首页 > 最新文献

The ISME Journal最新文献

英文 中文
Trade-offs between receptor modification and fitness drive host-bacteriophage co-evolution leading to phage extinction or co-existence 受体修饰和适应性之间的权衡推动宿主-噬菌体共同进化,导致噬菌体灭绝或共存
Pub Date : 2024-10-23 DOI: 10.1093/ismejo/wrae214
Lin Chen, Xue Zhao, Shelyn Wongso, Zhuohui Lin, Siyun Wang
Parasite–host co-evolution results in population extinction or co-existence, yet the factors driving these distinct outcomes remain elusive. In this study, Salmonella strains were individually co-evolved with the lytic phage SF1 for 30 days, resulting in phage extinction or co-existence. We conducted a systematic investigation into the phenotypic and genetic dynamics of evolved host cells and phages to elucidate the evolutionary mechanisms. Throughout co-evolution, host cells displayed diverse phage resistance patterns: sensitivity, partial resistance, and complete resistance, to wild-type phage. Moreover, phage resistance strength showed a robust linear correlation with phage adsorption, suggesting that surface modification-mediated phage attachment predominates as the resistance mechanism in evolved bacterial populations. Additionally, bacterial isolates eliminating phages exhibited higher mutation rates and lower fitness costs in developing resistance compared to those leading to co-existence. Phage resistance genes were classified into two categories: key mutations, characterized by nonsense/frameshift mutations in rfaH-regulated rfb genes, leading to the removal of the receptor O-antigen; and secondary mutations, which involve less critical modifications, such as fimbrial synthesis and tRNA modification. The accumulation of secondary mutations resulted in partial and complete resistance, which could be overcome by evolved phages, whereas key mutations conferred undefeatable complete resistance by deleting receptors. In conclusion, higher key mutation frequencies with lower fitness costs promised strong resistance and eventual phage extinction, whereas deficiencies in fitness cost, mutation rate, and key mutation led to co-existence. Our findings reveal the distinct population dynamics and evolutionary trade-offs of phage resistance during co-evolution, thereby deepening our understanding of microbial interactions.
寄生虫-宿主共同进化会导致种群灭绝或共存,但驱动这些不同结果的因素仍然难以捉摸。在这项研究中,沙门氏菌菌株分别与溶菌噬菌体 SF1 共同进化 30 天,结果导致噬菌体灭绝或共存。我们对进化宿主细胞和噬菌体的表型和遗传动态进行了系统调查,以阐明进化机制。在整个共同进化过程中,宿主细胞表现出多种噬菌体抗性模式:对野生型噬菌体敏感、部分抗性和完全抗性。此外,噬菌体的抗性强度与噬菌体的吸附力呈稳健的线性关系,这表明表面修饰介导的噬菌体附着是进化细菌种群的主要抗性机制。此外,与导致共存的细菌相比,消除噬菌体的细菌分离物在产生抗性时表现出更高的突变率和更低的适应成本。噬菌体抗性基因分为两类:一类是关键突变,其特征是 rfaH 调控的 rfb 基因发生无义/帧移位突变,导致受体 O 抗原被移除;另一类是次要突变,涉及不那么关键的修饰,如流苏合成和 tRNA 修饰。次要突变的积累导致了部分和完全的抗性,这些抗性可以被进化的噬菌体克服,而关键突变则通过删除受体赋予了不可战胜的完全抗性。总之,较高的关键突变频率和较低的适合度成本保证了噬菌体的强抗性和最终的灭绝,而适合度成本、突变率和关键突变的不足则导致了共存。我们的发现揭示了共同进化过程中噬菌体抗性的不同种群动态和进化权衡,从而加深了我们对微生物相互作用的理解。
{"title":"Trade-offs between receptor modification and fitness drive host-bacteriophage co-evolution leading to phage extinction or co-existence","authors":"Lin Chen, Xue Zhao, Shelyn Wongso, Zhuohui Lin, Siyun Wang","doi":"10.1093/ismejo/wrae214","DOIUrl":"https://doi.org/10.1093/ismejo/wrae214","url":null,"abstract":"Parasite–host co-evolution results in population extinction or co-existence, yet the factors driving these distinct outcomes remain elusive. In this study, Salmonella strains were individually co-evolved with the lytic phage SF1 for 30 days, resulting in phage extinction or co-existence. We conducted a systematic investigation into the phenotypic and genetic dynamics of evolved host cells and phages to elucidate the evolutionary mechanisms. Throughout co-evolution, host cells displayed diverse phage resistance patterns: sensitivity, partial resistance, and complete resistance, to wild-type phage. Moreover, phage resistance strength showed a robust linear correlation with phage adsorption, suggesting that surface modification-mediated phage attachment predominates as the resistance mechanism in evolved bacterial populations. Additionally, bacterial isolates eliminating phages exhibited higher mutation rates and lower fitness costs in developing resistance compared to those leading to co-existence. Phage resistance genes were classified into two categories: key mutations, characterized by nonsense/frameshift mutations in rfaH-regulated rfb genes, leading to the removal of the receptor O-antigen; and secondary mutations, which involve less critical modifications, such as fimbrial synthesis and tRNA modification. The accumulation of secondary mutations resulted in partial and complete resistance, which could be overcome by evolved phages, whereas key mutations conferred undefeatable complete resistance by deleting receptors. In conclusion, higher key mutation frequencies with lower fitness costs promised strong resistance and eventual phage extinction, whereas deficiencies in fitness cost, mutation rate, and key mutation led to co-existence. Our findings reveal the distinct population dynamics and evolutionary trade-offs of phage resistance during co-evolution, thereby deepening our understanding of microbial interactions.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"211 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Marine N2-fixer Crocosphaera waterburyi 海洋固氮动物 Crocosphaera waterburyi
Pub Date : 2024-10-23 DOI: 10.1093/ismejo/wrae217
Catie S Cleveland, Kendra A Turk-Kubo, Yiming Zhao, Jonathan P Zehr, Eric A Webb
Marine N2-fixing cyanobacteria, including the unicellular genus Crocosphaera, are considered keystone species in marine food webs. Crocosphaera are globally distributed and provide new sources of nitrogen and carbon, which fuel oligotrophic microbial communities and upper trophic levels. Despite their ecosystem importance, only one pelagic, oligotrophic, phycoerythrin-rich species, Crocosphaera watsonii, has ever been identified and characterized as widespread. Herein, we present a new species, named Crocosphaera waterburyi, enriched from the North Pacific Ocean. C. waterburyi was found to be phenotypically and genotypically distinct from C. watsonii, active in situ, distributed globally, and preferred warmer temperatures in culture and the ocean. Additionally, C. waterburyi was detectable in 150- and 4000-meter sediment export traps, had a relatively larger biovolume than C. watsonii, and appeared to aggregate in the environment and laboratory culture. Therefore, it represents an additional, previously unknown link between atmospheric CO2 and N2 gas and deep ocean carbon and nitrogen export and sequestration.
海洋固氮蓝藻(包括单细胞蓝藻属)被认为是海洋食物网中的关键物种。Crocosphaera分布于全球,提供新的氮和碳源,为低营养微生物群落和上层营养级提供动力。尽管它们在生态系统中非常重要,但目前仅发现了一种富含藻红素的中上层低营养物种--Crocosphaera watsonii,并将其描述为广泛分布的物种。在此,我们介绍了一个来自北太平洋的新物种,名为 Crocosphaera waterburyi。研究发现,C. waterburyi 在表型和基因型上都与 C. watsonii 不同,它在原地活动,分布于全球各地,在养殖和海洋中喜欢较高的温度。此外,在 150 米和 4000 米的沉积物出口捕集器中可以检测到 C. waterburyi,它的生物体积比 C. watsonii 大,而且似乎在环境和实验室培养中聚集在一起。因此,它代表了大气中的二氧化碳和二氧化氮气体与深海碳和氮的输出和螯合之间的另一种以前未知的联系。
{"title":"Marine N2-fixer Crocosphaera waterburyi","authors":"Catie S Cleveland, Kendra A Turk-Kubo, Yiming Zhao, Jonathan P Zehr, Eric A Webb","doi":"10.1093/ismejo/wrae217","DOIUrl":"https://doi.org/10.1093/ismejo/wrae217","url":null,"abstract":"Marine N2-fixing cyanobacteria, including the unicellular genus Crocosphaera, are considered keystone species in marine food webs. Crocosphaera are globally distributed and provide new sources of nitrogen and carbon, which fuel oligotrophic microbial communities and upper trophic levels. Despite their ecosystem importance, only one pelagic, oligotrophic, phycoerythrin-rich species, Crocosphaera watsonii, has ever been identified and characterized as widespread. Herein, we present a new species, named Crocosphaera waterburyi, enriched from the North Pacific Ocean. C. waterburyi was found to be phenotypically and genotypically distinct from C. watsonii, active in situ, distributed globally, and preferred warmer temperatures in culture and the ocean. Additionally, C. waterburyi was detectable in 150- and 4000-meter sediment export traps, had a relatively larger biovolume than C. watsonii, and appeared to aggregate in the environment and laboratory culture. Therefore, it represents an additional, previously unknown link between atmospheric CO2 and N2 gas and deep ocean carbon and nitrogen export and sequestration.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Taeniasis impacts human gut microbiome composition and function 泰纳丝虫病影响人类肠道微生物组的组成和功能
Pub Date : 2024-10-23 DOI: 10.1093/ismejo/wrae213
Wenjie Mu, Pingping Ma, Yugui Wang, Yaqi Li, Yingying Ding, Yang Zou, Lixia Pu, Qi Yan, Haoyue Kong, Xiaola Guo, Aijiang Guo, Hailong Li, Shuai Wang
Human taeniasis, caused by Taenia tapeworms, is a global parasitic disease with significant implications for public health and food safety. These tapeworms can grow to considerable sizes and potentially impact the microecology of the host gut. Despite their importance, the effects of Taenia infection on host gut microbiota haven’t been thoroughly investigated. In this study, we conducted a cross-sectional analysis of the gut microbiome in patients infected with Taenia asiatica (n = 87) compared to healthy controls (n = 79) in the Dali cohort, China. We also performed a longitudinal assessment of microbial changes following deworming in a subset of patients (n = 24). Our findings reveal a significant shift in gut microbial composition, characterized by increased alpha-diversity and an enrichment of Prevotella-driven enterotypes in infected patients compared to healthy controls. The stability of these microbial features post-deworming varied widely among individuals and was lower in those with lower initial alpha diversity and Prevotella-enterotype before deworming. We observed a significant depletion of Bifidobacterium species in infected individuals, regardless of enterotypes, and these prebiotics did not recover post-deworming. Metabolic network analysis and in vitro experiments suggest that the reduction of Bifidobacterium was linked to metabolic competition for ecological niches or nutrients, particularly stachyose, from other microbes rather than the parasitism itself. Furthermore, our machine learning analysis demonstrated that taxa associated with Bifidobacterium in stachyose metabolism could robustly predict infection but could not predict deworming. This study highlights the substantial impact of taeniasis on the human gut microbiome and overall gut health.
由太安绦虫引起的人类太安虫病是一种全球性寄生虫病,对公共卫生和食品安全有重大影响。这些绦虫可以长到相当大的尺寸,并可能影响宿主肠道的微生态。尽管它们很重要,但人们还没有深入研究过疟原虫感染对宿主肠道微生物群的影响。在这项研究中,我们对中国大理队列中感染亚洲洮蛲的患者(87 人)与健康对照组(79 人)的肠道微生物组进行了横断面分析。我们还对一部分患者(24 人)驱虫后的微生物变化进行了纵向评估。我们的研究结果表明,与健康对照组相比,感染患者的肠道微生物组成发生了重大变化,其特点是α-多样性增加,前驱菌驱动的肠型富集。驱虫后这些微生物特征的稳定性在个体间差异很大,在驱虫前初始α-多样性和普雷沃氏菌肠型较低的个体中,其稳定性更低。我们观察到,无论肠道型如何,感染者体内的双歧杆菌都会大量减少,而这些益生菌在驱虫后并没有恢复。代谢网络分析和体外实验表明,双歧杆菌的减少与其他微生物对生态位或营养物质(尤其是水苏糖)的代谢竞争有关,而非寄生本身。此外,我们的机器学习分析表明,在水苏糖代谢过程中与双歧杆菌相关的类群可以稳健地预测感染情况,但不能预测驱虫情况。这项研究强调了泰尼丝虫病对人类肠道微生物组和整体肠道健康的重大影响。
{"title":"Taeniasis impacts human gut microbiome composition and function","authors":"Wenjie Mu, Pingping Ma, Yugui Wang, Yaqi Li, Yingying Ding, Yang Zou, Lixia Pu, Qi Yan, Haoyue Kong, Xiaola Guo, Aijiang Guo, Hailong Li, Shuai Wang","doi":"10.1093/ismejo/wrae213","DOIUrl":"https://doi.org/10.1093/ismejo/wrae213","url":null,"abstract":"Human taeniasis, caused by Taenia tapeworms, is a global parasitic disease with significant implications for public health and food safety. These tapeworms can grow to considerable sizes and potentially impact the microecology of the host gut. Despite their importance, the effects of Taenia infection on host gut microbiota haven’t been thoroughly investigated. In this study, we conducted a cross-sectional analysis of the gut microbiome in patients infected with Taenia asiatica (n = 87) compared to healthy controls (n = 79) in the Dali cohort, China. We also performed a longitudinal assessment of microbial changes following deworming in a subset of patients (n = 24). Our findings reveal a significant shift in gut microbial composition, characterized by increased alpha-diversity and an enrichment of Prevotella-driven enterotypes in infected patients compared to healthy controls. The stability of these microbial features post-deworming varied widely among individuals and was lower in those with lower initial alpha diversity and Prevotella-enterotype before deworming. We observed a significant depletion of Bifidobacterium species in infected individuals, regardless of enterotypes, and these prebiotics did not recover post-deworming. Metabolic network analysis and in vitro experiments suggest that the reduction of Bifidobacterium was linked to metabolic competition for ecological niches or nutrients, particularly stachyose, from other microbes rather than the parasitism itself. Furthermore, our machine learning analysis demonstrated that taxa associated with Bifidobacterium in stachyose metabolism could robustly predict infection but could not predict deworming. This study highlights the substantial impact of taeniasis on the human gut microbiome and overall gut health.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"235 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rhizobacterial syntrophy between a helper and a beneficiary promotes tomato plant health 帮助者和受益者之间的根瘤菌合成作用促进番茄植株健康
Pub Date : 2024-10-22 DOI: 10.1093/ismejo/wrae210
Sang-Moo Lee, Roniya Thapa Magar, Min Kyeong Jung, Hyun Gi Kong, Ju Yeon Song, Joo Hwan Kwon, Minseo Choi, Hyoung Ju Lee, Seung Yeup Lee, Raees Khan, Jihyun F Kim, Seon-Woo Lee
None declared.Conflicts of interestMicrobial interactions impact the functioning of microbial communities. However, microbial interactions within host-associated communities remains poorly understood. Here, we report that the beneficiary rhizobacterium Niallia sp. RD1 requires the helper Pseudomonas putida H3 for bacterial growth and beneficial interactions with the plant host. In the absence of the helper H3 strain, the Niallia sp. RD1 strain exhibited weak respiration and elongated cell morphology without forming bacterial colonies. A transposon mutant of H3 in a gene encoding succinate-semialdehyde dehydrogenase displayed much attenuated support of RD1 colony formation. Through subsequent addition of succinate to the media, we found that succinate serves as a public good that supports RD1 growth. Comparative genome analysis highlighted that RD1 lacked the gene for sufficient succinate, suggesting its evolution as a beneficiary of succinate biosynthesis. The syntrophic interaction between RD1 and H3 efficiently protected tomato plants from bacterial wilt and promoted the tomato growth. The addition of succinate to the medium restored complex II-dependent respiration in RD1 and facilitated the cultivation of various bacterial isolates from the rhizosphere. Taken together, we delineate energy auxotrophic beneficiaries ubiquitous in the microbial community, and these beneficiaries could benefit host plants with the aid of helpers in the rhizosphere.
无声明。利益冲突微生物之间的相互作用会影响微生物群落的功能。然而,人们对宿主相关群落内的微生物相互作用仍然知之甚少。在这里,我们报告了受益根瘤菌 Niallia sp. RD1 需要辅助菌 Pseudomonas putida H3 来促进细菌生长并与植物宿主进行有益的相互作用。在缺少辅助菌株 H3 的情况下,Niallia sp. RD1 菌株表现出微弱的呼吸作用和拉长的细胞形态,但不形成细菌菌落。编码琥珀酸-半醛脱氢酶基因的 H3 转座子突变体对 RD1 菌落形成的支持作用大大减弱。通过在培养基中添加琥珀酸,我们发现琥珀酸是支持 RD1 生长的公益物。基因组比较分析显示,RD1 缺乏足够的琥珀酸基因,这表明它是琥珀酸生物合成的受益者。RD1 和 H3 之间的合成互作有效地保护了番茄植株免受细菌枯萎病的侵害,并促进了番茄的生长。在培养基中添加琥珀酸可恢复 RD1 中依赖于复合体 II 的呼吸作用,并促进从根瘤中分离出的各种细菌的培养。综上所述,我们发现了微生物群落中无处不在的能量辅助营养受益者,这些受益者可以借助根瘤菌圈中的助手使寄主植物受益。
{"title":"Rhizobacterial syntrophy between a helper and a beneficiary promotes tomato plant health","authors":"Sang-Moo Lee, Roniya Thapa Magar, Min Kyeong Jung, Hyun Gi Kong, Ju Yeon Song, Joo Hwan Kwon, Minseo Choi, Hyoung Ju Lee, Seung Yeup Lee, Raees Khan, Jihyun F Kim, Seon-Woo Lee","doi":"10.1093/ismejo/wrae210","DOIUrl":"https://doi.org/10.1093/ismejo/wrae210","url":null,"abstract":"None declared.Conflicts of interestMicrobial interactions impact the functioning of microbial communities. However, microbial interactions within host-associated communities remains poorly understood. Here, we report that the beneficiary rhizobacterium Niallia sp. RD1 requires the helper Pseudomonas putida H3 for bacterial growth and beneficial interactions with the plant host. In the absence of the helper H3 strain, the Niallia sp. RD1 strain exhibited weak respiration and elongated cell morphology without forming bacterial colonies. A transposon mutant of H3 in a gene encoding succinate-semialdehyde dehydrogenase displayed much attenuated support of RD1 colony formation. Through subsequent addition of succinate to the media, we found that succinate serves as a public good that supports RD1 growth. Comparative genome analysis highlighted that RD1 lacked the gene for sufficient succinate, suggesting its evolution as a beneficiary of succinate biosynthesis. The syntrophic interaction between RD1 and H3 efficiently protected tomato plants from bacterial wilt and promoted the tomato growth. The addition of succinate to the medium restored complex II-dependent respiration in RD1 and facilitated the cultivation of various bacterial isolates from the rhizosphere. Taken together, we delineate energy auxotrophic beneficiaries ubiquitous in the microbial community, and these beneficiaries could benefit host plants with the aid of helpers in the rhizosphere.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prophages in Vibrio 弧菌中的噬菌体
Pub Date : 2024-10-17 DOI: 10.1093/ismejo/wrae202
Kerrin Steensen, Joana Séneca, Nina Bartlau, Xiaoqian A Yu, Fatima A Hussain, Martin F Polz
Although tailed bacteriophages (phages) of the class Caudoviricetes are thought to constitute the most abundant and ecologically relevant group of phages that can integrate their genome into the host chromosome, it is becoming increasingly clear that other prophages are widespread. Here, we show that prophages derived from filamentous and tailless phages with genome sizes below 16 kb make up the majority of prophages in marine bacteria of the genus Vibrio. To estimate prophage prevalence unaffected by database biases, we combined comparative genomics and chemical induction of 58 diverse Vibrio cyclitrophicus isolates, resulting in 107 well-curated prophages. Complemented with computationally predicted prophages, we obtained 1,158 prophages from 931 naturally co-existing strains of the family Vibrionaceae. Prophages resembling tailless and filamentous phages predominated, accounting for 80% of all prophages in V. cyclitrophicus and 60% across the Vibrionaceae. In our experimental model, prophages of all three viral realms actively replicated upon induction indicating their ability to transfer to new hosts. Indeed, prophages were rapidly gained and lost, as suggested by variable prophage content between closely related V. cyclitrophicus. Prophages related to filamentous and tailless phages were integrated into only three genomic locations and restored the function of their integration site. Despite their small size, they contained highly diverse accessory genes that may contribute to host fitness, such as phage defense systems. We propose that, like their well-studied tailed equivalent, tailless and filamentous temperate phages are active and highly abundant drivers of host ecology and evolution in marine Vibrio, which have been largely overlooked.
尽管人们认为有尾噬菌体(Caudoviricetes)类噬菌体构成了最丰富、与生态最相关的噬菌体群体,它们可以将基因组整合到宿主染色体中,但越来越清楚的是,其他噬菌体也广泛存在。在这里,我们发现基因组大小低于 16 kb 的丝状噬菌体和无尾噬菌体衍生出的噬菌体构成了弧菌属海洋细菌中噬菌体的主体。为了估算噬菌体的流行率而不受数据库偏差的影响,我们对 58 个不同的环养弧菌分离物进行了比较基因组学和化学诱导,得到了 107 个经过精心筛选的噬菌体。作为对计算预测噬菌体的补充,我们从 931 株自然共存的弧菌科菌株中获得了 1,158 个噬菌体。类似无尾噬菌体和丝状噬菌体的噬菌体占绝大多数,占环口噬菌体所有噬菌体的 80%,占整个弧菌科噬菌体的 60%。在我们的实验模型中,所有三种病毒领域的噬菌体在诱导后都会积极复制,这表明它们有能力转移到新的宿主身上。事实上,噬菌体的增殖和消失都很迅速,这一点从近缘的环养荚膜葡萄球菌之间不同的噬菌体含量可以看出。与丝状噬菌体和无尾噬菌体有关的噬菌体只整合到了三个基因组位置,并恢复了整合位点的功能。尽管噬菌体的体积很小,但它们含有高度多样化的附属基因,这些基因可能有助于宿主的健康,如噬菌体防御系统。我们认为,无尾噬菌体和丝状温带噬菌体就像研究得很透彻的有尾噬菌体一样,是海洋弧菌宿主生态学和进化的活跃和高度丰富的驱动因素,而这些因素在很大程度上被忽视了。
{"title":"Prophages in Vibrio","authors":"Kerrin Steensen, Joana Séneca, Nina Bartlau, Xiaoqian A Yu, Fatima A Hussain, Martin F Polz","doi":"10.1093/ismejo/wrae202","DOIUrl":"https://doi.org/10.1093/ismejo/wrae202","url":null,"abstract":"Although tailed bacteriophages (phages) of the class Caudoviricetes are thought to constitute the most abundant and ecologically relevant group of phages that can integrate their genome into the host chromosome, it is becoming increasingly clear that other prophages are widespread. Here, we show that prophages derived from filamentous and tailless phages with genome sizes below 16 kb make up the majority of prophages in marine bacteria of the genus Vibrio. To estimate prophage prevalence unaffected by database biases, we combined comparative genomics and chemical induction of 58 diverse Vibrio cyclitrophicus isolates, resulting in 107 well-curated prophages. Complemented with computationally predicted prophages, we obtained 1,158 prophages from 931 naturally co-existing strains of the family Vibrionaceae. Prophages resembling tailless and filamentous phages predominated, accounting for 80% of all prophages in V. cyclitrophicus and 60% across the Vibrionaceae. In our experimental model, prophages of all three viral realms actively replicated upon induction indicating their ability to transfer to new hosts. Indeed, prophages were rapidly gained and lost, as suggested by variable prophage content between closely related V. cyclitrophicus. Prophages related to filamentous and tailless phages were integrated into only three genomic locations and restored the function of their integration site. Despite their small size, they contained highly diverse accessory genes that may contribute to host fitness, such as phage defense systems. We propose that, like their well-studied tailed equivalent, tailless and filamentous temperate phages are active and highly abundant drivers of host ecology and evolution in marine Vibrio, which have been largely overlooked.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resource sharing of an infant gut microbiota synthetic community in combinations of human milk oligosaccharides 母乳低聚糖组合中婴儿肠道微生物群合成群落的资源共享
Pub Date : 2024-10-17 DOI: 10.1093/ismejo/wrae209
Athanasia Ioannou, Maryse D Berkhout, William T Scott, Bernadet Blijenberg, Sjef Boeren, Marko Mank, Jan Knol, Clara Belzer
Quickly after birth, the gut microbiota is shaped via species acquisition and resource pressure. Breastmilk, and more specifically, human milk oligosaccharides are a determining factor in the formation of microbial communities and the interactions between bacteria. Prominent human milk oligosaccharide degraders have been rigorously characterized, but it is not known how the gut microbiota is shaped as a complex community. Here, we designed BIG-Syc, a synthetic community of 13 strains from the gut of vaginally born, breastfed infants. BIG-Syc replicated key compositional, metabolic, and proteomic characteristics of the gut microbiota of infants. Upon fermentation of a 4 and 5 human milk oligosaccharide mix, BIG-Syc demonstrated different compositional and proteomic profiles, with Bifidobacterium infantis and Bifidobacterium bifidum suppressing one another. The mix of 5 human milk oligosaccharides resulted in a more diverse composition with dominance of B. bifidum, whereas that with 4 human milk oligosaccharides supported the dominance of B. infantis, in 4 of 6 replicates. Reintroduction of bifidobacteria to BIG-Syc led to their engraftment and establishment of their niche. Based on proteomics and genome-scale metabolic models, we reconstructed the carbon source utilization and metabolite and gas production per strain. BIG-Syc demonstrated teamwork as cross-feeders utilized simpler carbohydrates, organic acids, and gases released from human milk oligosaccharide degraders. Collectively, our results showed that human milk oligosaccharides prompt resource-sharing for their complete degradation while leading to a different compositional and functional profile in the community. At the same time, BIG-Syc proved to be an accurate model for the representation of intra-microbe interactions.
婴儿出生后,肠道微生物群很快就会通过物种获取和资源压力而形成。母乳,更具体地说,母乳低聚糖是微生物群落形成和细菌间相互作用的决定性因素。主要的母乳寡糖降解剂已被严格鉴定,但肠道微生物群如何形成一个复杂的群落尚不清楚。在这里,我们设计了 BIG-Syc,一个由 13 株阴道出生、母乳喂养婴儿肠道菌株组成的合成群落。BIG-Syc 复制了婴儿肠道微生物群的主要组成、代谢和蛋白质组特征。在发酵 4 种和 5 种母乳寡糖混合物时,BIG-Syc 表现出不同的组成和蛋白质组特征,婴儿双歧杆菌和双歧杆菌相互抑制。在 6 个重复中的 4 个中,5 种人乳低聚糖的混合物产生了更多样化的组成,双歧杆菌占主导地位,而 4 种人乳低聚糖的混合物则支持婴儿双歧杆菌占主导地位。在 BIG-Syc 中重新引入双歧杆菌可使它们接种并建立自己的生态位。基于蛋白质组学和基因组尺度代谢模型,我们重建了每个菌株对碳源的利用以及代谢物和气体的产生。BIG-Syc表现出了团队合作精神,交叉进食者利用了更简单的碳水化合物、有机酸和人乳寡糖降解剂释放的气体。总之,我们的研究结果表明,人乳寡糖促使资源共享,以实现完全降解,同时导致群落中不同的组成和功能特征。与此同时,BIG-Syc 被证明是一个准确的微生物内部相互作用模型。
{"title":"Resource sharing of an infant gut microbiota synthetic community in combinations of human milk oligosaccharides","authors":"Athanasia Ioannou, Maryse D Berkhout, William T Scott, Bernadet Blijenberg, Sjef Boeren, Marko Mank, Jan Knol, Clara Belzer","doi":"10.1093/ismejo/wrae209","DOIUrl":"https://doi.org/10.1093/ismejo/wrae209","url":null,"abstract":"Quickly after birth, the gut microbiota is shaped via species acquisition and resource pressure. Breastmilk, and more specifically, human milk oligosaccharides are a determining factor in the formation of microbial communities and the interactions between bacteria. Prominent human milk oligosaccharide degraders have been rigorously characterized, but it is not known how the gut microbiota is shaped as a complex community. Here, we designed BIG-Syc, a synthetic community of 13 strains from the gut of vaginally born, breastfed infants. BIG-Syc replicated key compositional, metabolic, and proteomic characteristics of the gut microbiota of infants. Upon fermentation of a 4 and 5 human milk oligosaccharide mix, BIG-Syc demonstrated different compositional and proteomic profiles, with Bifidobacterium infantis and Bifidobacterium bifidum suppressing one another. The mix of 5 human milk oligosaccharides resulted in a more diverse composition with dominance of B. bifidum, whereas that with 4 human milk oligosaccharides supported the dominance of B. infantis, in 4 of 6 replicates. Reintroduction of bifidobacteria to BIG-Syc led to their engraftment and establishment of their niche. Based on proteomics and genome-scale metabolic models, we reconstructed the carbon source utilization and metabolite and gas production per strain. BIG-Syc demonstrated teamwork as cross-feeders utilized simpler carbohydrates, organic acids, and gases released from human milk oligosaccharide degraders. Collectively, our results showed that human milk oligosaccharides prompt resource-sharing for their complete degradation while leading to a different compositional and functional profile in the community. At the same time, BIG-Syc proved to be an accurate model for the representation of intra-microbe interactions.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Algae-fungi symbioses and bacteria-fungi co-exclusion drive tree species-specific differences in canopy bark microbiomes 藻类-真菌共生和细菌-真菌共存驱动树冠树皮微生物群的树种特异性差异
Pub Date : 2024-10-17 DOI: 10.1093/ismejo/wrae206
Jule Freudenthal, Kenneth Dumack, Stefan Schaffer, Martin Schlegel, Michael Bonkowski
With over 3 trillion trees, forest ecosystems comprise nearly one-third of the terrestrial surface of the Earth. Very little attention has been given to the exploration of the above-ground plant microbiome of trees, its complex trophic interactions, and variations among tree species. To address this knowledge gap, we applied a primer-independent shotgun metatranscriptomic approach to assess the entire living canopy bark microbiome comprising prokaryotic and eukaryotic primary producers, decomposers, and various groups of consumers. With almost 1500 genera, we found a high microbial diversity on three tree species with distinct bark textures: oak (Quercus robur), linden (Tilia cordata), both with rough bark, and maple (Acer pseudoplatanus) with smooth bark. Core co-occurrence network analysis revealed a rich food web dominated by algal primary producers, and bacterial and fungal decomposers, sustaining a diverse community of consumers, including protists, microscopic metazoans and predatory bacteria. Whereas maple accommodated a depauperate microbiome, oak and linden accommodated a richer microbiome mainly differing in their relative community composition: Bacteria exhibited an increased dominance on linden, whereas co-occurring algae and fungi dominated on oak, highlighting the importance of algal-fungal lichen symbioses even at the microscopic scale. Further, due to bacteria-fungi co-exclusion, bacteria on bark are not the main beneficiaries of algae-derived carbon compounds as it is known from aquatic systems.
森林生态系统拥有超过 3 万亿棵树,占地球陆地表面的近三分之一。人们很少关注树木的地上植物微生物组、其复杂的营养相互作用以及不同树种之间的差异。为了填补这一知识空白,我们采用了一种与引物无关的枪式元转录组学方法来评估整个活树冠树皮微生物组,其中包括原核和真核初级生产者、分解者以及各类消费者。在近 1500 个菌属中,我们发现三种树皮质地不同的树种具有很高的微生物多样性:栎树(Quercus robur)和椴树(Tilia cordata)的树皮都很粗糙,而枫树(Acer pseudoplatanus)的树皮则很光滑。核心共现网络分析揭示了一个以藻类初级生产者、细菌和真菌分解者为主的丰富的食物网,维持着包括原生动物、微小元虫和捕食性细菌在内的多种消费者群落。枫树的微生物群落较为贫乏,而橡树和椴树的微生物群落较为丰富,这主要体现在它们的相对群落组成上:细菌在椴树上占主导地位,而共生的藻类和真菌在橡树上占主导地位,这突出表明了藻类-真菌地衣共生的重要性,即使在微观尺度上也是如此。此外,由于细菌与真菌共生,树皮上的细菌并不是藻类衍生碳化合物的主要受益者,这在水生系统中是众所周知的。
{"title":"Algae-fungi symbioses and bacteria-fungi co-exclusion drive tree species-specific differences in canopy bark microbiomes","authors":"Jule Freudenthal, Kenneth Dumack, Stefan Schaffer, Martin Schlegel, Michael Bonkowski","doi":"10.1093/ismejo/wrae206","DOIUrl":"https://doi.org/10.1093/ismejo/wrae206","url":null,"abstract":"With over 3 trillion trees, forest ecosystems comprise nearly one-third of the terrestrial surface of the Earth. Very little attention has been given to the exploration of the above-ground plant microbiome of trees, its complex trophic interactions, and variations among tree species. To address this knowledge gap, we applied a primer-independent shotgun metatranscriptomic approach to assess the entire living canopy bark microbiome comprising prokaryotic and eukaryotic primary producers, decomposers, and various groups of consumers. With almost 1500 genera, we found a high microbial diversity on three tree species with distinct bark textures: oak (Quercus robur), linden (Tilia cordata), both with rough bark, and maple (Acer pseudoplatanus) with smooth bark. Core co-occurrence network analysis revealed a rich food web dominated by algal primary producers, and bacterial and fungal decomposers, sustaining a diverse community of consumers, including protists, microscopic metazoans and predatory bacteria. Whereas maple accommodated a depauperate microbiome, oak and linden accommodated a richer microbiome mainly differing in their relative community composition: Bacteria exhibited an increased dominance on linden, whereas co-occurring algae and fungi dominated on oak, highlighting the importance of algal-fungal lichen symbioses even at the microscopic scale. Further, due to bacteria-fungi co-exclusion, bacteria on bark are not the main beneficiaries of algae-derived carbon compounds as it is known from aquatic systems.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"124 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrate-dependent antimony oxidase in an uncultured Symbiobacteriaceae member 一种未培养的共生杆菌科成员中的硝酸盐依赖性锑氧化酶
Pub Date : 2024-10-16 DOI: 10.1093/ismejo/wrae204
Liying Wang, Zhipeng Yin, Wei Yan, Jialong Hao, Fei Tian, Jianbo Shi
Autotrophic antimony (Sb) oxidation coupled to nitrate reduction plays an important role in the transformation and detoxification of Sb. However, the specific oxidase involved in this process has yet to be identified. Herein, we enriched the microbiota capable of nitrate-dependent Sb(III) oxidation and identified a new Sb(III) oxidase in an uncultured member of Symbiobacteriaceae. Incubation experiments demonstrated that nitrate-dependent Sb(III) oxidation occurred in the microcosm supplemented with Sb(III) and nitrate. Both the 16S rRNA gene and metagenomic analyses indicated that a species within Symbiobacteriaceae played a crucial role in this process. Furthermore, carbon-13 isotope labelling with carbon dioxide-fixing Rhodopseudomonas palustris in combination with nanoscale secondary ion mass spectrometry revealed that a newly characterized oxidase from the dimethylsulfoxide reductase family, designated as NaoABC, was responsible for autotrophic Sb(III) oxidation coupled with nitrate reduction. The NaoABC complex functions in conjunction with the nitrate reductase NarGHI, forming a redox loop that transfers electrons from Sb(III) to nitrate, thereby generating the energy necessary for autotrophic growth. This research offers new insights into the understanding of how microbes link Sb and nitrogen biogeochemical cycles in the environment.
锑(Sb)的自养氧化与硝酸盐还原相结合,在锑的转化和解毒过程中发挥着重要作用。然而,参与这一过程的特定氧化酶尚未确定。在此,我们丰富了能够进行硝酸盐依赖性 Sb(III)氧化的微生物群,并在一种未培养的共生杆菌科成员中鉴定出了一种新的 Sb(III)氧化酶。培养实验证明,在添加了 Sb(III)和硝酸盐的微生态环境中,发生了依赖硝酸盐的 Sb(III)氧化作用。16S rRNA 基因和元基因组分析表明,共生杆菌科中的一个物种在这一过程中发挥了关键作用。此外,用固定二氧化碳的淡水红假单胞菌(Rhodopseudomonas palustris)进行碳-13同位素标记,并结合纳米级二次离子质谱分析,发现一种新表征的二甲基亚砜还原酶家族的氧化酶(命名为 NaoABC)负责自养型 Sb(III)氧化和硝酸盐还原。NaoABC 复合物与硝酸盐还原酶 NarGHI 共同发挥作用,形成一个氧化还原回路,将电子从 Sb(III)转移到硝酸盐,从而产生自养生长所需的能量。这项研究为了解微生物如何将环境中的锑和氮的生物地球化学循环联系起来提供了新的视角。
{"title":"Nitrate-dependent antimony oxidase in an uncultured Symbiobacteriaceae member","authors":"Liying Wang, Zhipeng Yin, Wei Yan, Jialong Hao, Fei Tian, Jianbo Shi","doi":"10.1093/ismejo/wrae204","DOIUrl":"https://doi.org/10.1093/ismejo/wrae204","url":null,"abstract":"Autotrophic antimony (Sb) oxidation coupled to nitrate reduction plays an important role in the transformation and detoxification of Sb. However, the specific oxidase involved in this process has yet to be identified. Herein, we enriched the microbiota capable of nitrate-dependent Sb(III) oxidation and identified a new Sb(III) oxidase in an uncultured member of Symbiobacteriaceae. Incubation experiments demonstrated that nitrate-dependent Sb(III) oxidation occurred in the microcosm supplemented with Sb(III) and nitrate. Both the 16S rRNA gene and metagenomic analyses indicated that a species within Symbiobacteriaceae played a crucial role in this process. Furthermore, carbon-13 isotope labelling with carbon dioxide-fixing Rhodopseudomonas palustris in combination with nanoscale secondary ion mass spectrometry revealed that a newly characterized oxidase from the dimethylsulfoxide reductase family, designated as NaoABC, was responsible for autotrophic Sb(III) oxidation coupled with nitrate reduction. The NaoABC complex functions in conjunction with the nitrate reductase NarGHI, forming a redox loop that transfers electrons from Sb(III) to nitrate, thereby generating the energy necessary for autotrophic growth. This research offers new insights into the understanding of how microbes link Sb and nitrogen biogeochemical cycles in the environment.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activity of novel virus families infecting soil nitrifiers is concomitant with host niche differentiation 感染土壤硝化细菌的新型病毒家族的活性与宿主生态位分化同时存在
Pub Date : 2024-10-16 DOI: 10.1093/ismejo/wrae205
Sungeun Lee, Christina Hazard, Graeme W Nicol
Chemolithoautotrophic nitrifiers are model groups for linking phylogeny, evolution, and ecophysiology. Ammonia-oxidising bacteria (AOB) typically dominate the first step of ammonia oxidation at high ammonium supply rates, ammonia-oxidising archaea (AOA) and complete ammonia-oxidising Nitrospira (comammox) are often active at lower supply rates or during AOB inactivity, and nitrite-oxidising bacteria (NOB) complete canonical nitrification. Soil virus communities are dynamic but contributions to functional processes are largely undetermined. In addition, characterising viruses infecting hosts with low relative abundance, such as nitrifiers, may be constrained by vast viral diversity, partial genome recovery, and difficulties in host linkage. Here, we describe a targeted incubation study that aimed to determine whether growth of different nitrifier groups in soil is associated with active virus populations and if process-focussed analyses facilitate characterisation of high-quality virus genomes. dsDNA viruses infecting different nitrifier groups were enriched in situ via differential host inhibition. Growth of each nitrifier group was consistent with predicted inhibition profiles and concomitant with the abundance of their viruses. These included 61 high-quality/complete virus genomes 35-173 kb in length with minimal similarity to validated families. AOA viruses lacked ammonia monooxygenase sub-unit C (amoC) genes found in marine AOA viruses but some encoded AOA-specific multicopper oxidase type 1 (MCO1), previously implicated in copper acquisition, and suggesting a role in supporting energy metabolism of soil AOA. Findings demonstrate focussed incubation studies facilitate characterisation of active host-virus interactions associated with specific processes and viruses of soil AOA, AOB and NOB are dynamic and potentially influence nitrogen cycling processes.
化学自养型硝化细菌是将系统发育、进化和生态生理学联系起来的模式群。氨氧化细菌(AOB)通常在高氨供应率条件下主导氨氧化的第一步,氨氧化古细菌(AOA)和完全氨氧化硝化细菌(comammox)通常在较低供应率条件下或在氨氧化细菌不活跃时活跃,而亚硝酸盐氧化细菌(NOB)则完成典型的硝化作用。土壤病毒群落是动态的,但对功能过程的贡献在很大程度上尚未确定。此外,对感染相对丰度较低的宿主(如硝化细菌)的病毒进行鉴定,可能会受到病毒种类繁多、基因组部分恢复以及宿主联系困难等因素的制约。在此,我们介绍了一项有针对性的孵育研究,旨在确定土壤中不同硝化细菌群的生长是否与活跃的病毒种群有关,以及以过程为重点的分析是否有助于确定高质量病毒基因组的特征。各硝化细菌群的生长与预测的抑制曲线一致,并与其病毒的丰度相一致。这些病毒包括 61 个高质量/完整的病毒基因组,长度为 35-173 kb,与已验证的病毒家族相似度极低。AOA病毒缺乏海洋AOA病毒中的氨单氧酶亚单位C(amoC)基因,但有些病毒编码AOA特异性多铜氧化酶1型(MCO1),以前曾被认为与铜的获取有关,这表明AOA病毒在支持土壤AOA的能量代谢方面发挥作用。研究结果表明,集中孵育研究有助于确定与特定过程相关的宿主-病毒相互作用的特征,土壤 AOA、AOB 和 NOB 病毒是动态的,并可能影响氮循环过程。
{"title":"Activity of novel virus families infecting soil nitrifiers is concomitant with host niche differentiation","authors":"Sungeun Lee, Christina Hazard, Graeme W Nicol","doi":"10.1093/ismejo/wrae205","DOIUrl":"https://doi.org/10.1093/ismejo/wrae205","url":null,"abstract":"Chemolithoautotrophic nitrifiers are model groups for linking phylogeny, evolution, and ecophysiology. Ammonia-oxidising bacteria (AOB) typically dominate the first step of ammonia oxidation at high ammonium supply rates, ammonia-oxidising archaea (AOA) and complete ammonia-oxidising Nitrospira (comammox) are often active at lower supply rates or during AOB inactivity, and nitrite-oxidising bacteria (NOB) complete canonical nitrification. Soil virus communities are dynamic but contributions to functional processes are largely undetermined. In addition, characterising viruses infecting hosts with low relative abundance, such as nitrifiers, may be constrained by vast viral diversity, partial genome recovery, and difficulties in host linkage. Here, we describe a targeted incubation study that aimed to determine whether growth of different nitrifier groups in soil is associated with active virus populations and if process-focussed analyses facilitate characterisation of high-quality virus genomes. dsDNA viruses infecting different nitrifier groups were enriched in situ via differential host inhibition. Growth of each nitrifier group was consistent with predicted inhibition profiles and concomitant with the abundance of their viruses. These included 61 high-quality/complete virus genomes 35-173 kb in length with minimal similarity to validated families. AOA viruses lacked ammonia monooxygenase sub-unit C (amoC) genes found in marine AOA viruses but some encoded AOA-specific multicopper oxidase type 1 (MCO1), previously implicated in copper acquisition, and suggesting a role in supporting energy metabolism of soil AOA. Findings demonstrate focussed incubation studies facilitate characterisation of active host-virus interactions associated with specific processes and viruses of soil AOA, AOB and NOB are dynamic and potentially influence nitrogen cycling processes.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut microbiota carbon and sulfur metabolisms support Salmonella infections. 肠道微生物群碳和硫代谢支持沙门氏菌感染。
Pub Date : 2024-10-15 DOI: 10.1093/ismejo/wrae187
Ikaia Leleiwi,Katherine Kokkinias,Yongseok Kim,Maryam Baniasad,Michael Shaffer,Anice Sabag-Daigle,Rebecca A Daly,Rory M Flynn,Vicki H Wysocki,Brian M M Ahmer,Mikayla A Borton,Kelly C Wrighton
Salmonella enterica serovar Typhimurium is a pervasive enteric pathogen and ongoing global threat to public health. Ecological studies in the Salmonella impacted gut remain underrepresented in the literature, discounting microbiome mediated interactions that may inform Salmonella physiology during colonization and infection. To understand the microbial ecology of Salmonella remodeling of the gut microbiome, we performed multi-omics on fecal microbial communities from untreated and Salmonella-infected mice. Reconstructed genomes recruited metatranscriptomic and metabolomic data providing a strain-resolved view of the expressed metabolisms of the microbiome during Salmonella infection. These data informed possible Salmonella interactions with members of the gut microbiome that were previously uncharacterized. Salmonella-induced inflammation significantly reduced the diversity of genomes that recruited transcripts in the gut microbiome, yet increased transcript mapping was observed for 7 members, among which Luxibacter and Ligilactobacillus transcript read recruitment was most prevalent. Metatranscriptomic insights from Salmonella and other persistent taxa in the inflamed microbiome further expounded the necessity for oxidative tolerance mechanisms to endure the host inflammatory responses to infection. In the inflamed gut lactate was a key metabolite, with microbiota production and consumption reported amongst members with detected transcript recruitment. We also showed that organic sulfur sources could be converted by gut microbiota to yield inorganic sulfur pools that become oxidized in the inflamed gut, resulting in thiosulfate and tetrathionate that supports Salmonella respiration. This research advances physiological microbiome insights beyond prior amplicon-based approaches, with the transcriptionally active organismal and metabolic pathways outlined here offering intriguing intervention targets in the Salmonella-infected intestine.
伤寒沙门氏菌(Salmonella enterica serovar Typhimurium)是一种普遍存在的肠道病原体,对全球公共卫生构成持续威胁。受沙门氏菌影响的肠道生态学研究在文献中的代表性仍然不足,忽略了微生物组介导的相互作用,而这种相互作用可能为沙门氏菌在定植和感染期间的生理学提供信息。为了了解沙门氏菌重塑肠道微生物组的微生物生态学,我们对未经处理的小鼠和沙门氏菌感染小鼠的粪便微生物群落进行了多组学研究。重建的基因组招募了元转录组和代谢组数据,提供了沙门氏菌感染期间微生物组表达代谢的菌株分辨视图。这些数据揭示了沙门氏菌与以前未定性的肠道微生物群成员之间可能存在的相互作用。沙门氏菌诱导的炎症大大降低了肠道微生物组招募转录本的基因组多样性,但观察到 7 个成员的转录本映射增加,其中卢克氏菌和半乳杆菌的转录本读取招募最为普遍。沙门氏菌和发炎微生物群中其他持久性类群的元转录组学研究进一步说明了氧化耐受机制对于维持宿主对感染的炎症反应的必要性。在发炎的肠道中,乳酸是一种关键的代谢产物,据报道,在检测到转录本招募的微生物群成员中,乳酸的产生和消耗量都很大。我们还发现,有机硫源可被肠道微生物群转化为无机硫池,这些无机硫池在发炎的肠道中被氧化,产生硫代硫酸盐和四硫酸盐,支持沙门氏菌的呼吸作用。这项研究推动了对生理微生物组的深入了解,超越了之前基于扩增子的方法,其中概述的转录活跃的生物体和代谢途径为沙门氏菌感染的肠道提供了令人感兴趣的干预目标。
{"title":"Gut microbiota carbon and sulfur metabolisms support Salmonella infections.","authors":"Ikaia Leleiwi,Katherine Kokkinias,Yongseok Kim,Maryam Baniasad,Michael Shaffer,Anice Sabag-Daigle,Rebecca A Daly,Rory M Flynn,Vicki H Wysocki,Brian M M Ahmer,Mikayla A Borton,Kelly C Wrighton","doi":"10.1093/ismejo/wrae187","DOIUrl":"https://doi.org/10.1093/ismejo/wrae187","url":null,"abstract":"Salmonella enterica serovar Typhimurium is a pervasive enteric pathogen and ongoing global threat to public health. Ecological studies in the Salmonella impacted gut remain underrepresented in the literature, discounting microbiome mediated interactions that may inform Salmonella physiology during colonization and infection. To understand the microbial ecology of Salmonella remodeling of the gut microbiome, we performed multi-omics on fecal microbial communities from untreated and Salmonella-infected mice. Reconstructed genomes recruited metatranscriptomic and metabolomic data providing a strain-resolved view of the expressed metabolisms of the microbiome during Salmonella infection. These data informed possible Salmonella interactions with members of the gut microbiome that were previously uncharacterized. Salmonella-induced inflammation significantly reduced the diversity of genomes that recruited transcripts in the gut microbiome, yet increased transcript mapping was observed for 7 members, among which Luxibacter and Ligilactobacillus transcript read recruitment was most prevalent. Metatranscriptomic insights from Salmonella and other persistent taxa in the inflamed microbiome further expounded the necessity for oxidative tolerance mechanisms to endure the host inflammatory responses to infection. In the inflamed gut lactate was a key metabolite, with microbiota production and consumption reported amongst members with detected transcript recruitment. We also showed that organic sulfur sources could be converted by gut microbiota to yield inorganic sulfur pools that become oxidized in the inflamed gut, resulting in thiosulfate and tetrathionate that supports Salmonella respiration. This research advances physiological microbiome insights beyond prior amplicon-based approaches, with the transcriptionally active organismal and metabolic pathways outlined here offering intriguing intervention targets in the Salmonella-infected intestine.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"193 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The ISME Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1