Background and objectives: Myoglobin released by rhabdomyolysis (RM) is considered to be involved in pathogenesis of kidney disease caused by crush injury, but whether high level of serum myoglobin predisposes patients to acute kidney injury (AKI) and its molecular mechanisms are still unclear in exertional heatstroke (EHS). We aimed to determine the association and potential mechanism of myoglobin and AKI, and further investigate the targeted therapeutic agents for myoglobinemia.
Methods: Serum myoglobin concentrations in patients with EHS were measured at admission, 24 h and 48 h after admission and discharge. The risk of AKI at 48 h was the primary outcome; the secondary outcome was composite outcome events with myoglobin levels and AKI at discharge and death at 90 days. In experimental studies, we further investigated the mechanisms of human kidney proximal tubular (HK-2) cells that were exposed to human myoglobin under heat stress conditions and the effect of baicalein.
Results: Our measurements showed that the highest myoglobin quartile (vs. the lowest) had an adjusted odds ratio (OR) of 18.95 (95% confidence interval [CI], 6.00-59.83) for AKI and that the OR (vs. quartile 2) was 7.92 (95% CI, 1.62-38.89) for the secondary outcome. The survival rate of HK-2 cells treated with myoglobin under heat stress was significantly decreased, and the production of Fe2+ and reactive oxygen species (ROS) was markedly increased, accompanied by changes in ferroptosis proteins, including increased p53, decreased SLC7A11 and GPX4, and alterations in endoplasmic reticulum stress (ERS) marker proteins. Treatment with baicalein attenuated HK-2 cell ferroptosis induced by myoglobin under heat stress through inhibition of ERS.
Conclusions: High myoglobin was associated with AKI in the EHS, and its mechanisms involved ERS-associated ferroptosis. Baicalein may be a potential therapeutic drug for the treatment of AKI in patients with high myoglobin induced by rhabdomyolysis following EHS.
To further improve clinical workers' Traditional Chinese Medicine (TCM) treatment level for headache attack, the TCM Guidelines for Acute Primary Headache has been developed based on the development methodology of the World Health Organization Standard Version guide. The grading of recommendations assessment, development and evaluation (GRADE) method was adopted for the development of evidence, evidence classification, and recommendations that can be systematically evaluated. For evidence lacking clinical research support, the quality of evidence was evaluated and recommended based on the evidence level standard of ancient books of traditional Chinese medicine, and The Appraisal of Guidelines for Research and Evaluation II (AGREE II) and The Reporting Items for Practice Guidelines in Healthcare (RIGHT) were referred to. This guideline plan mainly introduces the guideline formulation process of constructing clinical questions and selecting outcome indicators, evidence retrieval, generation of recommendations, etc.
Folate is a crucial nutrient that supports physiological functions. Low folate levels is a risk factor for several diseases, including cardiovascular diseases and neural tube defects. The most used folate supplement is folic acid, a synthetic oxidative form, and folic acid grain fortification is a success story of public health. However, the metabolic conversion of folic acid to bioactive tetrahydrofolate requires several enzymes and cofactors. Therefore, these factors influence its bioavailability and efficacy. In contrast, 5-methyltetrahydrofolate is used directly and participates in one-carbon metabolism, and the use of 5-methyltetrahydrofolate as an alternative folate supplement has increased. The metabolism of 5-methyltetrahydrofolate is primarily dependent on the transmembrane transporter, reduced folate carrier (RFC), and the RFC gene SLC19A1 variant is a functional polymorphism that affects folate status indexes. Recent studies demonstrated that the expression of RFC and cystathionine β-synthase, another enzyme required for homocysteine clearance, increases significantly by supplementation with calcitriol (vitamin D3), suggesting that calcitriol intake promotes the bioavailability of folate and has synergistic effects in homocysteine clearance. The advancements in biomedical and cohort studies and clinical trials have enhanced our understanding of the critical roles of folate and the regulation of one-carbon metabolism. We anticipate that the field of folate supplementation is poised to evolve from one size for all to personalized, precision, poly-paths (3Ps), which is a critical measure to meet individual needs, maximize health benefits, and minimize side effects.
Background and objectives: Overactivated glial cells, especially microglia, are core components in the progression of pathologic neuroinflammation, and the application of anti-inflammatory reagents has been regarded as a potential therapy in the management of infarction/reperfusion (I/R) brain injury. This research aims to clarify the anti-inflammatory efect of a novel lipophilic compound N-(2-[4-tert-butylphenyl]-2-[pyrrolidine-1-yl]ethyl)-7-methyl-4-oxo-4H-chromene-2-carboxamide (named CP-07 in this study) in LPS-stimulated BV2 cell line and primary mouse microglia, and its therapeutic effect on I/R brain injury.
Method: Cell Counting Kit-8 assay was used to determine the maximal nontoxic dose of CP-07. The mRNA levels of representative proinflammatory cytokines were determined by quantitative real-time polymerase chain reaction both in vitro and in vivo. TTC staining was performed to calculate infarct volumes while behavioral tests were used to assess the neurological deficits at 24 h after middle cerebral artery occlusion (MCAO). Flow cytometry analysis and immunofluorescence staining were performed to calculate the percentage of pro-inflammatory microglia in vivo.A selective JAK2/STAT3 pathway inhibitor, AG490 was used to block STAT3 phosphorylation before the CP-07 anti-inflammation tests in vitro.
Results: CP-07 could effectively suppress the mRNA levels of IL-6, IL-1β, iNOS and TNF-α induced by lipopolysaccharide (LPS) in vitro, and markedly block the evaluation of the fluorescence intensity of Iba-1 in primary mouse microglia. In middle cerebral arteryocclusion models, intraperitoneal injection with 1 mg/kg CP-07 significantly reduced cerebral infarct volumes at 24 h after surgery compared with vehicle treatment group, and promoted the recovery of neurological functions in MCAO mice. Further studies validated that CP-07 administration reduced the percentage of CD86 positive microglia after I/R injury, and the expression level of p-STAT3 was also markedly reduced in both microglial cells and the penumbra tissues. Blocking STAT3 phosphorylation with AG490 could completely eliminate the anti-inflammatory effects of CP-07, at least in vitro.
Conclusion: We showed that a newly synthesized compound, CP-07, could effectively reduce the inflammatory responses in LPS-stimulated BV2 cells and primary mouse microglia, and overproduction of cytokines in middle cerebral artery occlusion mouse models by inhibiting STAT3 phosphorylation, leading to a neuroprotective effect on I/R brain injury.
Background and objectives: Moderate-intensity continuous training (MICT) is used to observe lipidomic effects in adults. However, the efects of MICT on lipid metabolism in adolescents remain unclear. Therefore, we aimed to longitudinally characterize the lipid profile in adolescents during different periods of 6-week MICT.
Methods: Fifteen adolescents undertook bicycle training at 65% of maximal oxygen consumption. Plasma samples were collected at four time points (T0, T1, T2, and T3). Targeted lipidomics was assessed by ultra-performance liquid chromatography-tandem mass spectrometry to characterize the plasma lipid profiles of the participants to identify the lipids present at differing concentrations and changes in lipid species with time.
Results: MICT afected the plasma lipid profiles of the adolescents. The concentrations of diglycerides, phosphatidylinositol, lysophosphatidic acid, lysophosphatidylcholine, and lysophosphatidylethanolamine were increased at T1, decreased at T2, and increased again at T3. Fatty acids (FAs) showed an opposite trend. Ether-linked alkylphosphatidylcholine and triglycerides were significantly increased and remained high. Sphingolipid concentrations initially decreased and then remained low. Therefore, a single bout of exercise had substantial efects on lipid metabolism, but by T3, fewer lipid species were present at significantly diferent concentrations and the magnitudes of the remaining diferences were smaller than those at earlier times. Among all the changed lipids, only DG(14:1/18:1), HexCer(d18:1/22:1) and FA(22:0) showed no significant correlations with any other 51 lipids (P < 0.05). Glycerides and phospholipids showed positive correlations with each other (P < 0.05), but FAs were significantly negatively correlated with glycerides and phospholipids while positively with other FAs (P < 0.05). Pathway enrichment analysis showed that 50% of the metabolic pathways represented were related to lipid metabolism and lipid biosynthesis.
Conclusion: MICT increases ether-linked alkylphosphatidylcholine and triglyceride concentrations. Diglyceride, phosphatidylinositol, and lysophosphatidylcholine concentrations initially rise and then decrease 6 weeks after MICT, but FA concentrations show an opposite trend. These changes might correlate with lipid metabolism or biosynthesis pathways.