N. Dahanukar, R. Sundar, Duwaki Rangad, G. Proudlove, R. Raghavan
The world’s largest subterranean fish was discovered in 2019, and was tentatively identified as a troglomorphic form of the golden mahseer, Tor putitora. Detailed analyses of its morphometric and meristic data, and results from molecular analyses now reveal that it is a new species of the genus Neolissochilus, the sister taxon of Tor. We formally describe the new species as Neolissochilus pnar, honouring the tribal communities of East Jaintia hills in Meghalaya, Northeast India, from where it was discovered. Neolissochilus pnar possesses a number of characters unique among species of Neolissochilus, with the exception of the similarly subterranean N. subterraneus from Thailand. The unique characters that diagnose N. pnar from all epigean congeners comprise highly reduced eye size to complete absence of externally visible eyes, complete lack of pigmentation, long maxillary barbels, long pectoral-fin rays, and scalation pattern. Neolissochilus pnar is distinguished from the hypogean N. subterraneus, the type locality of which is a limestone cave ~2000 kms away in Central Thailand, by a lesser pre-pelvic length (47.8–49.4 vs. 50.5–55.3 %SL), a shorter caudal peduncle (16.1–16.8 vs. 17.8–23.7 %SL), and shorter dorsal fin (17.4–20.8 vs. 21.5–26.3 %SL). In addition, Neolissochilus pnar is also genetically and morphologically distinct from its close congeners with a raw genetic divergence of 1.1–2.7% in the COI gene with putative topotype of N. hexastichus and 2.1–2.6% with putative topotype of N. hexagonolepis.
{"title":"The world’s largest cave fish from Meghalaya, Northeast India, is a new species, Neolissochilus pnar (Cyprinidae, Torinae)","authors":"N. Dahanukar, R. Sundar, Duwaki Rangad, G. Proudlove, R. Raghavan","doi":"10.3897/vz.73.e101011","DOIUrl":"https://doi.org/10.3897/vz.73.e101011","url":null,"abstract":"The world’s largest subterranean fish was discovered in 2019, and was tentatively identified as a troglomorphic form of the golden mahseer, Tor putitora. Detailed analyses of its morphometric and meristic data, and results from molecular analyses now reveal that it is a new species of the genus Neolissochilus, the sister taxon of Tor. We formally describe the new species as Neolissochilus pnar, honouring the tribal communities of East Jaintia hills in Meghalaya, Northeast India, from where it was discovered. Neolissochilus pnar possesses a number of characters unique among species of Neolissochilus, with the exception of the similarly subterranean N. subterraneus from Thailand. The unique characters that diagnose N. pnar from all epigean congeners comprise highly reduced eye size to complete absence of externally visible eyes, complete lack of pigmentation, long maxillary barbels, long pectoral-fin rays, and scalation pattern. Neolissochilus pnar is distinguished from the hypogean N. subterraneus, the type locality of which is a limestone cave ~2000 kms away in Central Thailand, by a lesser pre-pelvic length (47.8–49.4 vs. 50.5–55.3 %SL), a shorter caudal peduncle (16.1–16.8 vs. 17.8–23.7 %SL), and shorter dorsal fin (17.4–20.8 vs. 21.5–26.3 %SL). In addition, Neolissochilus pnar is also genetically and morphologically distinct from its close congeners with a raw genetic divergence of 1.1–2.7% in the COI gene with putative topotype of N. hexastichus and 2.1–2.6% with putative topotype of N. hexagonolepis.","PeriodicalId":51290,"journal":{"name":"Vertebrate Zoology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44839540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The mountains of New Guinea are home to species-rich but poorly understood communities of stream or torrent-breeding pelodryadid treefrogs. Here we describe a new species of moderately sized torrent-breeding Litoria from the mountains of Papua Province, Indonesia. The new species is most similar to Litoria dorsivena but differs from that species in aspects of body size, skin texture and especially the shape of the snout. Based on recent collections, we also present new data on the distribution and colour in life of L. dorsivena. Both species show marked sexual size dimorphism when compared to most other pelodryadid treefrogs, and the colour pattern of the new species may also vary between males and females. The torrent-breeding treefrogs of New Guinea remain poorly known and, given declines of ecologically similar pelodryadids in Australia, should be a priority group for taxonomic research and population monitoring.
{"title":"A new species of torrent-breeding treefrog (Pelodryadidae: Litoria) from the mountains of Papua, Indonesia, with new records and observations of Litoria dorsivena (Tyler, 1968)","authors":"P. Oliver, D. Iskandar, S. Richards","doi":"10.3897/vz.73.e91111","DOIUrl":"https://doi.org/10.3897/vz.73.e91111","url":null,"abstract":"The mountains of New Guinea are home to species-rich but poorly understood communities of stream or torrent-breeding pelodryadid treefrogs. Here we describe a new species of moderately sized torrent-breeding Litoria from the mountains of Papua Province, Indonesia. The new species is most similar to Litoria dorsivena but differs from that species in aspects of body size, skin texture and especially the shape of the snout. Based on recent collections, we also present new data on the distribution and colour in life of L. dorsivena. Both species show marked sexual size dimorphism when compared to most other pelodryadid treefrogs, and the colour pattern of the new species may also vary between males and females. The torrent-breeding treefrogs of New Guinea remain poorly known and, given declines of ecologically similar pelodryadids in Australia, should be a priority group for taxonomic research and population monitoring.","PeriodicalId":51290,"journal":{"name":"Vertebrate Zoology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47457060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Yushchenko, Justin L. Lee, Hieu M Pham, P. Geissler, E. Syromyatnikova, N. Poyarkov Jr.
We investigated the taxonomic status of the recently described kukri snake Oligodon arenarius Vassilieva, 2015 and the morphologically similar Oligodon macrurus (Angel, 1927), two species endemic to the southern coast of Vietnam. Based on phylogenetic analyses using three mitochondrial genes (12S–16S rRNA, cytochrome b), we recovered O. arenarius and O. macrurus in a clade within the O. cyclurus-taeniatus species group, agreeing with previous intrageneric classifications. Genetic distances between O. arenarius and O. macrurus are extremely low (less than 0.5% based on 12S–16S) and render O. arenarius paraphyletic. All preserved specimens of O. arenarius and O. macrurus convey little to no differences in color pattern, hemipenial morphology and osteological features; the latter of which is based on three dimensional micro computer tomography (µCT) scans of one specimen per species. Contrasting these results, univariate and multivariate analyses revealed significant differences in relative tail length, and the number of ventral and subcaudal scales between both species. Although the molecular and morphological datasets present conflicting results, integrating the evidence leads us to synonymize O. arenarius with O. macrurus. We provide a formal redescription of O. macrurus, designate a neotype specimen to avoid future taxonomic confusion, and provide the first detailed osteological description of this species. Oligodon macrurus sensu stricto is endemic to coastal dunefields and adjacent forest habitats in southern Vietnam, where ongoing human development, tourism and road mortality pose significant threats to its conservation. Consequently, we suggest that O. macrurus should be listed as “Vulnerable” based on the assessment criteria of the International Union for Conservation of Nature (IUCN).
{"title":"The taxonomic status of the kukri snake Oligodon arenarius Vassilieva, 2015 with a redescription of Oligodon macrurus (Angel, 1927) (Squamata, Serpentes, Colubridae)","authors":"P. Yushchenko, Justin L. Lee, Hieu M Pham, P. Geissler, E. Syromyatnikova, N. Poyarkov Jr.","doi":"10.3897/vz.73.e96958","DOIUrl":"https://doi.org/10.3897/vz.73.e96958","url":null,"abstract":"We investigated the taxonomic status of the recently described kukri snake Oligodon arenarius Vassilieva, 2015 and the morphologically similar Oligodon macrurus (Angel, 1927), two species endemic to the southern coast of Vietnam. Based on phylogenetic analyses using three mitochondrial genes (12S–16S rRNA, cytochrome b), we recovered O. arenarius and O. macrurus in a clade within the O. cyclurus-taeniatus species group, agreeing with previous intrageneric classifications. Genetic distances between O. arenarius and O. macrurus are extremely low (less than 0.5% based on 12S–16S) and render O. arenarius paraphyletic. All preserved specimens of O. arenarius and O. macrurus convey little to no differences in color pattern, hemipenial morphology and osteological features; the latter of which is based on three dimensional micro computer tomography (µCT) scans of one specimen per species. Contrasting these results, univariate and multivariate analyses revealed significant differences in relative tail length, and the number of ventral and subcaudal scales between both species. Although the molecular and morphological datasets present conflicting results, integrating the evidence leads us to synonymize O. arenarius with O. macrurus. We provide a formal redescription of O. macrurus, designate a neotype specimen to avoid future taxonomic confusion, and provide the first detailed osteological description of this species. Oligodon macrurus sensu stricto is endemic to coastal dunefields and adjacent forest habitats in southern Vietnam, where ongoing human development, tourism and road mortality pose significant threats to its conservation. Consequently, we suggest that O. macrurus should be listed as “Vulnerable” based on the assessment criteria of the International Union for Conservation of Nature (IUCN).","PeriodicalId":51290,"journal":{"name":"Vertebrate Zoology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41591873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Raghavan, R. Sundar, C. Arjun, R. Britz, N. Dahanukar
The lateritic aquifers of the southern Indian state of Kerala harbour a unique assemblage of enigmatic stygobitic fishes which are encountered very rarely, only when they surface during the digging and cleaning of homestead wells. Here, we focus on one of the most unusual members of this group, the catfish Horaglanis, a genus of rarely-collected, tiny, blind, pigment less, and strictly aquifer-residing species. A six-year exploratory and citizen-science backed survey supported by molecular phylogenetic analysis reveals novel insights into the diversity, distribution and population structure of Horaglanis. The genus is characterized by high levels of intraspecific and interspecific genetic divergence, with phylogenetically distinct species recovered above a 7.0% genetic-distance threshold in the mitochondrial cytochrome oxidase subunit 1 gene. Contrasting with this deep genetic divergence, however, is a remarkable stasis in external morphology. We identify and describe a new cryptic species, Horaglanis populi, a lineage that is the sister group of all currently known species. All four species are represented by multiple haplotypes. Mismatch distribution reveals that populations have not experienced recent expansions.
{"title":"Evolution in the dark: Unexpected genetic diversity and morphological stasis in the blind, aquifer-dwelling catfish Horaglanis","authors":"R. Raghavan, R. Sundar, C. Arjun, R. Britz, N. Dahanukar","doi":"10.3897/vz.73.e98367","DOIUrl":"https://doi.org/10.3897/vz.73.e98367","url":null,"abstract":"The lateritic aquifers of the southern Indian state of Kerala harbour a unique assemblage of enigmatic stygobitic fishes which are encountered very rarely, only when they surface during the digging and cleaning of homestead wells. Here, we focus on one of the most unusual members of this group, the catfish Horaglanis, a genus of rarely-collected, tiny, blind, pigment less, and strictly aquifer-residing species. A six-year exploratory and citizen-science backed survey supported by molecular phylogenetic analysis reveals novel insights into the diversity, distribution and population structure of Horaglanis. The genus is characterized by high levels of intraspecific and interspecific genetic divergence, with phylogenetically distinct species recovered above a 7.0% genetic-distance threshold in the mitochondrial cytochrome oxidase subunit 1 gene. Contrasting with this deep genetic divergence, however, is a remarkable stasis in external morphology. We identify and describe a new cryptic species, Horaglanis populi, a lineage that is the sister group of all currently known species. All four species are represented by multiple haplotypes. Mismatch distribution reveals that populations have not experienced recent expansions.","PeriodicalId":51290,"journal":{"name":"Vertebrate Zoology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48774833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Yushchenko, Justin L. Lee, Thy Neang, Hun Seiha, Nguyen Van Tan, G. Vogel, N. Poyarkov Jr.
The ashy kukri snake Oligodon cinereus (Günther, 1864) is a widely distributed and morphologically variable species found throughout mainland Southeast Asia. In this paper, we re-assessed the taxonomic status of O. cinereus populations found in southern Indochina (southern Vietnam, Cambodia, and southern Laos), including the recently described Cat Tien kukri snake Oligodon cattienensisVassilieva et al., 2013, which was previously confused with this species. Phylogenetic analyses using mitochondrial DNA from the 12S–16S ribosomal subunit and cytochrome b gene revealed that O. cattienensis is embedded in a mixed clade containing samples of the subspecies O. cinereus pallidocinctus, which bears a dorsal color pattern with white crossbars and black edges. This clade forms a strongly supported sister group with a topotypic sample of O. cinereus cinereus, representing populations bearing a uniform dorsal color pattern and slight reticulate markings, however the genetic divergence between the two clades is very low. The morphological characters used to distinguish O. cattienensis from O. cinereus sensu lato broadly overlap and supposed differences in hemipenial morphology between the two taxa are due to outdated terminologies used to describe the organ. We relegate both O. cattienensis and O. cinereus pallidocinctus to the junior synonymy of O. cinereus and consider all color patterns of this species found near the type locality in Cambodia, southern Laos, and southern Vietnam to represent O. cinereus sensu stricto. Future integrative investigations across the range of O. cinereus sensu lato are needed to resolve the status of the remaining subspecies and synonyms associated with this taxon. Problems associated with hemipenial morphology and Oligodon systematics are also discussed.
灰白色kukri蛇Oligodon cinereus(Günther,1864)是一种分布广泛、形态多变的物种,分布于东南亚大陆。在本文中,我们重新评估了在中印南部(越南南部、柬埔寨和老挝南部)发现的O.cinereus种群的分类地位,包括最近描述的Cat Tien kukri蛇Oligodon cattienensis Vassilieva et al.,2013,其先前与该物种混淆。使用12S–16S核糖体亚基的线粒体DNA和细胞色素b基因进行的系统发育分析显示,O.cattienensis嵌入一个混合分支中,该分支包含苍白灰蝶亚种的样本,其背侧颜色图案为白色横杆和黑色边缘。该分支与灰蝶的拓扑型样本形成了一个强有力的姐妹群,代表了具有均匀背部颜色模式和轻微网状标记的种群,但两个分支之间的遗传差异非常低。用于区分O.cattienensis和O.cinereus sensu lato的形态特征广泛重叠,并且两个分类群之间半阴茎形态的假定差异是由于用于描述器官的过时术语造成的。我们将O.cattienensis和O.cinereus pallidocinctus都归为O.cinereuis的初级同义词,并考虑在柬埔寨、老挝南部和越南南部的模式区附近发现的该物种的所有颜色模式,以代表O.cinereussense stricto。未来需要对灰蝶进行综合调查,以确定与该分类单元相关的其余亚种和同义词的地位。还讨论了与半阴茎形态和寡足目系统学有关的问题。
{"title":"A taxonomic re-assessment of Oligodon cinereus (Günther, 1864) (Squamata, Serpentes, Colubridae) populations from southern Indochina","authors":"P. Yushchenko, Justin L. Lee, Thy Neang, Hun Seiha, Nguyen Van Tan, G. Vogel, N. Poyarkov Jr.","doi":"10.3897/vz.73.e91230","DOIUrl":"https://doi.org/10.3897/vz.73.e91230","url":null,"abstract":"The ashy kukri snake Oligodon cinereus (Günther, 1864) is a widely distributed and morphologically variable species found throughout mainland Southeast Asia. In this paper, we re-assessed the taxonomic status of O. cinereus populations found in southern Indochina (southern Vietnam, Cambodia, and southern Laos), including the recently described Cat Tien kukri snake Oligodon cattienensisVassilieva et al., 2013, which was previously confused with this species. Phylogenetic analyses using mitochondrial DNA from the 12S–16S ribosomal subunit and cytochrome b gene revealed that O. cattienensis is embedded in a mixed clade containing samples of the subspecies O. cinereus pallidocinctus, which bears a dorsal color pattern with white crossbars and black edges. This clade forms a strongly supported sister group with a topotypic sample of O. cinereus cinereus, representing populations bearing a uniform dorsal color pattern and slight reticulate markings, however the genetic divergence between the two clades is very low. The morphological characters used to distinguish O. cattienensis from O. cinereus sensu lato broadly overlap and supposed differences in hemipenial morphology between the two taxa are due to outdated terminologies used to describe the organ. We relegate both O. cattienensis and O. cinereus pallidocinctus to the junior synonymy of O. cinereus and consider all color patterns of this species found near the type locality in Cambodia, southern Laos, and southern Vietnam to represent O. cinereus sensu stricto. Future integrative investigations across the range of O. cinereus sensu lato are needed to resolve the status of the remaining subspecies and synonyms associated with this taxon. Problems associated with hemipenial morphology and Oligodon systematics are also discussed.","PeriodicalId":51290,"journal":{"name":"Vertebrate Zoology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48566459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We compare the ontogeny of the hyopalatine arch in representatives of the Otophysi to shed light on the homology of the so-called quadrate-metapterygoid fenestra, QMF. Described initially as a character of characiforms (tetras and allies), presence of a QMF has also been reported for cobitid loaches and a handful of cyprinids among cypriniforms, as well as for a few clupeoids. In characiforms the QMF is either already present as an opening in the palatoquadrate cartilage in the earliest developmental stages we studied, or it forms later in the cartilage by resorption of chondrocytes. Some characiforms may lack a QMF during all stages of development. In cobitids the so-called QMF develops after the bones have ossified and forms mainly by resorption of bone tissue of quadrate and metapterygoid. Previous reports of a QMF in cyprinids are erroneous and the opening in this area forms by spatial separation of the quadrate and metapterygoid from the symplectic and not by the formation of a fenestra in the palatoquadrate cartilage. We suggest referring to this type as a quadrate-metapterygoid gap, QMG. Presence of a QMF in the palatoquadrate cartilage is a putative synapomorphy of characiforms. Development of a QMF by bone resorption in the ossified palatoquadrate is a putative synapomorphy of Cobitidae. A QMG is variously present and developed to different degrees in opsariichthyine and danionine cyprinids. A QMF is also present in several clupeoids and deserves further study.
{"title":"The quadrate-metapterygoid fenestra of otophysan fishes, its development and homology","authors":"R. Britz, G. Mattox, K. Conway","doi":"10.3897/vz.73.e97922","DOIUrl":"https://doi.org/10.3897/vz.73.e97922","url":null,"abstract":"We compare the ontogeny of the hyopalatine arch in representatives of the Otophysi to shed light on the homology of the so-called quadrate-metapterygoid fenestra, QMF. Described initially as a character of characiforms (tetras and allies), presence of a QMF has also been reported for cobitid loaches and a handful of cyprinids among cypriniforms, as well as for a few clupeoids. In characiforms the QMF is either already present as an opening in the palatoquadrate cartilage in the earliest developmental stages we studied, or it forms later in the cartilage by resorption of chondrocytes. Some characiforms may lack a QMF during all stages of development. In cobitids the so-called QMF develops after the bones have ossified and forms mainly by resorption of bone tissue of quadrate and metapterygoid. Previous reports of a QMF in cyprinids are erroneous and the opening in this area forms by spatial separation of the quadrate and metapterygoid from the symplectic and not by the formation of a fenestra in the palatoquadrate cartilage. We suggest referring to this type as a quadrate-metapterygoid gap, QMG. Presence of a QMF in the palatoquadrate cartilage is a putative synapomorphy of characiforms. Development of a QMF by bone resorption in the ossified palatoquadrate is a putative synapomorphy of Cobitidae. A QMG is variously present and developed to different degrees in opsariichthyine and danionine cyprinids. A QMF is also present in several clupeoids and deserves further study.","PeriodicalId":51290,"journal":{"name":"Vertebrate Zoology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43476468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abraham Lozano, Jack W. Sites, Jr, A. Ramírez‐Bautista, Jonathon C. Marshall, N. Pavón, Raciel Cruz‐Elizalde
Sexual dimorphism is a widespread feature in the Animal Kingdom. In lizards of the Sceloporus grammicus complex, studies of sexual dimorphism that analyze the allometric trajectories of body traits remain unexplored. Here we investigate sexual dimorphism in key phenotypic traits, including body size (snout-vent length, SVL) as well as head length (HL), head width (HW), and forearm length (FL). We use an allometric approach to detect differences in scale relationships among body parts in the S. grammicus complex in Mexico. We focus on two chromosomal races within this complex, F5 (2n = 34) and FM2 (2n = 46). In the complex, we found that males are larger than females in all morphological variables, and this pattern was confirmed in both races. We determined negative allometric trajectories (SVLvs.HL and HW), isometry (SVLvs.FL) and intersexual differences in the slopes of the SVLvs.HL and HW; the males showed steeper slopes. Thus, the growth of the head is more pronounced in males than females. Additionally, we found between-race differences in these trajectories (SVLvs.FL) and in all morphological variables (F5 lizards are larger than those of the FM2 race), which correlate with their chromosomal divergence. We discuss biological implications of our findings in relation to sexual selection and natural selection.
{"title":"Allometric analysis of sexual dimorphism and morphological variation in two chromosome races of the Sceloporus grammicus complex (Squamata: Phrynosomatidae) from Mexico","authors":"Abraham Lozano, Jack W. Sites, Jr, A. Ramírez‐Bautista, Jonathon C. Marshall, N. Pavón, Raciel Cruz‐Elizalde","doi":"10.3897/vz.73.e94004","DOIUrl":"https://doi.org/10.3897/vz.73.e94004","url":null,"abstract":"Sexual dimorphism is a widespread feature in the Animal Kingdom. In lizards of the Sceloporus grammicus complex, studies of sexual dimorphism that analyze the allometric trajectories of body traits remain unexplored. Here we investigate sexual dimorphism in key phenotypic traits, including body size (snout-vent length, SVL) as well as head length (HL), head width (HW), and forearm length (FL). We use an allometric approach to detect differences in scale relationships among body parts in the S. grammicus complex in Mexico. We focus on two chromosomal races within this complex, F5 (2n = 34) and FM2 (2n = 46). In the complex, we found that males are larger than females in all morphological variables, and this pattern was confirmed in both races. We determined negative allometric trajectories (SVLvs.HL and HW), isometry (SVLvs.FL) and intersexual differences in the slopes of the SVLvs.HL and HW; the males showed steeper slopes. Thus, the growth of the head is more pronounced in males than females. Additionally, we found between-race differences in these trajectories (SVLvs.FL) and in all morphological variables (F5 lizards are larger than those of the FM2 race), which correlate with their chromosomal divergence. We discuss biological implications of our findings in relation to sexual selection and natural selection.","PeriodicalId":51290,"journal":{"name":"Vertebrate Zoology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49128012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Narayanan, Sandeep Das, Y. Anvar, F. Tillack, P. Mohapatra, D. Gower, K. Rajkumar, V. Deepak
Colour polymorphism has been previously reported in several colubrid snakes including Boiga spp. In this paper, we report colour variations within the poorly known southern Indian Boiga dightoni, provide the first molecular data for this species, from two localities (including the type locality) and compare them with data from other congeners. Additionally, we provide detailed dentition and hemipenis descriptions for B. dightoni. Molecular data for B. dightoni show very little difference (0.2–0.4% 16S; 0.9–1.2% cyt b) to the recently described Boiga whitakeri, also from southern India. We have re-examined and present new information on the pholidosis of the type specimens of B. whitakeri and reconsider its taxonomic status. On the basis of molecular data and overlapping morphological characteristics, we argue that Boiga whitakeri and Boiga dightoni are conspecific, and place B. whitakeri under the subjective synonymy of the latter. Furthermore, we show that colour polymorphism in B. dightoni is a gender-independent character and that both colour morphs are found in high as well as low elevations and partly in sympatry. A revised key to the Boiga ceylonensis complex is provided.
{"title":"On the taxonomic validity of Boiga whitakeri Ganesh et al., 2021 with new insights on Boiga dightoni (Boulenger, 1894) (Reptilia: Squamata: Colubridae)","authors":"S. Narayanan, Sandeep Das, Y. Anvar, F. Tillack, P. Mohapatra, D. Gower, K. Rajkumar, V. Deepak","doi":"10.3897/vz.73.e97002","DOIUrl":"https://doi.org/10.3897/vz.73.e97002","url":null,"abstract":"Colour polymorphism has been previously reported in several colubrid snakes including Boiga spp. In this paper, we report colour variations within the poorly known southern Indian Boiga dightoni, provide the first molecular data for this species, from two localities (including the type locality) and compare them with data from other congeners. Additionally, we provide detailed dentition and hemipenis descriptions for B. dightoni. Molecular data for B. dightoni show very little difference (0.2–0.4% 16S; 0.9–1.2% cyt b) to the recently described Boiga whitakeri, also from southern India. We have re-examined and present new information on the pholidosis of the type specimens of B. whitakeri and reconsider its taxonomic status. On the basis of molecular data and overlapping morphological characteristics, we argue that Boiga whitakeri and Boiga dightoni are conspecific, and place B. whitakeri under the subjective synonymy of the latter. Furthermore, we show that colour polymorphism in B. dightoni is a gender-independent character and that both colour morphs are found in high as well as low elevations and partly in sympatry. A revised key to the Boiga ceylonensis complex is provided.","PeriodicalId":51290,"journal":{"name":"Vertebrate Zoology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46421751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Novaes, Vinícius C. Cláudio, M. Díaz, D. E. Wilson, M. Weksler, R. Moratelli
Myotis is the most speciose genus of mammals in the world and recent taxonomic revisions have revealed an impressive diversity of species in South America. Even so, the phenotypic conservatism of some taxa makes taxonomic delimitation difficult. We perform a taxonomic review of Myotis from Argentina based on qualitative and quantitative morphological characters. Our results confirm the occurrence of 12 species (M. albescens, M. chiloensis, M. dinellii, M. izecksohni, M. keaysi, M. lavali, M. levis, M. nigricans, M. oxyotus, M. riparius, M. ruber, and M. cf. simus) and revealed an additional new species for the Yungas Forest. The new species is small to medium (forearm length ~ 35 mm) and can be distinguished from its congeners by a set of characters that includes forearm length, cranial measurements, discrete craniodental characters, and fur color. This review does not exhaust the need for new systematic studies with Argentinean Myotis, considering the possibility of occurrence of new species and the great morphological variation found for some complex taxa.
{"title":"Argentinean Myotis (Chiroptera, Vespertilionidae), including the description of a new species from the Yungas","authors":"R. Novaes, Vinícius C. Cláudio, M. Díaz, D. E. Wilson, M. Weksler, R. Moratelli","doi":"10.3897/vz.72.e90958","DOIUrl":"https://doi.org/10.3897/vz.72.e90958","url":null,"abstract":"Myotis is the most speciose genus of mammals in the world and recent taxonomic revisions have revealed an impressive diversity of species in South America. Even so, the phenotypic conservatism of some taxa makes taxonomic delimitation difficult. We perform a taxonomic review of Myotis from Argentina based on qualitative and quantitative morphological characters. Our results confirm the occurrence of 12 species (M. albescens, M. chiloensis, M. dinellii, M. izecksohni, M. keaysi, M. lavali, M. levis, M. nigricans, M. oxyotus, M. riparius, M. ruber, and M. cf. simus) and revealed an additional new species for the Yungas Forest. The new species is small to medium (forearm length ~ 35 mm) and can be distinguished from its congeners by a set of characters that includes forearm length, cranial measurements, discrete craniodental characters, and fur color. This review does not exhaust the need for new systematic studies with Argentinean Myotis, considering the possibility of occurrence of new species and the great morphological variation found for some complex taxa.","PeriodicalId":51290,"journal":{"name":"Vertebrate Zoology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41298879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
South Asian Cnemaspis are one of the most diverse clades of gekkonids in South Asia with their highest diversity in the Western Ghats and Sri Lanka. These geckos include only a few nocturnal species and are largely diurnal or cathemeral and restricted to relatively cool habitats. One of the prominently diurnal subgroups in South Asian Cnemaspis is the bangara clade, which includes six species distributed in southern India on the eastern slopes of the Western Ghats, the southern Eastern Ghats and Palghat Gap. In this paper, we describe five more species of the bangara clade from the Shevaroyan landscape, including three from Kollimalai and one each from Yercaud and Pachaimalai, all in Tamil Nadu. These new species show 4.6–19.7 % uncorrected sequence divergence on the mitochondrial ND2 gene from each other and known species of the bangara clade and are morphologically diagnosable in body size, the number of paravertebral tubercles between limb insertions, the number of dorsal tubercle rows, the number of ventral scale rows across the belly, the number of femoral and precloacal pores and poreless scales separating these series, and aspects of colouration. The discovery of these five new species adds to the growing discoveries of cool-adapted species in southern India outside the Western Ghats and highlights the role of sky-islands in diversification. The Shevaroyan landscape shows high levels of microendemism with eight species distributed in an area of < 2000 km2, and all these species restricted to much smaller areas of actual distribution. With an area of < 500 km2 respectively, the massif of Pachaimalai has a single endemic and the massifs of Yercaud and Kollimalai have three endemic Cnemaspis species each.
{"title":"A multitude of spots! Five new microendemic species of the Cnemaspis gracilis group (Squamata: Gekkonidae) from massifs in the Shevaroy landscape, Tamil Nadu, India","authors":"Ishan Agarwal, T. Thackeray, Akshay Khandekar","doi":"10.3897/vz.72.e94799","DOIUrl":"https://doi.org/10.3897/vz.72.e94799","url":null,"abstract":"South Asian Cnemaspis are one of the most diverse clades of gekkonids in South Asia with their highest diversity in the Western Ghats and Sri Lanka. These geckos include only a few nocturnal species and are largely diurnal or cathemeral and restricted to relatively cool habitats. One of the prominently diurnal subgroups in South Asian Cnemaspis is the bangara clade, which includes six species distributed in southern India on the eastern slopes of the Western Ghats, the southern Eastern Ghats and Palghat Gap. In this paper, we describe five more species of the bangara clade from the Shevaroyan landscape, including three from Kollimalai and one each from Yercaud and Pachaimalai, all in Tamil Nadu. These new species show 4.6–19.7 % uncorrected sequence divergence on the mitochondrial ND2 gene from each other and known species of the bangara clade and are morphologically diagnosable in body size, the number of paravertebral tubercles between limb insertions, the number of dorsal tubercle rows, the number of ventral scale rows across the belly, the number of femoral and precloacal pores and poreless scales separating these series, and aspects of colouration. The discovery of these five new species adds to the growing discoveries of cool-adapted species in southern India outside the Western Ghats and highlights the role of sky-islands in diversification. The Shevaroyan landscape shows high levels of microendemism with eight species distributed in an area of < 2000 km2, and all these species restricted to much smaller areas of actual distribution. With an area of < 500 km2 respectively, the massif of Pachaimalai has a single endemic and the massifs of Yercaud and Kollimalai have three endemic Cnemaspis species each.","PeriodicalId":51290,"journal":{"name":"Vertebrate Zoology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44063103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}