in the real-coded elitist non-dominated sorting genetic algorithm and the particle swarm optimization algorithm. The developed algorithm is then tested quantitatively on 30 well-known benchmark problems and compared with a real-coded elitist non-dominated sorting genetic algorithm, and its variant with a simulated binary jumping gene operator and multi-objective non-dominated sorting particle swarm optimization algorithm. In the comparison, the developed algorithm is found to be superior in terms of convergence speed. It is also found to be better with respect to four recent multi-objective particle swarm optimization algorithms and four differential evolution variants in an extended comparative analysis. Finally, it is applied to a newly formulated industrial multi-objective optimization problem of a residue (bottom product from the crude distillation unit) fluid catalytic cracking unit where it shows a better performance than the other compared algorithms.","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"22 1","pages":"1 - 34"},"PeriodicalIF":2.6,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138538379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Collective decision making in dynamic environments 动态环境中的集体决策
IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2019-06-26 DOI: 10.1007/s11721-019-00169-8
Judhi Prasetyo, Giulia de Masi, E. Ferrante
{"title":"Collective decision making in dynamic environments","authors":"Judhi Prasetyo, Giulia de Masi, E. Ferrante","doi":"10.1007/s11721-019-00169-8","DOIUrl":"https://doi.org/10.1007/s11721-019-00169-8","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"13 1","pages":"217 - 243"},"PeriodicalIF":2.6,"publicationDate":"2019-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11721-019-00169-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43331114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 37
Closed-loop task allocation in robot swarms using inter-robot encounters 基于机器人间相遇的机器人群闭环任务分配
IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2019-06-11 DOI: 10.1007/s11721-019-00166-x
Siddharth Mayya, S. Wilson, M. Egerstedt
{"title":"Closed-loop task allocation in robot swarms using inter-robot encounters","authors":"Siddharth Mayya, S. Wilson, M. Egerstedt","doi":"10.1007/s11721-019-00166-x","DOIUrl":"https://doi.org/10.1007/s11721-019-00166-x","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"13 1","pages":"115 - 143"},"PeriodicalIF":2.6,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11721-019-00166-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52793186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
The intelligent water drops algorithm: why it cannot be considered a novel algorithm 智能水滴算法:为什么不能被认为是一种新颖的算法
IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2019-05-14 DOI: 10.1007/s11721-019-00165-y
C. L. Camacho-Villalón, M. Dorigo, T. Stützle
{"title":"The intelligent water drops algorithm: why it cannot be considered a novel algorithm","authors":"C. L. Camacho-Villalón, M. Dorigo, T. Stützle","doi":"10.1007/s11721-019-00165-y","DOIUrl":"https://doi.org/10.1007/s11721-019-00165-y","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"13 1","pages":"173 - 192"},"PeriodicalIF":2.6,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11721-019-00165-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52793002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
Long-term pattern formation and maintenance for battery-powered robots 电池供电机器人的长期模式形成和维护
IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2019-02-04 DOI: 10.1007/s11721-019-00162-1
Guannan Li, Ivan Svogor, G. Beltrame
{"title":"Long-term pattern formation and maintenance for battery-powered robots","authors":"Guannan Li, Ivan Svogor, G. Beltrame","doi":"10.1007/s11721-019-00162-1","DOIUrl":"https://doi.org/10.1007/s11721-019-00162-1","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"13 1","pages":"21 - 57"},"PeriodicalIF":2.6,"publicationDate":"2019-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11721-019-00162-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52792884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Sample greedy based task allocation for multiple robot systems 基于样本贪心的多机器人系统任务分配
IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2019-01-10 DOI: 10.1007/s11721-022-00213-0
Hyo-Sang Shin, Teng Li, Hae-In Lee, A. Tsourdos
{"title":"Sample greedy based task allocation for multiple robot systems","authors":"Hyo-Sang Shin, Teng Li, Hae-In Lee, A. Tsourdos","doi":"10.1007/s11721-022-00213-0","DOIUrl":"https://doi.org/10.1007/s11721-022-00213-0","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"16 1","pages":"233 - 260"},"PeriodicalIF":2.6,"publicationDate":"2019-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45264625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Balancing robot swarm cost and interference effects by varying robot quantity and size 通过改变机器人数量和大小来平衡机器人群成本和干扰效应
IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2018-12-10 DOI: 10.1007/s11721-018-0161-1
Adam Schroeder, B. Trease, A. Arsie
{"title":"Balancing robot swarm cost and interference effects by varying robot quantity and size","authors":"Adam Schroeder, B. Trease, A. Arsie","doi":"10.1007/s11721-018-0161-1","DOIUrl":"https://doi.org/10.1007/s11721-018-0161-1","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"13 1","pages":"1 - 19"},"PeriodicalIF":2.6,"publicationDate":"2018-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11721-018-0161-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52792819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Local information-based control for probabilistic swarm distribution guidance 基于局部信息的概率群分布制导控制
IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2018-11-16 DOI: 10.1007/s11721-018-0160-2
Inmo Jang, Hyo-Sang Shin, A. Tsourdos
{"title":"Local information-based control for probabilistic swarm distribution guidance","authors":"Inmo Jang, Hyo-Sang Shin, A. Tsourdos","doi":"10.1007/s11721-018-0160-2","DOIUrl":"https://doi.org/10.1007/s11721-018-0160-2","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"29 1","pages":"327 - 359"},"PeriodicalIF":2.6,"publicationDate":"2018-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11721-018-0160-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52792682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Artificial Bee Colony Optimization 人工蜂群优化
IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2018-09-03 DOI: 10.1201/9781315222455-11
Lecture Notes
{"title":"Artificial Bee Colony Optimization","authors":"Lecture Notes","doi":"10.1201/9781315222455-11","DOIUrl":"https://doi.org/10.1201/9781315222455-11","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2018-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45900919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Introduction 介绍
IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2018-09-03 DOI: 10.1201/9781315222455-5
{"title":"Introduction","authors":"","doi":"10.1201/9781315222455-5","DOIUrl":"https://doi.org/10.1201/9781315222455-5","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"1 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2018-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42330782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Swarm Intelligence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1