Pub Date : 2023-07-01DOI: 10.1007/s10506-023-09364-9
Francisco de Oliveira, Jose Maria Parente de Oliveira
Despite the public availability of legal documents, there is a need for finding specific information contained in them, such as paragraphs, clauses, items and so on. With such support, users could find more specific information than only finding whole legal documents. Some research efforts have been made in this area, but there is still a lot to be done to have legal information available more easily to be found. Thus, due to the large number of published legal documents and the high degree of connectivity, simple access to the document is not enough. It is necessary to recover the related legal framework for a specific need. In other words, the retrieval of the set of legal documents and their parts related to a specific subject is necessary. Therefore, in this work, we present a proposal of a RDF-based graph to represent and search parts of legal documents, as the output of a set of terms that represents the pursued legal information. Such a proposal is well-grounded on an ontological view, which makes possible to describe the general structure of a legal system and the structure of legal documents, providing this way the grounds for the implementation of the proposed RDF graph in terms of the meaning of their parts and relationships. We posed several queries to retrieve parts of legal documents related to sets of words and the results were significant.
{"title":"A RDF-based graph to representing and searching parts of legal documents","authors":"Francisco de Oliveira, Jose Maria Parente de Oliveira","doi":"10.1007/s10506-023-09364-9","DOIUrl":"10.1007/s10506-023-09364-9","url":null,"abstract":"<div><p>Despite the public availability of legal documents, there is a need for finding specific information contained in them, such as paragraphs, clauses, items and so on. With such support, users could find more specific information than only finding whole legal documents. Some research efforts have been made in this area, but there is still a lot to be done to have legal information available more easily to be found. Thus, due to the large number of published legal documents and the high degree of connectivity, simple access to the document is not enough. It is necessary to recover the related legal framework for a specific need. In other words, the retrieval of the set of legal documents and their parts related to a specific subject is necessary. Therefore, in this work, we present a proposal of a RDF-based graph to represent and search parts of legal documents, as the output of a set of terms that represents the pursued legal information. Such a proposal is well-grounded on an ontological view, which makes possible to describe the general structure of a legal system and the structure of legal documents, providing this way the grounds for the implementation of the proposed RDF graph in terms of the meaning of their parts and relationships. We posed several queries to retrieve parts of legal documents related to sets of words and the results were significant.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"32 3","pages":"667 - 695"},"PeriodicalIF":3.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42956866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-28DOI: 10.1007/s10506-023-09368-5
Iris Schepers, Masha Medvedeva, Michelle Bruijn, Martijn Wieling, Michel Vols
With the ever-growing accessibility of case law online, it has become challenging to manually identify case law relevant to one’s legal issue. In the Netherlands, the planned increase in the online publication of case law is expected to exacerbate this challenge. In this paper, we tried to predict whether court decisions are cited by other courts or not after being published, thus in a way distinguishing between more and less authoritative cases. This type of system may be used to process the large amounts of available data by filtering out large quantities of non-authoritative decisions, thus helping legal practitioners and scholars to find relevant decisions more easily, and drastically reducing the time spent on preparation and analysis. For the Dutch Supreme Court, the match between our prediction and the actual data was relatively strong (with a Matthews Correlation Coefficient of 0.60). Our results were less successful for the Council of State and the district courts (MCC scores of 0.26 and 0.17, relatively). We also attempted to identify the most informative characteristics of a decision. We found that a completely explainable model, consisting only of handcrafted metadata features, performs almost as well as a less well-explainable system based on all text of the decision.
{"title":"Predicting citations in Dutch case law with natural language processing","authors":"Iris Schepers, Masha Medvedeva, Michelle Bruijn, Martijn Wieling, Michel Vols","doi":"10.1007/s10506-023-09368-5","DOIUrl":"10.1007/s10506-023-09368-5","url":null,"abstract":"<div><p>With the ever-growing accessibility of case law online, it has become challenging to manually identify case law relevant to one’s legal issue. In the Netherlands, the planned increase in the online publication of case law is expected to exacerbate this challenge. In this paper, we tried to predict whether court decisions are cited by other courts or not after being published, thus in a way distinguishing between more and less authoritative cases. This type of system may be used to process the large amounts of available data by filtering out large quantities of non-authoritative decisions, thus helping legal practitioners and scholars to find relevant decisions more easily, and drastically reducing the time spent on preparation and analysis. For the Dutch Supreme Court, the match between our prediction and the actual data was relatively strong (with a Matthews Correlation Coefficient of 0.60). Our results were less successful for the Council of State and the district courts (MCC scores of 0.26 and 0.17, relatively). We also attempted to identify the most informative characteristics of a decision. We found that a completely explainable model, consisting only of handcrafted metadata features, performs almost as well as a less well-explainable system based on all text of the decision.\u0000</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"32 3","pages":"807 - 837"},"PeriodicalIF":3.1,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291598/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47866539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-27DOI: 10.1007/s10506-023-09369-4
Daniel Braun
Legal documents, like contracts or laws, are subject to interpretation. Different people can have different interpretations of the very same document. Large parts of judicial branches all over the world are concerned with settling disagreements that arise, in part, from these different interpretations. In this context, it only seems natural that during the annotation of legal machine learning data sets, disagreement, how to report it, and how to handle it should play an important role. This article presents an analysis of the current state-of-the-art in the annotation of legal machine learning data sets. The results of the analysis show that all of the analysed data sets remove all traces of disagreement, instead of trying to utilise the information that might be contained in conflicting annotations. Additionally, the publications introducing the data sets often do provide little information about the process that derives the “gold standard” from the initial annotations, often making it difficult to judge the reliability of the annotation process. Based on the state-of-the-art, the article provides easily implementable suggestions on how to improve the handling and reporting of disagreement in the annotation of legal machine learning data sets.
{"title":"I beg to differ: how disagreement is handled in the annotation of legal machine learning data sets","authors":"Daniel Braun","doi":"10.1007/s10506-023-09369-4","DOIUrl":"10.1007/s10506-023-09369-4","url":null,"abstract":"<div><p>Legal documents, like contracts or laws, are subject to interpretation. Different people can have different interpretations of the very same document. Large parts of judicial branches all over the world are concerned with settling disagreements that arise, in part, from these different interpretations. In this context, it only seems natural that during the annotation of legal machine learning data sets, disagreement, how to report it, and how to handle it should play an important role. This article presents an analysis of the current state-of-the-art in the annotation of legal machine learning data sets. The results of the analysis show that all of the analysed data sets remove all traces of disagreement, instead of trying to utilise the information that might be contained in conflicting annotations. Additionally, the publications introducing the data sets often do provide little information about the process that derives the “gold standard” from the initial annotations, often making it difficult to judge the reliability of the annotation process. Based on the state-of-the-art, the article provides easily implementable suggestions on how to improve the handling and reporting of disagreement in the annotation of legal machine learning data sets.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"32 3","pages":"839 - 862"},"PeriodicalIF":3.1,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10506-023-09369-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44532145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-23DOI: 10.1007/s10506-023-09361-y
Ivan Habernal, Daniel Faber, Nicola Recchia, Sebastian Bretthauer, Iryna Gurevych, Indra Spiecker genannt Döhmann, Christoph Burchard
Identifying, classifying, and analyzing arguments in legal discourse has been a prominent area of research since the inception of the argument mining field. However, there has been a major discrepancy between the way natural language processing (NLP) researchers model and annotate arguments in court decisions and the way legal experts understand and analyze legal argumentation. While computational approaches typically simplify arguments into generic premises and claims, arguments in legal research usually exhibit a rich typology that is important for gaining insights into the particular case and applications of law in general. We address this problem and make several substantial contributions to move the field forward. First, we design a new annotation scheme for legal arguments in proceedings of the European Court of Human Rights (ECHR) that is deeply rooted in the theory and practice of legal argumentation research. Second, we compile and annotate a large corpus of 373 court decisions (2.3M tokens and 15k annotated argument spans). Finally, we train an argument mining model that outperforms state-of-the-art models in the legal NLP domain and provide a thorough expert-based evaluation. All datasets and source codes are available under open lincenses at https://github.com/trusthlt/mining-legal-arguments.
{"title":"Mining legal arguments in court decisions","authors":"Ivan Habernal, Daniel Faber, Nicola Recchia, Sebastian Bretthauer, Iryna Gurevych, Indra Spiecker genannt Döhmann, Christoph Burchard","doi":"10.1007/s10506-023-09361-y","DOIUrl":"10.1007/s10506-023-09361-y","url":null,"abstract":"<div><p>Identifying, classifying, and analyzing arguments in legal discourse has been a prominent area of research since the inception of the argument mining field. However, there has been a major discrepancy between the way natural language processing (NLP) researchers model and annotate arguments in court decisions and the way legal experts understand and analyze legal argumentation. While computational approaches typically simplify arguments into generic premises and claims, arguments in legal research usually exhibit a rich typology that is important for gaining insights into the particular case and applications of law in general. We address this problem and make several substantial contributions to move the field forward. First, we design a new annotation scheme for legal arguments in proceedings of the European Court of Human Rights (ECHR) that is deeply rooted in the theory and practice of legal argumentation research. Second, we compile and annotate a large corpus of 373 court decisions (2.3M tokens and 15k annotated argument spans). Finally, we train an argument mining model that outperforms state-of-the-art models in the legal NLP domain and provide a thorough expert-based evaluation. All datasets and source codes are available under open lincenses at https://github.com/trusthlt/mining-legal-arguments.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"32 3","pages":"1 - 38"},"PeriodicalIF":3.1,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10506-023-09361-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76639492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-08DOI: 10.1007/s10506-023-09363-w
Martín O. Moguillansky, Diego C. Martinez, Luciano H. Tamargo, Antonino Rotolo
As lawmakers produce norms, the underlying normative system is affected showing the intrinsic dynamism of law. Through undertaken actions of legal change, the normative system is continuously modified. In a usual legislative practice, the time for an enacted legal provision to be in force may differ from that of its inclusion to the legal system, or from that in which it produces legal effects. Even more, some provisions can produce effects retroactively in time. In this article we study a simulation of such process through the formalisation of a temporalised logical framework upon which a novel belief revision model tackles the dynamic nature of law. Represented through intervals, the temporalisation of sentences allows differentiating the temporal parameters of norms. In addition, a proposed revision operator allows assessing change to the legal system by including a new temporalised literal while preserving the time-based consistency. This can be achieved either by pushing out conflictive pieces of pre-existing norms or through the modification of intervals in which such norms can be either in force, or produce effects. Finally, the construction of the temporalised revision operator is axiomatically characterised and its rational behavior proved through a corresponding representation theorem.
{"title":"An approach to temporalised legal revision through addition of literals","authors":"Martín O. Moguillansky, Diego C. Martinez, Luciano H. Tamargo, Antonino Rotolo","doi":"10.1007/s10506-023-09363-w","DOIUrl":"10.1007/s10506-023-09363-w","url":null,"abstract":"<div><p>As lawmakers produce norms, the underlying normative system is affected showing the intrinsic dynamism of law. Through undertaken actions of legal change, the normative system is continuously modified. In a usual legislative practice, the time for an enacted legal provision to be in force may differ from that of its inclusion to the legal system, or from that in which it produces legal effects. Even more, some provisions can produce effects retroactively in time. In this article we study a simulation of such process through the formalisation of a temporalised logical framework upon which a novel belief revision model tackles the dynamic nature of law. Represented through intervals, the temporalisation of sentences allows differentiating the temporal parameters of norms. In addition, a proposed revision operator allows assessing change to the legal system by including a new temporalised literal while preserving the time-based consistency. This can be achieved either by pushing out conflictive pieces of pre-existing norms or through the modification of intervals in which such norms can be either in force, or produce effects. Finally, the construction of the temporalised revision operator is axiomatically characterised and its rational behavior proved through a corresponding representation theorem.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"32 3","pages":"621 - 666"},"PeriodicalIF":3.1,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41942916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-03DOI: 10.1007/s10506-023-09350-1
Alice Witt, Anna Huggins, Guido Governatori, Joshua Buckley
This article proposes an innovative methodology for enhancing the technical validation, legal alignment and interdisciplinarity of attempts to encode legislation. In the context of an experiment that examines how different legally trained participants convert select provisions of the Australian Copyright Act 1968 (Cth) into machine-executable code, we find that a combination of manual and automated methods for coding validation, which focus on formal adherence to programming languages and conventions, can significantly increase the similarity of encoded rules between coders. Participants nonetheless encountered various interpretive difficulties, including syntactic ambiguity, and intra- and intertextuality, which necessitated legal evaluation, as distinct from and in addition to coding validation. Many of these difficulties can be resolved through what we call a process of ‘legal alignment’ that aims to enhance the congruence between encoded provisions and the true meaning of a statute as determined by the courts. However, some difficulties cannot be overcome in advance, such as factual indeterminacy. Given the inherently interdisciplinary nature of encoding legislation, we argue that it is desirable for ‘rules as code’ (‘RaC’) initiatives to have, at a minimum, legal subject matter, statutory interpretation and technical programming expertise. Overall, we contend that technical validation, legal alignment and interdisciplinary teamwork are integral to the success of attempts to encode legislation. While legal alignment processes will vary depending on jurisdictionally-specific principles and practices of statutory interpretation, the technical and interdisciplinary components of our methodology are transferable across regulatory contexts, bodies of law and Commonwealth and other jurisdictions.
{"title":"Encoding legislation: a methodology for enhancing technical validation, legal alignment and interdisciplinarity","authors":"Alice Witt, Anna Huggins, Guido Governatori, Joshua Buckley","doi":"10.1007/s10506-023-09350-1","DOIUrl":"10.1007/s10506-023-09350-1","url":null,"abstract":"<div><p>This article proposes an innovative methodology for enhancing the technical validation, legal alignment and interdisciplinarity of attempts to encode legislation. In the context of an experiment that examines how different legally trained participants convert select provisions of the Australian <i>Copyright Act </i><i>1968</i> (Cth) into machine-executable code, we find that a combination of manual and automated methods for coding validation, which focus on formal adherence to programming languages and conventions, can significantly increase the similarity of encoded rules between coders. Participants nonetheless encountered various interpretive difficulties, including syntactic ambiguity, and intra- and intertextuality, which necessitated legal evaluation, as distinct from and in addition to coding validation. Many of these difficulties can be resolved through what we call a process of ‘legal alignment’ that aims to enhance the congruence between encoded provisions and the true meaning of a statute as determined by the courts. However, some difficulties cannot be overcome in advance, such as factual indeterminacy. Given the inherently interdisciplinary nature of encoding legislation, we argue that it is desirable for ‘rules as code’ (‘RaC’) initiatives to have, at a minimum, legal subject matter, statutory interpretation and technical programming expertise. Overall, we contend that technical validation, legal alignment and interdisciplinary teamwork are integral to the success of attempts to encode legislation. While legal alignment processes will vary depending on jurisdictionally-specific principles and practices of statutory interpretation, the technical and interdisciplinary components of our methodology are transferable across regulatory contexts, bodies of law and Commonwealth and other jurisdictions.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"32 2","pages":"293 - 324"},"PeriodicalIF":3.1,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10506-023-09350-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47194421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-02DOI: 10.1007/s10506-023-09360-z
Livio Robaldo, Sotiris Batsakis, Roberta Calegari, Francesco Calimeri, Megumi Fujita, Guido Governatori, Maria Concetta Morelli, Francesco Pacenza, Giuseppe Pisano, Ken Satoh, Ilias Tachmazidis, Jessica Zangari
This paper analyses and compares some of the automated reasoners that have been used in recent research for compliance checking. Although the list of the considered reasoners is not exhaustive, we believe that our analysis is representative enough to take stock of the current state of the art in the topic. We are interested here in formalizations at the first-order level. Past literature on normative reasoning mostly focuses on the propositional level. However, the propositional level is of little usefulness for concrete LegalTech applications, in which compliance checking must be enforced on (large) sets of individuals. Furthermore, we are interested in technologies that are freely available and that can be further investigated and compared by the scientific community. In other words, this paper does not consider technologies only employed in industry and/or whose source code is non-accessible. This paper formalizes a selected use case in the considered reasoners and compares the implementations, also in terms of simulations with respect to shared synthetic datasets. The comparison will highlight that lot of further research still needs to be done to integrate the benefits featured by the different reasoners into a single standardized first-order framework, suitable for LegalTech applications. All source codes are freely available at https://github.com/liviorobaldo/compliancecheckers, together with instructions to locally reproduce the simulations.
{"title":"Compliance checking on first-order knowledge with conflicting and compensatory norms: a comparison among currently available technologies","authors":"Livio Robaldo, Sotiris Batsakis, Roberta Calegari, Francesco Calimeri, Megumi Fujita, Guido Governatori, Maria Concetta Morelli, Francesco Pacenza, Giuseppe Pisano, Ken Satoh, Ilias Tachmazidis, Jessica Zangari","doi":"10.1007/s10506-023-09360-z","DOIUrl":"10.1007/s10506-023-09360-z","url":null,"abstract":"<div><p>This paper analyses and compares some of the automated reasoners that have been used in recent research for compliance checking. Although the list of the considered reasoners is not exhaustive, we believe that our analysis is representative enough to take stock of the current state of the art in the topic. We are interested here in formalizations at the <i>first-order</i> level. Past literature on normative reasoning mostly focuses on the <i>propositional</i> level. However, the propositional level is of little usefulness for concrete LegalTech applications, in which compliance checking must be enforced on (large) sets of individuals. Furthermore, we are interested in technologies that are <i>freely available</i> and that can be further investigated and compared by the scientific community. In other words, this paper does not consider technologies only employed in industry and/or whose source code is non-accessible. This paper formalizes a selected use case in the considered reasoners and compares the implementations, also in terms of simulations with respect to shared synthetic datasets. The comparison will highlight that lot of further research still needs to be done to integrate the benefits featured by the different reasoners into a single standardized first-order framework, suitable for LegalTech applications. All source codes are freely available at https://github.com/liviorobaldo/compliancecheckers, together with instructions to locally reproduce the simulations.\u0000</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"32 2","pages":"505 - 555"},"PeriodicalIF":3.1,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10506-023-09360-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45255388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-30DOI: 10.1007/s10506-023-09362-x
Xiang Zhou, Qi Liu, Yiquan Wu, Qiangchao Chen, Kun Kuang
The interpretability of AI is just as important as its performance. In the LegalAI field, there have been efforts to enhance the interpretability of models, but a trade-off between interpretability and prediction accuracy remains inevitable. In this paper, we introduce a novel framework called LK-IB for compulsory measure prediction (CMP), one of the critical tasks in LegalAI. LK-IB leverages Legal Knowledge and combines an Interpretable model and a Black-box model to balance interpretability and prediction performance. Specifically, LK-IB involves three steps: (1) inputting cases into the first module, where first-order logic (FOL) rules are used to make predictions and output them directly if possible; (2) sending cases to the second module if FOL rules are not applicable, where a case distributor categorizes them as either “simple” or “complex“; and (3) sending simple cases to an interpretable model with strong interpretability and complex cases to a black-box model with outstanding performance. Experimental results demonstrate that the LK-IB framework provides more interpretable and accurate predictions than other state-of-the-art models. Given that the majority of cases in LegalAI are simple, the idea of model combination has significant potential for practical applications.
{"title":"LK-IB: a hybrid framework with legal knowledge injection for compulsory measure prediction","authors":"Xiang Zhou, Qi Liu, Yiquan Wu, Qiangchao Chen, Kun Kuang","doi":"10.1007/s10506-023-09362-x","DOIUrl":"10.1007/s10506-023-09362-x","url":null,"abstract":"<div><p>The interpretability of AI is just as important as its performance. In the LegalAI field, there have been efforts to enhance the interpretability of models, but a trade-off between interpretability and prediction accuracy remains inevitable. In this paper, we introduce a novel framework called LK-IB for compulsory measure prediction (CMP), one of the critical tasks in LegalAI. LK-IB leverages Legal Knowledge and combines an Interpretable model and a Black-box model to balance interpretability and prediction performance. Specifically, LK-IB involves three steps: (1) inputting cases into the first module, where first-order logic (FOL) rules are used to make predictions and output them directly if possible; (2) sending cases to the second module if FOL rules are not applicable, where a case distributor categorizes them as either “simple” or “complex“; and (3) sending simple cases to an interpretable model with strong interpretability and complex cases to a black-box model with outstanding performance. Experimental results demonstrate that the LK-IB framework provides more interpretable and accurate predictions than other state-of-the-art models. Given that the majority of cases in LegalAI are simple, the idea of model combination has significant potential for practical applications.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"32 3","pages":"595 - 620"},"PeriodicalIF":3.1,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135643558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-06DOI: 10.1007/s10506-023-09358-7
Benjamin M. Chen, Zhiyu Li, David Cai, Elliott Ash
Socialist courts are supposed to apply the law, not make it, and socialist legality denies judicial decisions any precedential status. In 2011, the Chinese Supreme People’s Court designated selected decisions as Guiding Cases to be referred to by all judges when adjudicating similar disputes. One decade on, the paucity of citations to Guiding Cases has been taken as demonstrating the incongruity of case-based adjudication and the socialist legal tradition. Citations are, however, an imperfect measure of influence. Reproduction of language uniquely traceable to Guiding Cases can also be evidence of their impact on judicial decision-making. We employ a local alignment tool to detect unattributed text reuse of Guiding Cases in local court decisions. Our findings suggest that Guiding Cases are more consequential than commonly assumed, thereby complicating prevailing narratives about the antagonism of socialist legality to case law.
{"title":"Detecting the influence of the Chinese guiding cases: a text reuse approach","authors":"Benjamin M. Chen, Zhiyu Li, David Cai, Elliott Ash","doi":"10.1007/s10506-023-09358-7","DOIUrl":"10.1007/s10506-023-09358-7","url":null,"abstract":"<div><p>Socialist courts are supposed to apply the law, not make it, and socialist legality denies judicial decisions any precedential status. In 2011, the Chinese Supreme People’s Court designated selected decisions as Guiding Cases to be referred to by all judges when adjudicating similar disputes. One decade on, the paucity of citations to Guiding Cases has been taken as demonstrating the incongruity of case-based adjudication and the socialist legal tradition. Citations are, however, an imperfect measure of influence. Reproduction of language uniquely traceable to Guiding Cases can also be evidence of their impact on judicial decision-making. We employ a local alignment tool to detect unattributed text reuse of Guiding Cases in local court decisions. Our findings suggest that Guiding Cases are more consequential than commonly assumed, thereby complicating prevailing narratives about the antagonism of socialist legality to case law.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"32 2","pages":"463 - 486"},"PeriodicalIF":3.1,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10506-023-09358-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136012335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-24DOI: 10.1007/s10506-023-09357-8
Axel Constant
Bayesian approaches to legal reasoning propose causal models of the relation between evidence, the credibility of evidence, and ultimate hypotheses, or verdicts. They assume that legal reasoning is the process whereby one infers the posterior probability of a verdict based on observed evidence, or facts. In practice, legal reasoning does not operate quite that way. Legal reasoning is also an attempt at inferring applicable rules derived from legal precedents or statutes based on the facts at hand. To make such an inference, legal reasoning follows syllogistic logic and first order transitivity. This paper proposes a Bayesian model of legal syllogistic reasoning that complements existing Bayesian models of legal reasoning using a Bayesian network whose variables correspond to legal precedents, statutes, and facts. We suggest that legal reasoning should be modelled as a process of finding the posterior probability of precedents and statutes based on available facts.
{"title":"A Bayesian model of legal syllogistic reasoning","authors":"Axel Constant","doi":"10.1007/s10506-023-09357-8","DOIUrl":"10.1007/s10506-023-09357-8","url":null,"abstract":"<div><p>Bayesian approaches to legal reasoning propose causal models of the relation between evidence, the credibility of evidence, and ultimate hypotheses, or verdicts. They assume that legal reasoning is the process whereby one infers the posterior probability of a verdict based on observed evidence, or facts. In practice, legal reasoning does not operate quite that way. Legal reasoning is also an attempt at inferring applicable rules derived from legal precedents or statutes based on the facts at hand. To make such an inference, legal reasoning follows syllogistic logic and first order transitivity. This paper proposes a Bayesian model of legal syllogistic reasoning that complements existing Bayesian models of legal reasoning using a Bayesian network whose variables correspond to legal precedents, statutes, and facts. We suggest that legal reasoning should be modelled as a process of finding the posterior probability of precedents and statutes based on available facts.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"32 2","pages":"441 - 462"},"PeriodicalIF":3.1,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11127888/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44641438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}