首页 > 最新文献

International Journal of Mathematical, Engineering and Management Sciences最新文献

英文 中文
Statistically Significant Duration-Independent-based Noise-Robust Speaker Verification 基于统计意义的与持续时间无关的鲁棒噪声扬声器验证
Pub Date : 2024-02-01 DOI: 10.33889/ijmems.2024.9.1.008
Asmita Nirmal, Deepak Jayaswal, P. Kachare
A speaker verification system models individual speakers using different speech features to improve their robustness. However, redundant features degrade the system's performance. This paper presents Statistically Significant Duration-Independent Mel frequency Cepstral Coefficients (SSDI-MFCC) features with the Extreme Gradient Boost classifier for improving the noise-robustness of speaker models. Eight statistical descriptors are used to generate signal duration-independent features, and a statistically significant feature subset is obtained using a t-test. A redeveloped Librispeech database by adding noises from the AURORA database to simulate real-world test conditions for speaker verification is used for evaluation. The SSDI-MFCC is compared with Principal Component Analysis (PCA) and Genetic Algorithm (GA). The comparative results showed average equal error rate improvements by 4.93 % and 3.48 % with the SSDI-MFCC than GA-MFCC and PCA-MFCC in clean and noisy conditions, respectively. A significant reduction in verification time is observed using SSDI-MFCC than the complete feature set.
扬声器验证系统使用不同的语音特征对单个扬声器进行建模,以提高其鲁棒性。然而,冗余特征会降低系统的性能。本文提出了统计意义上与持续时间无关的梅尔频率倒频谱系数(SSDI-MFCC)特征和极梯度提升分类器,以提高说话人模型的噪声稳健性。八种统计描述符用于生成与信号持续时间无关的特征,并通过 t 检验获得具有统计意义的特征子集。评估中使用了重新开发的 Librispeech 数据库,其中添加了 AURORA 数据库中的噪声,以模拟真实世界的测试条件,用于验证说话者。SSDI-MFCC 与主成分分析法(PCA)和遗传算法(GA)进行了比较。比较结果表明,在干净和有噪声的条件下,SSDI-MFCC 比 GA-MFCC 和 PCA-MFCC 的平均相等错误率分别提高了 4.93 % 和 3.48 %。与完整的特征集相比,使用 SSDI-MFCC 的验证时间大大缩短。
{"title":"Statistically Significant Duration-Independent-based Noise-Robust Speaker Verification","authors":"Asmita Nirmal, Deepak Jayaswal, P. Kachare","doi":"10.33889/ijmems.2024.9.1.008","DOIUrl":"https://doi.org/10.33889/ijmems.2024.9.1.008","url":null,"abstract":"A speaker verification system models individual speakers using different speech features to improve their robustness. However, redundant features degrade the system's performance. This paper presents Statistically Significant Duration-Independent Mel frequency Cepstral Coefficients (SSDI-MFCC) features with the Extreme Gradient Boost classifier for improving the noise-robustness of speaker models. Eight statistical descriptors are used to generate signal duration-independent features, and a statistically significant feature subset is obtained using a t-test. A redeveloped Librispeech database by adding noises from the AURORA database to simulate real-world test conditions for speaker verification is used for evaluation. The SSDI-MFCC is compared with Principal Component Analysis (PCA) and Genetic Algorithm (GA). The comparative results showed average equal error rate improvements by 4.93 % and 3.48 % with the SSDI-MFCC than GA-MFCC and PCA-MFCC in clean and noisy conditions, respectively. A significant reduction in verification time is observed using SSDI-MFCC than the complete feature set.","PeriodicalId":517298,"journal":{"name":"International Journal of Mathematical, Engineering and Management Sciences","volume":"105 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139897671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance Assessment of Metaheuristic Algorithms: Firefly, Grey Wolf, and Moth Flame in Coal Pyrolysis Kinetic Parameter Estimation 元启发式算法的性能评估:煤热解动力学参数估计中的萤火虫算法、灰狼算法和飞蛾火焰算法
Pub Date : 2024-02-01 DOI: 10.33889/ijmems.2024.9.1.002
Vishnu Uppalakkal, Venkatesh Ambati, Rajesh Nair
This study investigates the effectiveness of the Firefly Optimizer (FFA), Grey Wolf Optimizer (GWO), and Moth Flame Optimizer (MFO) metaheuristic algorithms in estimating the kinetic parameters of a single-step coal pyrolysis model. By examining the effects of the algorithmic configuration, the initial parameter estimates, and the search space size on the efficacy and efficiency of the optimization run, the research seeks to encourage the qualified engineering application of these algorithms in the field of pyrolysis modeling. Four critical analyses were conducted: convergence efficiency, robustness and repeatability, parameter tuning, and performance on noisy data. MFO and GWO had comparable fitness scores of 1.05×10-4 and 1.04×10-4 respectively in the optimisation run analysis, while FireFly Algorithm (FFA) fell behind with a score of 1.09×10-4. Regarding the calculation time, FFA showed better results than other optimizers with an execution time of 113.75 seconds. MFO showed initial promise in convergence analysis with speedy convergence, whereas GWO progressively enhanced its solutions. Additionally, GWO was shown to be the most dependable algorithm with the lowest values for average fitness score and execution time at 1.07×10-4 and 38.86 seconds. The combined values of standard deviation in fitness value and execution time for GWO were 1.07×10-6 and 0.35 indicating its robustness towards initial parameters. Similar to this, investigations on repeatability emphasized the reliability of the GWO method. Further, the parameter tuning assessments supported the balanced performance of GWO, and the studies of noise handling discovered GWO to be the most robust to noisy data. Overall, GWO is recommended as a one-stop average solution for the general engineered application; however, algorithm choice hinges on the specific requirement.
本研究调查了萤火虫优化器 (FFA)、灰狼优化器 (GWO) 和飞蛾火焰优化器 (MFO) 元启发式算法在估算单步煤热解模型动力学参数方面的有效性。通过研究算法配置、初始参数估计和搜索空间大小对优化运行的效果和效率的影响,该研究旨在鼓励这些算法在热解模型领域的合格工程应用。研究进行了四项关键分析:收敛效率、稳健性和可重复性、参数调整和噪声数据性能。在优化运行分析中,MFO 和 GWO 的合适度得分相当,分别为 1.05×10-4 和 1.04×10-4,而 FireFly 算法(FFA)则落后,得分为 1.09×10-4。在计算时间方面,FFA 以 113.75 秒的执行时间显示出比其他优化器更好的结果。MFO 在收敛分析中表现出了快速收敛的初步前景,而 GWO 则逐步增强了其解决方案。此外,GWO 被证明是最可靠的算法,其平均适应度得分和执行时间的值最低,分别为 1.07×10-4 和 38.86 秒。GWO 的适配值和执行时间的标准偏差之和分别为 1.07×10-6 和 0.35,表明其对初始参数的鲁棒性。同样,对重复性的研究也强调了 GWO 方法的可靠性。此外,参数调整评估支持了 GWO 的均衡性能,噪声处理研究发现 GWO 对噪声数据的鲁棒性最强。总体而言,建议将 GWO 作为一般工程应用的一站式平均解决方案;不过,算法的选择取决于具体要求。
{"title":"Performance Assessment of Metaheuristic Algorithms: Firefly, Grey Wolf, and Moth Flame in Coal Pyrolysis Kinetic Parameter Estimation","authors":"Vishnu Uppalakkal, Venkatesh Ambati, Rajesh Nair","doi":"10.33889/ijmems.2024.9.1.002","DOIUrl":"https://doi.org/10.33889/ijmems.2024.9.1.002","url":null,"abstract":"This study investigates the effectiveness of the Firefly Optimizer (FFA), Grey Wolf Optimizer (GWO), and Moth Flame Optimizer (MFO) metaheuristic algorithms in estimating the kinetic parameters of a single-step coal pyrolysis model. By examining the effects of the algorithmic configuration, the initial parameter estimates, and the search space size on the efficacy and efficiency of the optimization run, the research seeks to encourage the qualified engineering application of these algorithms in the field of pyrolysis modeling. Four critical analyses were conducted: convergence efficiency, robustness and repeatability, parameter tuning, and performance on noisy data. MFO and GWO had comparable fitness scores of 1.05×10-4 and 1.04×10-4 respectively in the optimisation run analysis, while FireFly Algorithm (FFA) fell behind with a score of 1.09×10-4. Regarding the calculation time, FFA showed better results than other optimizers with an execution time of 113.75 seconds. MFO showed initial promise in convergence analysis with speedy convergence, whereas GWO progressively enhanced its solutions. Additionally, GWO was shown to be the most dependable algorithm with the lowest values for average fitness score and execution time at 1.07×10-4 and 38.86 seconds. The combined values of standard deviation in fitness value and execution time for GWO were 1.07×10-6 and 0.35 indicating its robustness towards initial parameters. Similar to this, investigations on repeatability emphasized the reliability of the GWO method. Further, the parameter tuning assessments supported the balanced performance of GWO, and the studies of noise handling discovered GWO to be the most robust to noisy data. Overall, GWO is recommended as a one-stop average solution for the general engineered application; however, algorithm choice hinges on the specific requirement.","PeriodicalId":517298,"journal":{"name":"International Journal of Mathematical, Engineering and Management Sciences","volume":"15 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139897312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Mathematical, Engineering and Management Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1