首页 > 最新文献

Immunity & Ageing最新文献

英文 中文
sCD163, sCD28, sCD80, and sCTLA-4 as soluble marker candidates for detecting immunosenescence. sCD163、sCD28、sCD80 和 sCTLA-4 作为检测免疫衰老的可溶性候选标记物。
IF 7.9 2区 医学 Q1 GERIATRICS & GERONTOLOGY Pub Date : 2024-01-20 DOI: 10.1186/s12979-023-00405-0
Andrea Aprilia, Kusworini Handono, Hidayat Sujuti, Akhmad Sabarudin, Nuning Winaris

Background: Inflammaging, the characteristics of immunosenescence, characterized by continuous chronic inflammation that could not be resolved. It is not only affect older people but can also occur in young individuals, especially those suffering from chronic inflammatory conditions such as autoimmune disease, malignancy, or chronic infection. This condition led to altered immune function and as consequent immune function is reduced. Detection of immunosenescence has been done by examining the immune risk profile (IRP), which uses flow cytometry. These tests are not always available in health facilities, especially in developing countries and require fresh whole blood samples. Therefore, it is necessary to find biomarkers that can be tested using stored serum to make it easier to refer to the examination. Here we proposed an insight for soluble biomarkers which represented immune cells activities and exhaustion, namely sCD163, sCD28, sCD80, and sCTLA-4. Those markers were reported to be elevated in chronic diseases that caused early aging and easily detected from serum samples using ELISA method, unlike IRP. Therefore, we conclude these soluble markers are beneficial to predict pathological condition of immunosenescence.

Aim: To identify soluble biomarkers that could replace IRP for detecting immunosenescence.

Conclusion: Soluble costimulatory molecule suchsCD163, sCD28, sCD80, and sCTLA-4 are potential biomarkers for detecting immunosenescence.

背景:炎症是免疫衰老的特征,其特点是持续的慢性炎症无法消除。它不仅影响老年人,也可能发生在年轻人身上,尤其是那些患有慢性炎症的人,如自身免疫性疾病、恶性肿瘤或慢性感染。这种情况导致免疫功能改变,免疫功能随之降低。检测免疫衰老的方法是使用流式细胞仪检测免疫风险谱(IRP)。这些检测并不总能在医疗机构中进行,尤其是在发展中国家,而且需要新鲜的全血样本。因此,有必要找到可使用储存血清进行检测的生物标志物,以便于参考检查。在此,我们提出了一种代表免疫细胞活性和衰竭的可溶性生物标志物,即 sCD163、sCD28、sCD80 和 sCTLA-4。据报道,这些标志物在导致早衰的慢性疾病中会升高,而且与 IRP 不同,它们很容易用 ELISA 方法从血清样本中检测出来。因此,我们认为这些可溶性标记物有利于预测免疫衰老的病理状况:结论:CD163、sCD28、sCD80 和 sCTLA-4 等可溶性成本调节分子是检测免疫衰老的潜在生物标志物。
{"title":"sCD163, sCD28, sCD80, and sCTLA-4 as soluble marker candidates for detecting immunosenescence.","authors":"Andrea Aprilia, Kusworini Handono, Hidayat Sujuti, Akhmad Sabarudin, Nuning Winaris","doi":"10.1186/s12979-023-00405-0","DOIUrl":"10.1186/s12979-023-00405-0","url":null,"abstract":"<p><strong>Background: </strong>Inflammaging, the characteristics of immunosenescence, characterized by continuous chronic inflammation that could not be resolved. It is not only affect older people but can also occur in young individuals, especially those suffering from chronic inflammatory conditions such as autoimmune disease, malignancy, or chronic infection. This condition led to altered immune function and as consequent immune function is reduced. Detection of immunosenescence has been done by examining the immune risk profile (IRP), which uses flow cytometry. These tests are not always available in health facilities, especially in developing countries and require fresh whole blood samples. Therefore, it is necessary to find biomarkers that can be tested using stored serum to make it easier to refer to the examination. Here we proposed an insight for soluble biomarkers which represented immune cells activities and exhaustion, namely sCD163, sCD28, sCD80, and sCTLA-4. Those markers were reported to be elevated in chronic diseases that caused early aging and easily detected from serum samples using ELISA method, unlike IRP. Therefore, we conclude these soluble markers are beneficial to predict pathological condition of immunosenescence.</p><p><strong>Aim: </strong>To identify soluble biomarkers that could replace IRP for detecting immunosenescence.</p><p><strong>Conclusion: </strong>Soluble costimulatory molecule suchsCD163, sCD28, sCD80, and sCTLA-4 are potential biomarkers for detecting immunosenescence.</p>","PeriodicalId":51289,"journal":{"name":"Immunity & Ageing","volume":"21 1","pages":"9"},"PeriodicalIF":7.9,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10799430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139503202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: A genomic perspective of the aging human and mouse lung with a focus on immune response and cellular senescence 更正:从基因组角度看人类和小鼠肺部的衰老,重点关注免疫反应和细胞衰老
IF 7.9 2区 医学 Q1 GERIATRICS & GERONTOLOGY Pub Date : 2024-01-16 DOI: 10.1186/s12979-023-00407-y
Meng He, Jürgen Borlak
<p><b>Correction: Immun Ageing 20, 58 (2023)</b></p><p><b>https://doi.org/10.1186/s12979-023-00373-5</b></p><p>Following publication of the original article [1], the authors reported an error in the HTML version of this article. The graphical abstract displayed is not the correct image but, a copy of Fig. 10 and in addition Fig. 11 is not fully displayed.</p><p>The publishers apologise for this error.</p><p>The original article [1] has been updated.</p><ol data-track-component="outbound reference"><li data-counter="1."><p>He M, Borlak J. A genomic perspective of the aging human and mouse lung with a focus on immune response and cellular senescence. Immun Ageing. 2023;20:58. https://doi.org/10.1186/s12979-023-00373-5.</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li></ol><p>Download references<svg aria-hidden="true" focusable="false" height="16" role="img" width="16"><use xlink:href="#icon-eds-i-download-medium" xmlns:xlink="http://www.w3.org/1999/xlink"></use></svg></p><h3>Authors and Affiliations</h3><ol><li><p>Centre for Pharmacology and Toxicology, Hannover Medical School, Carl‑Neuberg‑Str. 1, 30625, Hannover, Germany</p><p>Meng He & Jürgen Borlak</p></li></ol><span>Authors</span><ol><li><span>Meng He</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Jürgen Borlak</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li></ol><h3>Corresponding author</h3><p>Correspondence to Jürgen Borlak.</p><h3>Publisher’s Note</h3><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p><p>The online version of the original article can be found at https://doi.org/10.1186/s12979-023-00373-5.</p><p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.</p><p>Reprints and permissions</p><img alt="Check for updates. Verify cu
更正:Immun Ageing 20, 58 (2023)https://doi.org/10.1186/s12979-023-00373-5Following 原文[1]发表后,作者报告了本文 HTML 版本中的一处错误。He M, Borlak J. A genomic perspective of the aging human and mouse lung with a focus on immune response and cellular senescence. Immun Ageing.Immun Ageing.2023;20:58. https://doi.org/10.1186/s12979-023-00373-5.Article CAS PubMed PubMed Central Google Scholar 下载参考文献作者和单位汉诺威医学院药理学和毒理学中心,Carl-Neuberg-Str.1, 30625, Hannover, GermanyMeng He & Jürgen Borlak作者Meng He查看作者发表的文章您也可以在PubMed Google Scholar中搜索该作者Jürgen Borlak查看作者发表的文章您也可以在PubMed Google Scholar中搜索该作者通讯作者致Jürgen Borlak.Publisher's NoteSpringer Nature对出版地图和机构隶属关系中的管辖权主张保持中立。本文采用知识共享署名 4.0 国际许可协议(Creative Commons Attribution 4.0 International License)进行许可,允许以任何媒介或格式使用、共享、改编、分发和复制,但需注明原作者和来源,提供知识共享许可协议的链接,并说明是否进行了修改。本文中的图片或其他第三方材料均包含在文章的知识共享许可协议中,除非在材料的署名栏中另有说明。如果材料未包含在文章的知识共享许可协议中,且您打算使用的材料不符合法律规定或超出许可使用范围,则您需要直接从版权所有者处获得许可。要查看该许可的副本,请访问 http://creativecommons.org/licenses/by/4.0/。除非在数据的信用行中另有说明,否则创作共用公共领域专用免责声明 (http://creativecommons.org/publicdomain/zero/1.0/) 适用于本文提供的数据。转载与许可引用本文He, M., Borlak, J. Correction:以免疫反应和细胞衰老为重点的人肺和小鼠肺衰老的基因组视角。Immun Ageing 21, 8 (2024). https://doi.org/10.1186/s12979-023-00407-yDownload citationPublished: 16 January 2024DOI: https://doi.org/10.1186/s12979-023-00407-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative.
{"title":"Correction: A genomic perspective of the aging human and mouse lung with a focus on immune response and cellular senescence","authors":"Meng He, Jürgen Borlak","doi":"10.1186/s12979-023-00407-y","DOIUrl":"https://doi.org/10.1186/s12979-023-00407-y","url":null,"abstract":"&lt;p&gt;&lt;b&gt;Correction: Immun Ageing 20, 58 (2023)&lt;/b&gt;&lt;/p&gt;&lt;p&gt;&lt;b&gt;https://doi.org/10.1186/s12979-023-00373-5&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Following publication of the original article [1], the authors reported an error in the HTML version of this article. The graphical abstract displayed is not the correct image but, a copy of Fig. 10 and in addition Fig. 11 is not fully displayed.&lt;/p&gt;&lt;p&gt;The publishers apologise for this error.&lt;/p&gt;&lt;p&gt;The original article [1] has been updated.&lt;/p&gt;&lt;ol data-track-component=\"outbound reference\"&gt;&lt;li data-counter=\"1.\"&gt;&lt;p&gt;He M, Borlak J. A genomic perspective of the aging human and mouse lung with a focus on immune response and cellular senescence. Immun Ageing. 2023;20:58. https://doi.org/10.1186/s12979-023-00373-5.&lt;/p&gt;&lt;p&gt;Article CAS PubMed PubMed Central Google Scholar &lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;p&gt;Download references&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"&gt;&lt;use xlink:href=\"#icon-eds-i-download-medium\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;/use&gt;&lt;/svg&gt;&lt;/p&gt;&lt;h3&gt;Authors and Affiliations&lt;/h3&gt;&lt;ol&gt;&lt;li&gt;&lt;p&gt;Centre for Pharmacology and Toxicology, Hannover Medical School, Carl‑Neuberg‑Str. 1, 30625, Hannover, Germany&lt;/p&gt;&lt;p&gt;Meng He &amp; Jürgen Borlak&lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;span&gt;Authors&lt;/span&gt;&lt;ol&gt;&lt;li&gt;&lt;span&gt;Meng He&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Jürgen Borlak&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;h3&gt;Corresponding author&lt;/h3&gt;&lt;p&gt;Correspondence to Jürgen Borlak.&lt;/p&gt;&lt;h3&gt;Publisher’s Note&lt;/h3&gt;&lt;p&gt;Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.&lt;/p&gt;&lt;p&gt;The online version of the original article can be found at https://doi.org/10.1186/s12979-023-00373-5.&lt;/p&gt;&lt;p&gt;&lt;b&gt;Open Access&lt;/b&gt; This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.&lt;/p&gt;\u0000&lt;p&gt;Reprints and permissions&lt;/p&gt;&lt;img alt=\"Check for updates. Verify cu","PeriodicalId":51289,"journal":{"name":"Immunity & Ageing","volume":"5 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139476885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth and longevity modulation through larval environment mediate immunosenescence and immune strategy of Tenebrio molitor. 幼虫环境对生长和寿命的调节介导了 Tenebrio molitor 的免疫衰老和免疫策略。
IF 7.9 2区 医学 Q1 GERIATRICS & GERONTOLOGY Pub Date : 2024-01-12 DOI: 10.1186/s12979-023-00409-w
Agathe Crosland, Thierry Rigaud, Charlène Develay, Yannick Moret

Background: The Disposable Soma Theory of aging suggests a trade-off between energy allocation for growth, reproduction and somatic maintenance, including immunity. While trade-offs between reproduction and immunity are well documented, those involving growth remain under-explored. Rapid growth might deplete resources, reducing investment in maintenance, potentially leading to earlier or faster senescence and a shorter lifespan. However, rapid growth could limit exposure to parasitism before reaching adulthood, decreasing immunity needs. The insect immunity's components (cellular, enzymatic, and antibacterial) vary in cost, effectiveness, and duration. Despite overall immunity decline (immunosenescence), its components seem to age differently. We hypothesize that investment in these immune components is adjusted based on the resource cost of growth, longevity, and the associated risk of parasitism.

Results: We tested this hypothesis using the mealworm beetle, Tenebrio molitor as our experimental subject. By manipulating the larval environment, including three different temperatures and three relative humidity levels, we achieved a wide range of growth durations and longevities. Our main focus was on the relationship between growth duration, longevity, and specific immune components: hemocyte count, phenoloxidase activity, and antibacterial activity. We measured these immune parameters both before and after exposing the individuals to a standard bacterial immune challenge, enabling us to assess immune responses. These measurements were taken in both young and older adult beetles. Upon altering growth duration and longevity by modifying larval temperature, we observed a more pronounced investment in cellular and antibacterial defenses among individuals with slow growth and extended lifespans. Intriguingly, slower-growing and long-lived beetles exhibited reduced enzymatic activity. Similar results were found when manipulating larval growth duration and adult longevity through variations in relative humidity, with a particular focus on antibacterial activity.

Conclusion: The impact of growth manipulation on immune senescence varies by the specific immune parameter under consideration. Yet, in slow-growing T. molitor, a clear decline in cellular and antibacterial immune responses with age was observed. This decline can be linked to their initially stronger immune response in early life. Furthermore, our study suggests an immune strategy favoring enhanced antibacterial activity among slow-growing and long-lived T. molitor individuals.

背景:一次性躯体衰老理论认为,生长、繁殖和躯体维持(包括免疫)的能量分配之间需要权衡。尽管生殖和免疫之间的权衡已被充分记录,但涉及生长的权衡仍未得到充分探讨。快速生长可能会耗尽资源,减少对维持的投资,从而可能导致更早或更快的衰老和更短的寿命。不过,快速生长可能会限制昆虫在成年之前接触寄生虫的机会,从而降低免疫需求。昆虫免疫的组成部分(细胞、酶和抗菌)在成本、有效性和持续时间方面各不相同。尽管整体免疫力下降(免疫衰老),但其组成部分的衰老程度似乎不同。我们假设,对这些免疫成分的投资是根据生长、寿命和相关寄生虫风险的资源成本进行调整的:我们使用黄粉虫甲虫作为实验对象来验证这一假设。通过调节幼虫的生长环境,包括三种不同的温度和三种相对湿度水平,我们获得了不同的生长期和寿命。我们的主要研究重点是生长时间、寿命和特定免疫成分(血细胞计数、酚氧化酶活性和抗菌活性)之间的关系。我们在个体接受标准细菌免疫挑战之前和之后测量了这些免疫参数,从而评估了免疫反应。这些测量都是在年轻和年老的成年甲虫身上进行的。在通过改变幼虫温度来改变生长持续时间和寿命后,我们观察到生长缓慢和寿命较长的个体在细胞和抗菌防御方面的投入更为明显。耐人寻味的是,生长速度慢和寿命长的甲虫表现出酶活性降低。在通过改变相对湿度来控制幼虫生长时间和成虫寿命时,也发现了类似的结果,尤其是在抗菌活性方面:结论:生长控制对免疫衰老的影响因所考虑的具体免疫参数而异。然而,在生长缓慢的褐飞虱身上,我们观察到细胞和抗菌免疫反应随着年龄的增长而明显下降。这种衰退可能与它们早期较强的免疫反应有关。此外,我们的研究还表明,生长缓慢的长寿褐飞虱个体的免疫策略有利于增强抗菌活性。
{"title":"Growth and longevity modulation through larval environment mediate immunosenescence and immune strategy of Tenebrio molitor.","authors":"Agathe Crosland, Thierry Rigaud, Charlène Develay, Yannick Moret","doi":"10.1186/s12979-023-00409-w","DOIUrl":"10.1186/s12979-023-00409-w","url":null,"abstract":"<p><strong>Background: </strong>The Disposable Soma Theory of aging suggests a trade-off between energy allocation for growth, reproduction and somatic maintenance, including immunity. While trade-offs between reproduction and immunity are well documented, those involving growth remain under-explored. Rapid growth might deplete resources, reducing investment in maintenance, potentially leading to earlier or faster senescence and a shorter lifespan. However, rapid growth could limit exposure to parasitism before reaching adulthood, decreasing immunity needs. The insect immunity's components (cellular, enzymatic, and antibacterial) vary in cost, effectiveness, and duration. Despite overall immunity decline (immunosenescence), its components seem to age differently. We hypothesize that investment in these immune components is adjusted based on the resource cost of growth, longevity, and the associated risk of parasitism.</p><p><strong>Results: </strong>We tested this hypothesis using the mealworm beetle, Tenebrio molitor as our experimental subject. By manipulating the larval environment, including three different temperatures and three relative humidity levels, we achieved a wide range of growth durations and longevities. Our main focus was on the relationship between growth duration, longevity, and specific immune components: hemocyte count, phenoloxidase activity, and antibacterial activity. We measured these immune parameters both before and after exposing the individuals to a standard bacterial immune challenge, enabling us to assess immune responses. These measurements were taken in both young and older adult beetles. Upon altering growth duration and longevity by modifying larval temperature, we observed a more pronounced investment in cellular and antibacterial defenses among individuals with slow growth and extended lifespans. Intriguingly, slower-growing and long-lived beetles exhibited reduced enzymatic activity. Similar results were found when manipulating larval growth duration and adult longevity through variations in relative humidity, with a particular focus on antibacterial activity.</p><p><strong>Conclusion: </strong>The impact of growth manipulation on immune senescence varies by the specific immune parameter under consideration. Yet, in slow-growing T. molitor, a clear decline in cellular and antibacterial immune responses with age was observed. This decline can be linked to their initially stronger immune response in early life. Furthermore, our study suggests an immune strategy favoring enhanced antibacterial activity among slow-growing and long-lived T. molitor individuals.</p>","PeriodicalId":51289,"journal":{"name":"Immunity & Ageing","volume":"21 1","pages":"7"},"PeriodicalIF":7.9,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785379/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139425977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelarated immune ageing is associated with COVID-19 disease severity 免疫加速老化与 COVID-19 疾病的严重程度有关
IF 7.9 2区 医学 Q1 GERIATRICS & GERONTOLOGY Pub Date : 2024-01-11 DOI: 10.1186/s12979-023-00406-z
Janet M. Lord, Tonny Veenith, Jack Sullivan, Archana Sharma-Oates, Alex G. Richter, Neil J. Greening, Hamish J. C. McAuley, Rachael A. Evans, Paul Moss, Shona C. Moore, Lance Turtle, Nandan Gautam, Ahmed Gilani, Manan Bajaj, Louise V. Wain, Christopher Brightling, Betty Raman, Michael Marks, Amisha Singapuri, Omer Elneima, Peter J. M. Openshaw, Niharika A. Duggal
The striking increase in COVID-19 severity in older adults provides a clear example of immunesenescence, the age-related remodelling of the immune system. To better characterise the association between convalescent immunesenescence and acute disease severity, we determined the immune phenotype of COVID-19 survivors and non-infected controls. We performed detailed immune phenotyping of peripheral blood mononuclear cells isolated from 103 COVID-19 survivors 3–5 months post recovery who were classified as having had severe (n = 56; age 53.12 ± 11.30 years), moderate (n = 32; age 52.28 ± 11.43 years) or mild (n = 15; age 49.67 ± 7.30 years) disease and compared with age and sex-matched healthy adults (n = 59; age 50.49 ± 10.68 years). We assessed a broad range of immune cell phenotypes to generate a composite score, IMM-AGE, to determine the degree of immune senescence. We found increased immunesenescence features in severe COVID-19 survivors compared to controls including: a reduced frequency and number of naïve CD4 and CD8 T cells (p < 0.0001); increased frequency of EMRA CD4 (p < 0.003) and CD8 T cells (p < 0.001); a higher frequency (p < 0.0001) and absolute numbers (p < 0.001) of CD28−ve CD57+ve senescent CD4 and CD8 T cells; higher frequency (p < 0.003) and absolute numbers (p < 0.02) of PD-1 expressing exhausted CD8 T cells; a two-fold increase in Th17 polarisation (p < 0.0001); higher frequency of memory B cells (p < 0.001) and increased frequency (p < 0.0001) and numbers (p < 0.001) of CD57+ve senescent NK cells. As a result, the IMM-AGE score was significantly higher in severe COVID-19 survivors than in controls (p < 0.001). Few differences were seen for those with moderate disease and none for mild disease. Regression analysis revealed the only pre-existing variable influencing the IMM-AGE score was South Asian ethnicity ( $$beta$$ = 0.174, p = 0.043), with a major influence being disease severity ( $$beta$$ = 0.188, p = 0.01). Our analyses reveal a state of enhanced immune ageing in survivors of severe COVID-19 and suggest this could be related to SARS-Cov-2 infection. Our data support the rationale for trials of anti-immune ageing interventions for improving clinical outcomes in these patients with severe disease.
老年人 COVID-19 严重程度的显著增加是免疫衰老(与年龄有关的免疫系统重塑)的一个明显例子。为了更好地描述康复期免疫衰老与急性疾病严重程度之间的关系,我们测定了 COVID-19 幸存者和非感染对照组的免疫表型。我们对从 103 名 COVID-19 幸存者身上分离的外周血单核细胞进行了详细的免疫表型分析,这些幸存者在康复后 3-5 个月被分为重度(56 人;年龄为 53.12 ± 11.30 岁)、中度(32 人;年龄为 52.28 ± 11.43 岁)或轻度(15 人;年龄为 49.67 ± 7.30 岁),并与年龄和性别匹配的健康成人(59 人;年龄为 50.49 ± 10.68 岁)进行了比较。我们对多种免疫细胞表型进行了评估,得出了一个综合评分 IMM-AGE,以确定免疫衰老的程度。与对照组相比,我们发现严重 COVID-19 幸存者的免疫衰老特征增加,包括:幼稚 CD4 和 CD8 T 细胞的频率和数量减少(p < 0.0001);EMRA CD4(p < 0.003)和 CD8 T 细胞的频率增加(p < 0.001);CD28-ve T 细胞的频率(p < 0.0001)和绝对数量(p < 0.001);CD28-ve CD57+ve 衰老的 CD4 和 CD8 T 细胞的频率更高(p < 0.003),绝对数量更多(p < 0.02);PD-1 表达衰竭的 CD8 T 细胞的频率更高(p < 0.003),绝对数量更多(p < 0.02);Th17 极化增加了两倍(p < 0.0001);记忆 B 细胞的频率更高(p < 0.001),CD57+ve 衰老的 NK 细胞的频率增加(p < 0.0001),数量增加(p < 0.001)。因此,重度 COVID-19 幸存者的 IMM-AGE 评分明显高于对照组(p < 0.001)。中度患者的差异很小,轻度患者则没有差异。回归分析表明,影响 IMM-AGE 评分的唯一先存变量是南亚种族($$beta$$ = 0.174,p = 0.043),主要影响因素是疾病严重程度($$beta$$ = 0.188,p = 0.01)。我们的分析表明,在严重 COVID-19 的幸存者中存在着免疫老化增强的状态,这可能与 SARS-Cov-2 感染有关。我们的数据支持对这些重症患者进行抗免疫老化干预试验以改善临床疗效的理论依据。
{"title":"Accelarated immune ageing is associated with COVID-19 disease severity","authors":"Janet M. Lord, Tonny Veenith, Jack Sullivan, Archana Sharma-Oates, Alex G. Richter, Neil J. Greening, Hamish J. C. McAuley, Rachael A. Evans, Paul Moss, Shona C. Moore, Lance Turtle, Nandan Gautam, Ahmed Gilani, Manan Bajaj, Louise V. Wain, Christopher Brightling, Betty Raman, Michael Marks, Amisha Singapuri, Omer Elneima, Peter J. M. Openshaw, Niharika A. Duggal","doi":"10.1186/s12979-023-00406-z","DOIUrl":"https://doi.org/10.1186/s12979-023-00406-z","url":null,"abstract":"The striking increase in COVID-19 severity in older adults provides a clear example of immunesenescence, the age-related remodelling of the immune system. To better characterise the association between convalescent immunesenescence and acute disease severity, we determined the immune phenotype of COVID-19 survivors and non-infected controls. We performed detailed immune phenotyping of peripheral blood mononuclear cells isolated from 103 COVID-19 survivors 3–5 months post recovery who were classified as having had severe (n = 56; age 53.12 ± 11.30 years), moderate (n = 32; age 52.28 ± 11.43 years) or mild (n = 15; age 49.67 ± 7.30 years) disease and compared with age and sex-matched healthy adults (n = 59; age 50.49 ± 10.68 years). We assessed a broad range of immune cell phenotypes to generate a composite score, IMM-AGE, to determine the degree of immune senescence. We found increased immunesenescence features in severe COVID-19 survivors compared to controls including: a reduced frequency and number of naïve CD4 and CD8 T cells (p < 0.0001); increased frequency of EMRA CD4 (p < 0.003) and CD8 T cells (p < 0.001); a higher frequency (p < 0.0001) and absolute numbers (p < 0.001) of CD28−ve CD57+ve senescent CD4 and CD8 T cells; higher frequency (p < 0.003) and absolute numbers (p < 0.02) of PD-1 expressing exhausted CD8 T cells; a two-fold increase in Th17 polarisation (p < 0.0001); higher frequency of memory B cells (p < 0.001) and increased frequency (p < 0.0001) and numbers (p < 0.001) of CD57+ve senescent NK cells. As a result, the IMM-AGE score was significantly higher in severe COVID-19 survivors than in controls (p < 0.001). Few differences were seen for those with moderate disease and none for mild disease. Regression analysis revealed the only pre-existing variable influencing the IMM-AGE score was South Asian ethnicity ( $$beta$$ = 0.174, p = 0.043), with a major influence being disease severity ( $$beta$$ = 0.188, p = 0.01). Our analyses reveal a state of enhanced immune ageing in survivors of severe COVID-19 and suggest this could be related to SARS-Cov-2 infection. Our data support the rationale for trials of anti-immune ageing interventions for improving clinical outcomes in these patients with severe disease. ","PeriodicalId":51289,"journal":{"name":"Immunity & Ageing","volume":"13 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139422283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroimmunology and ageing – the state of the art 神经免疫学与老龄化--最新进展
IF 7.9 2区 医学 Q1 GERIATRICS & GERONTOLOGY Pub Date : 2024-01-10 DOI: 10.1186/s12979-024-00411-w
Moisés E. Bauer, Graham Pawelec, Roberto Paganelli
<p>For decades, the central nervous system (CNS) was known as an immune-privileged site. This concept was formulated based on experimental studies that demonstrated that, unlike what was observed in peripheral organs, skin grafts were not rejected when transplanted into the brain parenchyma. The presence of the blood-brain barrier (BBB), capable of selectively regulating the entry of molecules and cells from the bloodstream into the brain parenchyma, and the absence of conventional lymphatic vessels contributed to reinforcing this concept [1]. However, meningeal lymphatic vessels in the dura mater and, more recently, glymphatic vessels have raised questions about the dogma of the CNS as an immune-privileged site [2, 3]. The CNS has thus adopted mechanisms that enable communication with the immune system, which is crucial for a healthy brain.</p><p>Recent studies highlight the borders of the CNS as pivotal sites of neuro-immune interactions. Under physiological conditions, characterized by the absence of leukocytes in the brain parenchyma, innate immune cells, such as macrophages, and adaptive immune cells, such as T and B cells, are present in meningeal regions, in the choroid plexus and perivascular spaces. In addition to actively participating in immune surveillance in the CNS, these cells contribute to the maintenance of brain homeostasis and may influence behavioural and cognitive responses [4, 5]. For instance, cytokines secreted by immune cells, localized at the brain borders, may change behaviour through modulation of neuronal activities in distinct brain regions [5]. Indeed, several T cell-related cytokines have been shown to modulate complex CNS functions, by inducing changes in neuronal physiology: interferon γ (IFN-γ) alters sociability [6], IL-17 maintains anxiety and spatial learning [7], and IL-4 regulates learning and memory [8].</p><p>Inflammaging is a low level pro-inflammatory state which is believed to be a major contributor to biological aging which underlies many age-associated diseases. Peripheral inflammation significantly affects brain function and contributes to the development of several neurological disorders. Changes in interactions between the CNS and the immune system, such as those observed during ageing, could predispose to the development of neurodegenerative and neuropsychiatric diseases. Both ageing and neuropsychiatric disorders of older adults seem to converge on the pathogenetic role of inflammation, hence the notion of neuroinflammation. Increasing evidence indicates the role of neuroinflammation in age-related neurodegenerative diseases, such as Alzheimer’s Disease (AD) and Parkinson’s disease (PD). The neuropathological features of these diseases include aggregation and accumulation of intracellular and/or extracellular proteins that are associated with neuronal loss in specific regions of the brain. Furthermore, proliferation and activation of glial cells (i.e., “gliosis”) are well established in these di
biomedcentral.com/articles/; https://doi.org/10.1186/s12979-022-00289-6).在老龄小鼠的室管膜下区观察到了T细胞浸润。细胞-细胞相互作用分析表明,老龄小胶质细胞释放 CCL3 来招募外周 CD8 + 记忆 T 细胞。作为潜在的结果,老化的小胶质细胞改变了其表型,转为促炎状态,释放 TNF-α 上调 BEC 中 VCAM1 和 ICAM1 的表达,从而促进外周 T 细胞迁移到大脑中。体外实验显示,用老年人的 CSF 处理人类小胶质细胞时,它们也会转变为趋化表型。这项研究揭示了正常衰老过程中维持大脑平衡所涉及的神经免疫途径。正常 "中枢神经系统中免疫细胞的独特图谱是评估疾病中观察到的变化的有用指南。NEVALAINEN等人(2022年)在一项研究中提供了这一信息,该研究在55名无脑部疾病的捐献者的13个不同脑区中发现了22种细胞类型,代表了自然和适应性免疫细胞。免疫细胞的比例是通过评估多个基因特征并使用细胞测量工具 CIBERSORTx 进行分析后确定的,从而利用 547 个特征基因的表达水平确定了细胞亚型 (https://doi.org/10.1186/s12979-022-00302-y)。衰老的影响是增加了先天性免疫细胞(主要是单核细胞)的存在,减少了不同脑区的所有适应性免疫细胞。与年龄相关的浸润性免疫细胞组成的差异与在组织稳态中的作用一致。这种与性别相关的认知偏差包括影响人们记忆和解释信息的消极思维模式。认知偏差受海马体神经发生和神经炎症的影响。鉴于认知偏差与神经发生和炎症的关系,HODGES 等人(2022 年)研究了认知偏差、海马的神经发生以及雌雄大鼠腹侧海马(HPC)和基底外侧杏仁核(BLA)的细胞因子水平与整个生命周期的关系(https://immunityageing.biomedcentral.com/articles/; https://doi.org/10.1186/s12979-022-00299-4)。在进行认知偏差测试后,雄性大鼠在青春期腹侧海马区的炎性细胞因子含量高于雌性大鼠。在青壮年时期,雌性大鼠比雄性大鼠在腹腔脂肪细胞中含有更多的 IFN-γ、IL-1β、IL-4、IL-5 和 IL-10。中年大鼠两个区域中的IL-13、TNF-α和CXCL1含量均高于年轻组。在认知偏差测试后,青春期雄性大鼠的海马神经发生率高于青春期雌性大鼠。年轻雄性背侧海马体的神经发生与负面认知偏差呈负相关。综上所述,这些结果表明,大脑中的负性认知偏差、海马神经发生和炎症之间的关联因年龄和性别而异。全世界的肥胖率正在显著上升。肥胖会导致许多并发症,如增加老年人认知能力下降的风险。免疫系统的一些变化,如炎症和免疫衰老,在肥胖和衰老中都很常见,可能会影响认知能力的下降。因此,整个生命周期中免疫系统的变化可能会影响肥胖如何影响神经炎症以及与之相关的认知能力下降。为了更好地理解这种关系,HENN 等人(2022 年)使用高脂饮食(HFD)肥胖小鼠模型(https://immunityageing.biomedcentral.com/articles/; https://doi.org/10.1186/s12979-022-00323-7)研究了与认知变化相关的代谢和炎症特征。摄入高脂饮食的小鼠海马基因表达发生了与年龄相关的显著变化。高脂饮食在年轻组和中年组都造成了代谢异常表型。然而,年龄越大,高密度脂蛋白饮食对认知和神经炎症的影响就越大,海马炎症基因的表达也随之改变。总之,这些数据表明,肥胖(高频分解膳食)会促进大脑过早老化表型,这表明了炎症和免疫衰老。刘(LIU)等人(2023 年)对一个由 2944 人组成的队列进行了为期 2 年的跟踪研究,评估了饮食对认知障碍的促炎或抗炎作用;纵向研究显示,饮食炎症指数较高的男性认知能力下降幅度增大。巢式病例对照研究进一步证实了这一点。
{"title":"Neuroimmunology and ageing – the state of the art","authors":"Moisés E. Bauer, Graham Pawelec, Roberto Paganelli","doi":"10.1186/s12979-024-00411-w","DOIUrl":"https://doi.org/10.1186/s12979-024-00411-w","url":null,"abstract":"&lt;p&gt;For decades, the central nervous system (CNS) was known as an immune-privileged site. This concept was formulated based on experimental studies that demonstrated that, unlike what was observed in peripheral organs, skin grafts were not rejected when transplanted into the brain parenchyma. The presence of the blood-brain barrier (BBB), capable of selectively regulating the entry of molecules and cells from the bloodstream into the brain parenchyma, and the absence of conventional lymphatic vessels contributed to reinforcing this concept [1]. However, meningeal lymphatic vessels in the dura mater and, more recently, glymphatic vessels have raised questions about the dogma of the CNS as an immune-privileged site [2, 3]. The CNS has thus adopted mechanisms that enable communication with the immune system, which is crucial for a healthy brain.&lt;/p&gt;&lt;p&gt;Recent studies highlight the borders of the CNS as pivotal sites of neuro-immune interactions. Under physiological conditions, characterized by the absence of leukocytes in the brain parenchyma, innate immune cells, such as macrophages, and adaptive immune cells, such as T and B cells, are present in meningeal regions, in the choroid plexus and perivascular spaces. In addition to actively participating in immune surveillance in the CNS, these cells contribute to the maintenance of brain homeostasis and may influence behavioural and cognitive responses [4, 5]. For instance, cytokines secreted by immune cells, localized at the brain borders, may change behaviour through modulation of neuronal activities in distinct brain regions [5]. Indeed, several T cell-related cytokines have been shown to modulate complex CNS functions, by inducing changes in neuronal physiology: interferon γ (IFN-γ) alters sociability [6], IL-17 maintains anxiety and spatial learning [7], and IL-4 regulates learning and memory [8].&lt;/p&gt;&lt;p&gt;Inflammaging is a low level pro-inflammatory state which is believed to be a major contributor to biological aging which underlies many age-associated diseases. Peripheral inflammation significantly affects brain function and contributes to the development of several neurological disorders. Changes in interactions between the CNS and the immune system, such as those observed during ageing, could predispose to the development of neurodegenerative and neuropsychiatric diseases. Both ageing and neuropsychiatric disorders of older adults seem to converge on the pathogenetic role of inflammation, hence the notion of neuroinflammation. Increasing evidence indicates the role of neuroinflammation in age-related neurodegenerative diseases, such as Alzheimer’s Disease (AD) and Parkinson’s disease (PD). The neuropathological features of these diseases include aggregation and accumulation of intracellular and/or extracellular proteins that are associated with neuronal loss in specific regions of the brain. Furthermore, proliferation and activation of glial cells (i.e., “gliosis”) are well established in these di","PeriodicalId":51289,"journal":{"name":"Immunity & Ageing","volume":"17 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139414187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inflammatory markers and physical frailty: towards clinical application. 炎症标志物与体质虚弱:走向临床应用。
IF 7.9 2区 医学 Q1 GERIATRICS & GERONTOLOGY Pub Date : 2024-01-06 DOI: 10.1186/s12979-023-00410-3
Yiming Pan, Lina Ma

Global population aging poses a tremendous burden on the health care system worldwide. Frailty is associated with decreased physical reserve and is considered an important indicator of adverse events in the older population. Therefore, there is growing interest in the early diagnosis and intervention of frailty, but the cellular mechanisms responsible for frailty are still not completely understood. Chronic inflammation is related to decreased physical function and increased disease risk. Additionally, multiple human and animal studies suggest that inflammation probably plays the largest role in contributing to frailty. Some inflammatory markers have been proposed to predict physical frailty. However, there are still large gaps in knowledge related to the clinical application of these markers in frail patients. Therefore, understanding the biological processes and identifying recognized and reliable markers are urgent and pivotal tasks for geriatricians. In the present review, we broadly summarize the inflammatory markers that may have potential diagnostic and therapeutic use, thereby translating them into health care for older people with frailty in the near future.

全球人口老龄化给全世界的医疗保健系统带来了巨大负担。虚弱与体力储备下降有关,被认为是老年人口不良事件的一个重要指标。因此,人们对虚弱的早期诊断和干预越来越感兴趣,但造成虚弱的细胞机制仍未完全明了。慢性炎症与身体功能下降和疾病风险增加有关。此外,多项人类和动物研究表明,炎症可能是导致虚弱的最大因素。一些炎症标志物已被用于预测身体虚弱。然而,这些标志物在体弱患者中的临床应用仍存在很大的知识差距。因此,了解其生物学过程并确定公认可靠的标志物是老年病学家的紧迫而关键的任务。在本综述中,我们广泛总结了可能具有潜在诊断和治疗用途的炎症标志物,从而在不久的将来将其转化为老年虚弱患者的医疗保健。
{"title":"Inflammatory markers and physical frailty: towards clinical application.","authors":"Yiming Pan, Lina Ma","doi":"10.1186/s12979-023-00410-3","DOIUrl":"10.1186/s12979-023-00410-3","url":null,"abstract":"<p><p>Global population aging poses a tremendous burden on the health care system worldwide. Frailty is associated with decreased physical reserve and is considered an important indicator of adverse events in the older population. Therefore, there is growing interest in the early diagnosis and intervention of frailty, but the cellular mechanisms responsible for frailty are still not completely understood. Chronic inflammation is related to decreased physical function and increased disease risk. Additionally, multiple human and animal studies suggest that inflammation probably plays the largest role in contributing to frailty. Some inflammatory markers have been proposed to predict physical frailty. However, there are still large gaps in knowledge related to the clinical application of these markers in frail patients. Therefore, understanding the biological processes and identifying recognized and reliable markers are urgent and pivotal tasks for geriatricians. In the present review, we broadly summarize the inflammatory markers that may have potential diagnostic and therapeutic use, thereby translating them into health care for older people with frailty in the near future.</p>","PeriodicalId":51289,"journal":{"name":"Immunity & Ageing","volume":"21 1","pages":"4"},"PeriodicalIF":7.9,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10770917/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139111343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Helicobacter pylori infection and Parkinson’s Disease: etiology, pathogenesis and levodopa bioavailability 幽门螺杆菌感染与帕金森病:病因、发病机制和左旋多巴生物利用度
IF 7.9 2区 医学 Q1 GERIATRICS & GERONTOLOGY Pub Date : 2024-01-02 DOI: 10.1186/s12979-023-00404-1
Bang-rong Wei, Yu-jia Zhao, Yu-feng Cheng, Chun Huang, Feng Zhang
Parkinson’s disease (PD), a neurodegenerative disorder with an unknown etiology, is primarily characterized by the degeneration of dopamine (DA) neurons. The prevalence of PD has experienced a significant surge in recent years. The unidentified etiology poses limitations to the development of effective therapeutic interventions for this condition. Helicobacter pylori (H. pylori) infection has affected approximately half of the global population. Mounting evidences suggest that H. pylori infection plays an important role in PD through various mechanisms. The autotoxin produced by H. pylori induces pro-inflammatory cytokines release, thereby facilitating the occurrence of central inflammation that leads to neuronal damage. Simultaneously, H. pylori disrupts the equilibrium of gastrointestinal microbiota with an overgrowth of bacteria in the small intestinal known as small intestinal bacterial overgrowth (SIBO). This dysbiosis of the gut flora influences the central nervous system (CNS) through microbiome-gut-brain axis. Moreover, SIBO hampers levodopa absorption and affects its therapeutic efficacy in the treatment of PD. Also, H. pylori promotes the production of defensins to regulate the permeability of the blood-brain barrier, facilitating the entry of harmful factors into the CNS. In addition, H. pylori has been found to induce gastroparesis, resulting in a prolonged transit time for levodopa to reach the small intestine. H. pylori may exploit levodopa to facilitate its own growth and proliferation, or it can inflict damage to the gastrointestinal mucosa, leading to gastrointestinal ulcers and impeding levodopa absorption. Here, this review focused on the role of H. pylori infection in PD from etiology, pathogenesis to levodopa bioavailability.
帕金森病(PD)是一种病因不明的神经退行性疾病,主要特征是多巴胺(DA)神经元变性。近年来,帕金森病的发病率大幅上升。病因不明给开发有效的治疗干预措施带来了限制。幽门螺杆菌(H. pylori)感染影响了全球约一半的人口。越来越多的证据表明,幽门螺杆菌感染通过各种机制在腹泻中扮演着重要角色。幽门螺杆菌产生的自体毒素会诱导促炎细胞因子的释放,从而促进中枢炎症的发生,导致神经元损伤。与此同时,幽门螺杆菌会破坏胃肠道微生物群的平衡,导致小肠内细菌过度生长,即所谓的小肠细菌过度生长(SIBO)。这种肠道菌群失调会通过微生物组-肠道-大脑轴影响中枢神经系统(CNS)。此外,SIBO还会阻碍左旋多巴的吸收,影响其治疗帕金森病的疗效。幽门螺杆菌还能促进防御素的产生,从而调节血脑屏障的通透性,为有害因子进入中枢神经系统提供便利。此外,幽门螺杆菌还可诱发胃痉挛,导致左旋多巴到达小肠的转运时间延长。幽门螺杆菌可能利用左旋多巴促进自身生长和增殖,也可能对胃肠道粘膜造成损伤,导致胃肠道溃疡,阻碍左旋多巴的吸收。在此,本综述从病因、发病机制到左旋多巴的生物利用度等方面重点探讨了幽门螺杆菌感染在帕金森病中的作用。
{"title":"Helicobacter pylori infection and Parkinson’s Disease: etiology, pathogenesis and levodopa bioavailability","authors":"Bang-rong Wei, Yu-jia Zhao, Yu-feng Cheng, Chun Huang, Feng Zhang","doi":"10.1186/s12979-023-00404-1","DOIUrl":"https://doi.org/10.1186/s12979-023-00404-1","url":null,"abstract":"Parkinson’s disease (PD), a neurodegenerative disorder with an unknown etiology, is primarily characterized by the degeneration of dopamine (DA) neurons. The prevalence of PD has experienced a significant surge in recent years. The unidentified etiology poses limitations to the development of effective therapeutic interventions for this condition. Helicobacter pylori (H. pylori) infection has affected approximately half of the global population. Mounting evidences suggest that H. pylori infection plays an important role in PD through various mechanisms. The autotoxin produced by H. pylori induces pro-inflammatory cytokines release, thereby facilitating the occurrence of central inflammation that leads to neuronal damage. Simultaneously, H. pylori disrupts the equilibrium of gastrointestinal microbiota with an overgrowth of bacteria in the small intestinal known as small intestinal bacterial overgrowth (SIBO). This dysbiosis of the gut flora influences the central nervous system (CNS) through microbiome-gut-brain axis. Moreover, SIBO hampers levodopa absorption and affects its therapeutic efficacy in the treatment of PD. Also, H. pylori promotes the production of defensins to regulate the permeability of the blood-brain barrier, facilitating the entry of harmful factors into the CNS. In addition, H. pylori has been found to induce gastroparesis, resulting in a prolonged transit time for levodopa to reach the small intestine. H. pylori may exploit levodopa to facilitate its own growth and proliferation, or it can inflict damage to the gastrointestinal mucosa, leading to gastrointestinal ulcers and impeding levodopa absorption. Here, this review focused on the role of H. pylori infection in PD from etiology, pathogenesis to levodopa bioavailability.","PeriodicalId":51289,"journal":{"name":"Immunity & Ageing","volume":"39 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139078395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partial loss of Sorting Nexin 27 resembles age- and Down syndrome-associated T cell dysfunctions 分拣内毒素 27 的部分缺失与年龄和唐氏综合征相关的 T 细胞功能障碍相似
IF 7.9 2区 医学 Q1 GERIATRICS & GERONTOLOGY Pub Date : 2024-01-02 DOI: 10.1186/s12979-023-00402-3
Cristina Rodriguez-Rodriguez, Natalia González-Mancha, Ane Ochoa-Echeverría, Rosa Liébana, Isabel Merida
Sorting Nexin 27 (SNX27)-retromer complex facilitates cargo recycling from endosomes to the plasma membrane. SNX27 downregulation in neurons, as the result of Trisomy 21 (T21), has been linked with cognitive deficits due to impairment of AMPA and NMDA receptor recycling. Studies in human T cell lines likewise demonstrated that SNX27 regulates the correct delivery of cargoes to the immune synapse limiting the activation of pro-inflammatory pathways. Nevertheless, the physiological consequences of partial SNX27 loss in T cell homeostasis are still unclear. In this study, we have explored the consequences of T cell specific partial SNX27 downregulation in mice. T cells with partial SNX27 deficiency show a marked deficit in the CD4+ T cell pool, a hallmark of aging in mice and humans, and a well-characterized comorbidity of individuals with Down syndrome (DS). When analyzed ex vivo, CD4+ T cells with partial SNX27 deletion demonstrate enhanced proliferation but diminished IL-2 production. In contrast, the CD8+ population show enhanced expression of pro-inflammatory cytokines and lytic enzymes. This mouse model supports the relevance of SNX27 in the organization of the immune synapse, previously described in cell lines, as well as in the control of T cell homeostasis. Individuals with DS experiment an acceleration of the aging process, which particularly affects the immune and central nervous systems. Thus, we hypothesize that reduced SNX27 expression in DS could contribute to the dysregulation of these systems and further research in SNX27 will shed light on the molecular factors underlying the phenotypes observed in people with DS and its contribution to aging.
分选内含蛋白 27(SNX27)-转录因子复合物促进了货物从内体到质膜的再循环。由于 21 三体综合征(T21),神经元中的 SNX27 下调与 AMPA 和 NMDA 受体循环受损导致的认知障碍有关。在人类 T 细胞系中进行的研究同样表明,SNX27 可调节货物向免疫突触的正确传递,从而限制促炎途径的激活。然而,部分 SNX27 缺失对 T 细胞稳态的生理影响仍不清楚。在这项研究中,我们探讨了小鼠T细胞特异性SNX27部分下调的后果。部分 SNX27 缺失的 T 细胞在 CD4+ T 细胞池中显示出明显的缺陷,这是小鼠和人类衰老的标志,也是唐氏综合征(DS)患者的一种特征明显的合并症。在进行体外分析时,部分 SNX27 缺失的 CD4+ T 细胞显示出增殖增强,但 IL-2 生成减少。与此相反,CD8+细胞群的促炎细胞因子和裂解酶表达增强。这一小鼠模型证实了 SNX27 与免疫突触的组织以及 T 细胞稳态控制的相关性。DS 患者的衰老过程会加速,这尤其会影响免疫系统和中枢神经系统。因此,我们推测SNX27在DS患者中的表达减少可能会导致这些系统的失调,对SNX27的进一步研究将揭示在DS患者中观察到的表型的分子因素及其对衰老的贡献。
{"title":"Partial loss of Sorting Nexin 27 resembles age- and Down syndrome-associated T cell dysfunctions","authors":"Cristina Rodriguez-Rodriguez, Natalia González-Mancha, Ane Ochoa-Echeverría, Rosa Liébana, Isabel Merida","doi":"10.1186/s12979-023-00402-3","DOIUrl":"https://doi.org/10.1186/s12979-023-00402-3","url":null,"abstract":"Sorting Nexin 27 (SNX27)-retromer complex facilitates cargo recycling from endosomes to the plasma membrane. SNX27 downregulation in neurons, as the result of Trisomy 21 (T21), has been linked with cognitive deficits due to impairment of AMPA and NMDA receptor recycling. Studies in human T cell lines likewise demonstrated that SNX27 regulates the correct delivery of cargoes to the immune synapse limiting the activation of pro-inflammatory pathways. Nevertheless, the physiological consequences of partial SNX27 loss in T cell homeostasis are still unclear. In this study, we have explored the consequences of T cell specific partial SNX27 downregulation in mice. T cells with partial SNX27 deficiency show a marked deficit in the CD4+ T cell pool, a hallmark of aging in mice and humans, and a well-characterized comorbidity of individuals with Down syndrome (DS). When analyzed ex vivo, CD4+ T cells with partial SNX27 deletion demonstrate enhanced proliferation but diminished IL-2 production. In contrast, the CD8+ population show enhanced expression of pro-inflammatory cytokines and lytic enzymes. This mouse model supports the relevance of SNX27 in the organization of the immune synapse, previously described in cell lines, as well as in the control of T cell homeostasis. Individuals with DS experiment an acceleration of the aging process, which particularly affects the immune and central nervous systems. Thus, we hypothesize that reduced SNX27 expression in DS could contribute to the dysregulation of these systems and further research in SNX27 will shed light on the molecular factors underlying the phenotypes observed in people with DS and its contribution to aging.","PeriodicalId":51289,"journal":{"name":"Immunity & Ageing","volume":"40 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139078394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An aging-related immune landscape in the hematopoietic immune system 造血免疫系统中与衰老相关的免疫景观
IF 7.9 2区 医学 Q1 GERIATRICS & GERONTOLOGY Pub Date : 2024-01-02 DOI: 10.1186/s12979-023-00403-2
Jianjie Lv, Chun Zhang, Xiuxing Liu, Chenyang Gu, Yidan Liu, Yuehan Gao, Zhaohao Huang, Qi Jiang, Binyao Chen, Daquan He, Tianfu Wang, Zhuping Xu, Wenru Su
Aging is a holistic change that has a major impact on the immune system, and immunosenescence contributes to the overall progression of aging. The bone marrow is the most important hematopoietic immune organ, while the spleen, as the most important extramedullary hematopoietic immune organ, maintains homeostasis of the human hematopoietic immune system (HIS) in cooperation with the bone marrow. However, the overall changes in the HIS during aging have not been described. Here, we describe a hematopoietic immune map of the spleen and bone marrow of young and old mice using single-cell sequencing and flow cytometry techniques. We observed extensive, complex changes in the HIS during aging. Compared with young mice, the immune cells of aged mice showed a marked tendency toward myeloid differentiation, with the neutrophil population accounting for a significant proportion of this response. In this change, hypoxia-inducible factor 1-alpha (Hif1α) was significantly overexpressed, and this enhanced the immune efficacy and inflammatory response of neutrophils. Our research revealed that during the aging process, hematopoietic stem cells undergo significant changes in function and composition, and their polymorphism and differentiation abilities are downregulated. Moreover, we found that the highly responsive CD62L + HSCs were obviously downregulated in aging, suggesting that they may play an important role in the aging process. Overall, aging extensively alters the cellular composition and function of the HIS. These findings could potentially give high-dimensional insights and enable more accurate functional and developmental analyses as well as immune monitoring in HIS aging.
衰老是一种整体性变化,对免疫系统有重大影响,而免疫衰老则是衰老整体进展的一个重要因素。骨髓是最重要的造血免疫器官,而脾脏作为最重要的髓外造血免疫器官,与骨髓共同维持人体造血免疫系统(HIS)的平衡。然而,造血免疫系统在衰老过程中的整体变化尚未得到描述。在这里,我们利用单细胞测序和流式细胞仪技术描述了年轻和年老小鼠脾脏和骨髓的造血免疫图谱。我们观察到 HIS 在衰老过程中发生了广泛而复杂的变化。与年轻小鼠相比,衰老小鼠的免疫细胞表现出明显的髓系分化趋势,其中中性粒细胞群体在这一反应中占了很大比例。在这一变化中,缺氧诱导因子1-α(Hif1α)明显过度表达,这增强了中性粒细胞的免疫功效和炎症反应。我们的研究发现,在衰老过程中,造血干细胞的功能和组成会发生重大变化,其多态性和分化能力会被下调。此外,我们发现高反应性的 CD62L + 造血干细胞在衰老过程中明显下调,这表明它们可能在衰老过程中扮演重要角色。总之,衰老会广泛改变 HIS 的细胞组成和功能。这些发现有可能提供高维度的见解,并能对 HIS 的衰老过程进行更准确的功能和发育分析以及免疫监测。
{"title":"An aging-related immune landscape in the hematopoietic immune system","authors":"Jianjie Lv, Chun Zhang, Xiuxing Liu, Chenyang Gu, Yidan Liu, Yuehan Gao, Zhaohao Huang, Qi Jiang, Binyao Chen, Daquan He, Tianfu Wang, Zhuping Xu, Wenru Su","doi":"10.1186/s12979-023-00403-2","DOIUrl":"https://doi.org/10.1186/s12979-023-00403-2","url":null,"abstract":"Aging is a holistic change that has a major impact on the immune system, and immunosenescence contributes to the overall progression of aging. The bone marrow is the most important hematopoietic immune organ, while the spleen, as the most important extramedullary hematopoietic immune organ, maintains homeostasis of the human hematopoietic immune system (HIS) in cooperation with the bone marrow. However, the overall changes in the HIS during aging have not been described. Here, we describe a hematopoietic immune map of the spleen and bone marrow of young and old mice using single-cell sequencing and flow cytometry techniques. We observed extensive, complex changes in the HIS during aging. Compared with young mice, the immune cells of aged mice showed a marked tendency toward myeloid differentiation, with the neutrophil population accounting for a significant proportion of this response. In this change, hypoxia-inducible factor 1-alpha (Hif1α) was significantly overexpressed, and this enhanced the immune efficacy and inflammatory response of neutrophils. Our research revealed that during the aging process, hematopoietic stem cells undergo significant changes in function and composition, and their polymorphism and differentiation abilities are downregulated. Moreover, we found that the highly responsive CD62L + HSCs were obviously downregulated in aging, suggesting that they may play an important role in the aging process. Overall, aging extensively alters the cellular composition and function of the HIS. These findings could potentially give high-dimensional insights and enable more accurate functional and developmental analyses as well as immune monitoring in HIS aging.","PeriodicalId":51289,"journal":{"name":"Immunity & Ageing","volume":"26 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139078397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blood circulating bacterial DNA in hospitalized old COVID-19 patients 住院的 COVID-19 老年患者血液中的循环细菌 DNA
IF 7.9 2区 医学 Q1 GERIATRICS & GERONTOLOGY Pub Date : 2023-12-18 DOI: 10.1186/s12979-023-00401-4
Robertina Giacconi, Patrizia D’Aquila, Maurizio Cardelli, Francesco Piacenza, Elisa Pierpaoli, Giada Sena, Mirko Di Rosa, Anna Rita Bonfigli, Roberta Galeazzi, Antonio Cherubini, Massimiliano Fedecostante, Riccardo Sarzani, Chiara Di Pentima, Piero Giordano, Roberto Antonicelli, Fabrizia Lattanzio, Giuseppe Passarino, Mauro Provinciali, Dina Bellizzi
Coronavirus disease COVID-19 is a heterogeneous condition caused by SARS-CoV-2 infection. Generally, it is characterized by interstitial pneumonia that can lead to impaired gas-exchange, acute respiratory failure, and death, although a complex disorder of multi-organ dysfunction has also been described. The pathogenesis is complex, and a variable combination of factors has been described in critically ill patients. COVID-19 is a particular risk for older persons, particularly those with frailty and comorbidities. Blood bacterial DNA has been reported in both physiological and pathological conditions and has been associated with some haematological and laboratory parameters but, to date, no study has characterized it in hospitalized old COVID-19 patients The present study aimed to establish an association between blood bacterial DNA (BB-DNA) and clinical severity in old COVID-19 patients. BB-DNA levels were determined, by quantitative real-time PCRs targeting the 16S rRNA gene, in 149 hospitalized older patients (age range 65–99 years) with COVID-19. Clinical data, including symptoms and signs of infection, frailty status, and comorbidities, were assessed. BB-DNA was increased in deceased patients compared to discharged ones, and Cox regression analysis confirmed an association between BB-DNA and in-hospital mortality. Furthermore, BB-DNA was positively associated with the neutrophil count and negatively associated with plasma IFN-alpha. Additionally, BB-DNA was associated with diabetes. The association of BB-DNA with mortality, immune-inflammatory parameters and diabetes in hospitalized COVID-19 patients suggests its potential role as a biomarker of unfavourable outcomes of the disease, thus it could be proposed as a novel prognostic marker in the assessment of acute COVID-19 disease.
冠状病毒病 COVID-19 是由 SARS-CoV-2 感染引起的一种异质性疾病。一般来说,它以间质性肺炎为特征,可导致气体交换受损、急性呼吸衰竭和死亡,但也有多器官功能障碍的复杂疾病的描述。该病的发病机制十分复杂,在重症患者中,各种因素的组合也不尽相同。COVID-19 对老年人,尤其是体弱和合并症患者的风险特别大。本研究旨在确定血液细菌 DNA(BB-DNA)与老年 COVID-19 患者临床严重程度之间的关系。本研究通过针对 16S rRNA 基因的定量实时 PCR 检测了 149 名住院老年 COVID-19 患者(年龄在 65-99 岁之间)的 BB-DNA 水平。同时还评估了临床数据,包括感染症状和体征、虚弱状态和合并症。与出院患者相比,死亡患者的 BB-DNA 增加,Cox 回归分析证实 BB-DNA 与院内死亡率有关。此外,BB-DNA 与中性粒细胞计数呈正相关,与血浆 IFN-α 呈负相关。此外,BB-DNA 还与糖尿病有关。BB-DNA与COVID-19住院病人的死亡率、免疫炎症参数和糖尿病的关系表明,BB-DNA有可能成为该疾病不良后果的生物标志物,因此可将其作为评估急性COVID-19疾病的新型预后标志物。
{"title":"Blood circulating bacterial DNA in hospitalized old COVID-19 patients","authors":"Robertina Giacconi, Patrizia D’Aquila, Maurizio Cardelli, Francesco Piacenza, Elisa Pierpaoli, Giada Sena, Mirko Di Rosa, Anna Rita Bonfigli, Roberta Galeazzi, Antonio Cherubini, Massimiliano Fedecostante, Riccardo Sarzani, Chiara Di Pentima, Piero Giordano, Roberto Antonicelli, Fabrizia Lattanzio, Giuseppe Passarino, Mauro Provinciali, Dina Bellizzi","doi":"10.1186/s12979-023-00401-4","DOIUrl":"https://doi.org/10.1186/s12979-023-00401-4","url":null,"abstract":"Coronavirus disease COVID-19 is a heterogeneous condition caused by SARS-CoV-2 infection. Generally, it is characterized by interstitial pneumonia that can lead to impaired gas-exchange, acute respiratory failure, and death, although a complex disorder of multi-organ dysfunction has also been described. The pathogenesis is complex, and a variable combination of factors has been described in critically ill patients. COVID-19 is a particular risk for older persons, particularly those with frailty and comorbidities. Blood bacterial DNA has been reported in both physiological and pathological conditions and has been associated with some haematological and laboratory parameters but, to date, no study has characterized it in hospitalized old COVID-19 patients The present study aimed to establish an association between blood bacterial DNA (BB-DNA) and clinical severity in old COVID-19 patients. BB-DNA levels were determined, by quantitative real-time PCRs targeting the 16S rRNA gene, in 149 hospitalized older patients (age range 65–99 years) with COVID-19. Clinical data, including symptoms and signs of infection, frailty status, and comorbidities, were assessed. BB-DNA was increased in deceased patients compared to discharged ones, and Cox regression analysis confirmed an association between BB-DNA and in-hospital mortality. Furthermore, BB-DNA was positively associated with the neutrophil count and negatively associated with plasma IFN-alpha. Additionally, BB-DNA was associated with diabetes. The association of BB-DNA with mortality, immune-inflammatory parameters and diabetes in hospitalized COVID-19 patients suggests its potential role as a biomarker of unfavourable outcomes of the disease, thus it could be proposed as a novel prognostic marker in the assessment of acute COVID-19 disease.","PeriodicalId":51289,"journal":{"name":"Immunity & Ageing","volume":"93 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138716098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Immunity & Ageing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1