Pub Date : 2024-10-26eCollection Date: 2024-01-01DOI: 10.20517/evcna.2024.70
Hawa Ndiaye, Simran Rajput, John F K Sauld, Gautam Mahajan, Saumya Das, Emeli Chatterjee
The intertwined nature of cardiac and renal failure, where dysfunction in one organ predicts a poor outcome in the other, has long driven the interest in uncovering the exact molecular links between the two. Elucidating the mechanisms driving Cardiorenal Syndrome (CRS) will enable the development of targeted therapies that disrupt this detrimental cycle, potentially improving outcomes for patients. A recent study by Chatterjee et al. (JCI insight 2023) demonstrated the feasibility of utilizing a humanized microfluidic kidney-on-chip model to elucidate the role of circulating extracellular vesicles (EVs) in the development of CRS (type 1 and type 2) in heart failure (HF) patients. The study also identified and validated EV miRNAs that correlated with kidney function by targeting several genes involved in kidney damage pathways, including transforming growth factor- β (TGF-β) signaling. These findings suggest that plasma EVs from CRS patients induce harmful responses in renal cells by regulating key pathways, highlighting their role in both type 1 and type 2 CRS.
{"title":"EV-idence uncovered: kidney-on-chip study links circulating EVs of cardiorenal syndrome to renal pathology.","authors":"Hawa Ndiaye, Simran Rajput, John F K Sauld, Gautam Mahajan, Saumya Das, Emeli Chatterjee","doi":"10.20517/evcna.2024.70","DOIUrl":"10.20517/evcna.2024.70","url":null,"abstract":"<p><p>The intertwined nature of cardiac and renal failure, where dysfunction in one organ predicts a poor outcome in the other, has long driven the interest in uncovering the exact molecular links between the two. Elucidating the mechanisms driving Cardiorenal Syndrome (CRS) will enable the development of targeted therapies that disrupt this detrimental cycle, potentially improving outcomes for patients. A recent study by Chatterjee <i>et al</i>. (JCI insight 2023) demonstrated the feasibility of utilizing a humanized microfluidic kidney-on-chip model to elucidate the role of circulating extracellular vesicles (EVs) in the development of CRS (type 1 and type 2) in heart failure (HF) patients. The study also identified and validated EV miRNAs that correlated with kidney function by targeting several genes involved in kidney damage pathways, including transforming growth factor- β (TGF-β) signaling. These findings suggest that plasma EVs from CRS patients induce harmful responses in renal cells by regulating key pathways, highlighting their role in both type 1 and type 2 CRS.</p>","PeriodicalId":520322,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"5 4","pages":"674-679"},"PeriodicalIF":0.0,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725426/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142985635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30eCollection Date: 2024-01-01DOI: 10.20517/evcna.2024.56
Xinrui Zhao, Shenglin Huang
Extracellular vesicles (EVs) are membrane-bound structures that carry proteins, lipids, RNA, and DNA, playing key roles in cell communication and material transport. Recent research highlights their potential as disease biomarkers due to their stability in bodily fluids. This study explores using tau and TDP-43 proteins in plasma EVs as diagnostic biomarkers for frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Analyzing plasma EVs from clinical cohorts, the study found that the 3R/4R tau ratio and TDP-43 levels effectively differentiate between diagnostic groups with high accuracy. Notably, plasma EV biomarkers demonstrate higher diagnostic accuracy and stability compared to direct plasma testing, providing new insights and approaches for future research and clinical practice. Further research is needed to validate these biomarkers in diverse populations and to establish standardized protocols. Future studies should continue to explore the potential of EV biomarkers in a broader range of neurodegenerative diseases and delve deeper into the mechanisms of EV secretion and sorting to enhance their diagnostic utility.
{"title":"Plasma extracellular vesicle: a novel biomarker for neurodegenerative disease diagnosis.","authors":"Xinrui Zhao, Shenglin Huang","doi":"10.20517/evcna.2024.56","DOIUrl":"10.20517/evcna.2024.56","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are membrane-bound structures that carry proteins, lipids, RNA, and DNA, playing key roles in cell communication and material transport. Recent research highlights their potential as disease biomarkers due to their stability in bodily fluids. This study explores using tau and TDP-43 proteins in plasma EVs as diagnostic biomarkers for frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Analyzing plasma EVs from clinical cohorts, the study found that the 3R/4R tau ratio and TDP-43 levels effectively differentiate between diagnostic groups with high accuracy. Notably, plasma EV biomarkers demonstrate higher diagnostic accuracy and stability compared to direct plasma testing, providing new insights and approaches for future research and clinical practice. Further research is needed to validate these biomarkers in diverse populations and to establish standardized protocols. Future studies should continue to explore the potential of EV biomarkers in a broader range of neurodegenerative diseases and delve deeper into the mechanisms of EV secretion and sorting to enhance their diagnostic utility.</p>","PeriodicalId":520322,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"5 3","pages":"569-573"},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648489/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-29eCollection Date: 2024-01-01DOI: 10.20517/evcna.2024.47
Beatrice Senigagliesi, Otmar Geiss, Stefano Valente, Hendrik Vondracek, Nicola Cefarin, Giacomo Ceccone, Luigi Calzolai, Laura Ballerini, Pietro Parisse, Loredana Casalis
Aim: The microenvironment effect on the tumoral-derived Extracellular Vesicle release, which is of significant interest for biomedical applications, still represents a rather unexplored field. The aim of the present work is to investigate the interrelation between extracellular matrix (ECM) stiffness and the release of small EVs from cancer cells. Here, we focus on the interrelation between the ECM and small extracellular vesicles (sEVs), specifically investigating the unexplored aspect of the influence of ECM stiffness on the release of sEVs.
Methods: We used a well-studied metastatic Triple-Negative Breast Cancer (TNBC) cell line, MDA-MB-231, as a model to study the release of sEVs by cells cultured on substrates of different stiffness. We have grown MDA-MB-231 cells on two collagen-coated polydimethylsiloxane (PDMS) substrates at different stiffness (0.2 and 3.6 MPa), comparing them with a hard glass substrate as control, and then we isolated the respective sEVs by differential ultracentrifugation. After checking the cell growth conditions [vitality, morphology by immunofluorescence microscopy, stiffness by atomic force microscopy (AFM)], we took advantage of a multi-parametric approach based on complementary techniques (AFM, Nanoparticle Tracking Analysis, and asymmetric flow field flow fractionation with a multi-angle light scattering detector) to characterize the TNBC-derived sEV obtained in the different substrate conditions.
Results: We observe that soft substrates induce TNBC cell softening and rounding. This effect promotes the release of a high number of larger sEVs.
Conclusion: Here, we show the role of ECM physical properties in the regulation of sEV release in a TNBC model. While the molecular mechanisms regulating this effect need further investigation, our report represents a step toward an improved understanding of ECM-cell-sEVs crosstalk.
{"title":"Substrate stiffness modulates extracellular vesicles' release in a triple-negative breast cancer model.","authors":"Beatrice Senigagliesi, Otmar Geiss, Stefano Valente, Hendrik Vondracek, Nicola Cefarin, Giacomo Ceccone, Luigi Calzolai, Laura Ballerini, Pietro Parisse, Loredana Casalis","doi":"10.20517/evcna.2024.47","DOIUrl":"10.20517/evcna.2024.47","url":null,"abstract":"<p><strong>Aim: </strong>The microenvironment effect on the tumoral-derived Extracellular Vesicle release, which is of significant interest for biomedical applications, still represents a rather unexplored field. The aim of the present work is to investigate the interrelation between extracellular matrix (ECM) stiffness and the release of small EVs from cancer cells. Here, we focus on the interrelation between the ECM and small extracellular vesicles (sEVs), specifically investigating the unexplored aspect of the influence of ECM stiffness on the release of sEVs.</p><p><strong>Methods: </strong>We used a well-studied metastatic Triple-Negative Breast Cancer (TNBC) cell line, MDA-MB-231, as a model to study the release of sEVs by cells cultured on substrates of different stiffness. We have grown MDA-MB-231 cells on two collagen-coated polydimethylsiloxane (PDMS) substrates at different stiffness (0.2 and 3.6 MPa), comparing them with a hard glass substrate as control, and then we isolated the respective sEVs by differential ultracentrifugation. After checking the cell growth conditions [vitality, morphology by immunofluorescence microscopy, stiffness by atomic force microscopy (AFM)], we took advantage of a multi-parametric approach based on complementary techniques (AFM, Nanoparticle Tracking Analysis, and asymmetric flow field flow fractionation with a multi-angle light scattering detector) to characterize the TNBC-derived sEV obtained in the different substrate conditions.</p><p><strong>Results: </strong>We observe that soft substrates induce TNBC cell softening and rounding. This effect promotes the release of a high number of larger sEVs.</p><p><strong>Conclusion: </strong>Here, we show the role of ECM physical properties in the regulation of sEV release in a TNBC model. While the molecular mechanisms regulating this effect need further investigation, our report represents a step toward an improved understanding of ECM-cell-sEVs crosstalk.</p>","PeriodicalId":520322,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"5 3","pages":"553-568"},"PeriodicalIF":0.0,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648499/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Extracellular vesicles (EVs) are lipid bilayer-enclosed nanoparticles released outside the cell. EVs have drawn attention not only for their role in cell waste disposal, but also as additional tools for cell-to-cell communication. Their complex contents include not only lipids, but also proteins, nucleic acids (RNA, DNA), and metabolites. A large part of these molecules are involved in mediating or influencing signal transduction in target cells. In multicellular organisms, EVs have been suggested to modulate signals in cells localized either in the neighboring tissue or in distant regions of the body by interacting with the cell surface or by entering the cells via endocytosis or membrane fusion. Most of the EV-modulated cell signaling pathways have drawn considerable attention because they affect morphogenetic signaling pathways, as well as pathways activated by cytokines and growth factors. Therefore, they are implicated in relevant biological processes, such as embryonic development, cancer initiation and spreading, tissue differentiation and repair, and immune response. Furthermore, it has recently emerged that multicellular organisms interact with and receive signals through EVs released by their microbiota as well as by edible plants. This review reports studies investigating EV-mediated signaling in target mammalian cells, with a focus on key pathways for organism development, organ homeostasis, cell differentiation and immune response.
细胞外囊泡(EVs)是一种脂质双分子层包裹的纳米颗粒,可释放到细胞外。细胞外小泡不仅在细胞废物处理中发挥作用,而且还是细胞间通信的额外工具,因而备受关注。其复杂的内容物不仅包括脂质,还包括蛋白质、核酸(RNA、DNA)和代谢物。这些分子中有很大一部分参与介导或影响靶细胞的信号转导。在多细胞生物体中,有研究表明,EVs 可通过与细胞表面相互作用或通过内吞或膜融合进入细胞,从而调节邻近组织或身体远处细胞的信号。大多数由 EV 调节的细胞信号通路都引起了广泛关注,因为它们会影响形态发生信号通路以及由细胞因子和生长因子激活的通路。因此,它们与胚胎发育、癌症诱发和扩散、组织分化和修复以及免疫反应等相关生物过程有关。此外,最近还发现多细胞生物与微生物群以及可食用植物释放的 EVs 相互作用并通过 EVs 接收信号。本综述报告了有关哺乳动物靶细胞中由 EV 介导的信号传导的研究,重点关注生物体发育、器官稳态、细胞分化和免疫反应的关键途径。
{"title":"Hitting the target: cell signaling pathways modulation by extracellular vesicles.","authors":"Giada Cerrotti, Sandra Buratta, Raffaella Latella, Eleonora Calzoni, Gaia Cusumano, Agnese Bertoldi, Serena Porcellati, Carla Emiliani, Lorena Urbanelli","doi":"10.20517/evcna.2024.16","DOIUrl":"10.20517/evcna.2024.16","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are lipid bilayer-enclosed nanoparticles released outside the cell. EVs have drawn attention not only for their role in cell waste disposal, but also as additional tools for cell-to-cell communication. Their complex contents include not only lipids, but also proteins, nucleic acids (RNA, DNA), and metabolites. A large part of these molecules are involved in mediating or influencing signal transduction in target cells. In multicellular organisms, EVs have been suggested to modulate signals in cells localized either in the neighboring tissue or in distant regions of the body by interacting with the cell surface or by entering the cells via endocytosis or membrane fusion. Most of the EV-modulated cell signaling pathways have drawn considerable attention because they affect morphogenetic signaling pathways, as well as pathways activated by cytokines and growth factors. Therefore, they are implicated in relevant biological processes, such as embryonic development, cancer initiation and spreading, tissue differentiation and repair, and immune response. Furthermore, it has recently emerged that multicellular organisms interact with and receive signals through EVs released by their microbiota as well as by edible plants. This review reports studies investigating EV-mediated signaling in target mammalian cells, with a focus on key pathways for organism development, organ homeostasis, cell differentiation and immune response.</p>","PeriodicalId":520322,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"5 3","pages":"527-552"},"PeriodicalIF":0.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648414/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13eCollection Date: 2024-01-01DOI: 10.20517/evcna.2024.39
Rahul Sanwlani, Kyle Bramich, Suresh Mathivanan
Diverse functions of probiotic extracellular vesicles (EVs) have been extensively studied over the past decade, proposing their role in inter-kingdom communication. Studies have explored their therapeutic role in pathophysiological processes ranging from cancer, immunoregulation, and ulcerative colitis to stress-induced depression. These studies have highlighted the significant and novel potential of probiotic EVs for therapeutic applications, offering immense promise in addressing several unmet clinical needs. Additionally, probiotic EVs are being explored as vehicles for targeted delivery approaches. However, the realization of clinical utility of probiotic EVs is hindered by several knowledge gaps, pitfalls, limitations, and challenges, which impede their wider acceptance by the scientific community. Among these, limited knowledge of EV biogenesis, markers and regulators in bacteria, variations in cargo due to culture conditions or EV isolation method, and lack of proper understanding of gut uptake and demonstration of in vivo effect are some important issues. This review aims to summarize the diverse roles of probiotic EVs in health and disease conditions. More importantly, it discusses the significant knowledge gaps and limitations that stand in the way of the therapeutic utility of probiotic EVs. Furthermore, the importance of addressing these gaps and limitations with technical advances such as rigorous omics has been discussed.
{"title":"Role of probiotic extracellular vesicles in inter-kingdom communication and current technical limitations in advancing their therapeutic utility.","authors":"Rahul Sanwlani, Kyle Bramich, Suresh Mathivanan","doi":"10.20517/evcna.2024.39","DOIUrl":"10.20517/evcna.2024.39","url":null,"abstract":"<p><p>Diverse functions of probiotic extracellular vesicles (EVs) have been extensively studied over the past decade, proposing their role in inter-kingdom communication. Studies have explored their therapeutic role in pathophysiological processes ranging from cancer, immunoregulation, and ulcerative colitis to stress-induced depression. These studies have highlighted the significant and novel potential of probiotic EVs for therapeutic applications, offering immense promise in addressing several unmet clinical needs. Additionally, probiotic EVs are being explored as vehicles for targeted delivery approaches. However, the realization of clinical utility of probiotic EVs is hindered by several knowledge gaps, pitfalls, limitations, and challenges, which impede their wider acceptance by the scientific community. Among these, limited knowledge of EV biogenesis, markers and regulators in bacteria, variations in cargo due to culture conditions or EV isolation method, and lack of proper understanding of gut uptake and demonstration of <i>in vivo</i> effect are some important issues. This review aims to summarize the diverse roles of probiotic EVs in health and disease conditions. More importantly, it discusses the significant knowledge gaps and limitations that stand in the way of the therapeutic utility of probiotic EVs. Furthermore, the importance of addressing these gaps and limitations with technical advances such as rigorous omics has been discussed.</p>","PeriodicalId":520322,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"5 3","pages":"509-526"},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06eCollection Date: 2024-01-01DOI: 10.20517/evcna.2024.34
Jillian W P Bracht, Mandy Los, Edwin van der Pol, Sandra A W M Verkuijlen, Monique A J van Eijndhoven, D Michiel Pegtel, Rienk Nieuwland
Aim: The miRNA cargo of plasma extracellular vesicles (EVs) is commonly studied for its biomarker potential. However, isolation of EVs from human plasma is challenging. Although size-exclusion chromatography (SEC) is commonly used to isolate plasma EVs, SEC does not completely separate EVs from other miRNA carriers such as cells, lipoproteins, and proteins. Recently, new SEC columns were introduced, but hitherto, no systematic study was performed to compare the recovery and purity of plasma EVs using both traditional and new columns. In this study, we investigated the recovery of EVs and separation efficacy from lipoproteins and proteins using different SEC columns, and how recovery and separation affect miRNA cargo analysis.
Methods: EVs were isolated from pooled (n = 5) platelet-depleted plasma using 10 different SEC columns. For each column, three EV-enriched fractions were pooled and concentrations of EVs, lipoproteins, proteins, and miRNAs were measured by flow cytometry, enzyme-linked immunosorbent assay (ELISA), Bradford assay, and qRT-PCR, respectively.
Results: Our results show that the resin pore size affects all measured parameters: a small pore size increases recovery of EVs and quantity of miRNA, but decreases the separation efficacy compared to a large pore size. Regression analysis showed that the investigated miRNAs are more strongly associated with EVs than with lipoproteins or proteins.
Conclusion: The choice of a SEC column markedly affects the recovery, separation efficacy, and miRNA cargo analysis of human plasma-derived EVs. We recommend either using SEC columns with a 70-nm pore size due to their superior EV purity or studying the effect of non-EV particles on the miRNAs of interest.
{"title":"Choice of size-exclusion chromatography column affects recovery, purity, and miRNA cargo analysis of extracellular vesicles from human plasma.","authors":"Jillian W P Bracht, Mandy Los, Edwin van der Pol, Sandra A W M Verkuijlen, Monique A J van Eijndhoven, D Michiel Pegtel, Rienk Nieuwland","doi":"10.20517/evcna.2024.34","DOIUrl":"10.20517/evcna.2024.34","url":null,"abstract":"<p><strong>Aim: </strong>The miRNA cargo of plasma extracellular vesicles (EVs) is commonly studied for its biomarker potential. However, isolation of EVs from human plasma is challenging. Although size-exclusion chromatography (SEC) is commonly used to isolate plasma EVs, SEC does not completely separate EVs from other miRNA carriers such as cells, lipoproteins, and proteins. Recently, new SEC columns were introduced, but hitherto, no systematic study was performed to compare the recovery and purity of plasma EVs using both traditional and new columns. In this study, we investigated the recovery of EVs and separation efficacy from lipoproteins and proteins using different SEC columns, and how recovery and separation affect miRNA cargo analysis.</p><p><strong>Methods: </strong>EVs were isolated from pooled (<i>n</i> = 5) platelet-depleted plasma using 10 different SEC columns. For each column, three EV-enriched fractions were pooled and concentrations of EVs, lipoproteins, proteins, and miRNAs were measured by flow cytometry, enzyme-linked immunosorbent assay (ELISA), Bradford assay, and qRT-PCR, respectively.</p><p><strong>Results: </strong>Our results show that the resin pore size affects all measured parameters: a small pore size increases recovery of EVs and quantity of miRNA, but decreases the separation efficacy compared to a large pore size. Regression analysis showed that the investigated miRNAs are more strongly associated with EVs than with lipoproteins or proteins.</p><p><strong>Conclusion: </strong>The choice of a SEC column markedly affects the recovery, separation efficacy, and miRNA cargo analysis of human plasma-derived EVs. We recommend either using SEC columns with a 70-nm pore size due to their superior EV purity or studying the effect of non-EV particles on the miRNAs of interest.</p>","PeriodicalId":520322,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"5 3","pages":"497-508"},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648517/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05eCollection Date: 2024-01-01DOI: 10.20517/evcna.2024.38
Petra Adamova, Andrew K Powell, Iain M Dykes
Aim: Circulating maternal MicroRNA (miRNA) is a promising source of biomarkers for antenatal diagnostics. NanoString nCounter is a popular global screening tool due to its simplicity and ease of use, but there is a lack of standardisation in analysis methods. We examined the effect of user-defined variables upon reported changes in maternal blood miRNA during pregnancy.
Methods: Total RNA was prepared from the maternal blood of pregnant and control rats. miRNA expression was profiled using Nanostring nCounter. Raw count data were processed using nSolver using different combinations of normalisation and background correction methods as well as various background thresholds. A panel of 14 candidates in which changes were supported by multiple analysis workflows was selected for validation by RT-qPCR. We then reverse-engineered the nSolver analysis to gain further insight.
Results: Thirty-one putative differentially expressed miRNAs were identified by nSolver. However, each analysis workflow produced a different set of reported biomarkers and none of them was common to all analysis methods. Four miRNAs with known roles in pregnancy (miR-183, miR-196c, miR-431, miR-450a) were validated. No single nSolver analysis workflow could successfully identify all four validated changes. Reverse engineering revealed errors in nSolver data processing which compound the inherent problems associated with background correction and normalisation.
Conclusion: Our results suggest that user-defined variables greatly influence the output of the assay. This highlights the need for standardised nSolver data analysis methods and detailed reporting of these methods. We suggest that investigators in the future should not rely on a single analysis method to identify changes and should always validate screening results.
{"title":"Assessment of NanoString technology as a tool for profiling circulating miRNA in maternal blood during pregnancy.","authors":"Petra Adamova, Andrew K Powell, Iain M Dykes","doi":"10.20517/evcna.2024.38","DOIUrl":"10.20517/evcna.2024.38","url":null,"abstract":"<p><strong>Aim: </strong>Circulating maternal MicroRNA (miRNA) is a promising source of biomarkers for antenatal diagnostics. NanoString nCounter is a popular global screening tool due to its simplicity and ease of use, but there is a lack of standardisation in analysis methods. We examined the effect of user-defined variables upon reported changes in maternal blood miRNA during pregnancy.</p><p><strong>Methods: </strong>Total RNA was prepared from the maternal blood of pregnant and control rats. miRNA expression was profiled using Nanostring nCounter. Raw count data were processed using nSolver using different combinations of normalisation and background correction methods as well as various background thresholds. A panel of 14 candidates in which changes were supported by multiple analysis workflows was selected for validation by RT-qPCR. We then reverse-engineered the nSolver analysis to gain further insight.</p><p><strong>Results: </strong>Thirty-one putative differentially expressed miRNAs were identified by nSolver. However, each analysis workflow produced a different set of reported biomarkers and none of them was common to all analysis methods. Four miRNAs with known roles in pregnancy (miR-183, miR-196c, miR-431, miR-450a) were validated. No single nSolver analysis workflow could successfully identify all four validated changes. Reverse engineering revealed errors in nSolver data processing which compound the inherent problems associated with background correction and normalisation.</p><p><strong>Conclusion: </strong>Our results suggest that user-defined variables greatly influence the output of the assay. This highlights the need for standardised nSolver data analysis methods and detailed reporting of these methods. We suggest that investigators in the future should not rely on a single analysis method to identify changes and should always validate screening results.</p>","PeriodicalId":520322,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"5 3","pages":"471-496"},"PeriodicalIF":0.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648433/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tumor-derived extracellular vesicles (TDEVs) play crucial roles in intercellular communication both in the local tumor microenvironment and systemically, facilitating tumor progression and metastatic spread. They carry a variety of molecules with bioactive properties, such as nucleic acids, proteins and metabolites, that trigger different signaling processes in receptor cells and induce, among other downstream effects, metabolic reprogramming. Interestingly, the cargo of TDEVs also reflects the metabolic status of the producing cells in a time- and context-dependent manner, providing information on the functionality and state of those cells. For these reasons, together with their ability to be detected in diverse biofluids, there is increasing interest in the study of TDEVs, particularly their metabolic cargo, as diagnostic and prognostic tools in cancer management. This review presents a compilation of metabolism-related molecules (enzymes and metabolites) described in cancer extracellular vesicles (EVs) with potential use as cancer biomarkers, and discusses the challenges arising in this rapidly evolving field.
{"title":"Metabolic features of tumor-derived extracellular vesicles: challenges and opportunities.","authors":"Pilar Espiau-Romera, Andrés Gordo-Ortiz, Inés Ortiz-de-Solórzano, Patricia Sancho","doi":"10.20517/evcna.2024.12","DOIUrl":"10.20517/evcna.2024.12","url":null,"abstract":"<p><p>Tumor-derived extracellular vesicles (TDEVs) play crucial roles in intercellular communication both in the local tumor microenvironment and systemically, facilitating tumor progression and metastatic spread. They carry a variety of molecules with bioactive properties, such as nucleic acids, proteins and metabolites, that trigger different signaling processes in receptor cells and induce, among other downstream effects, metabolic reprogramming. Interestingly, the cargo of TDEVs also reflects the metabolic status of the producing cells in a time- and context-dependent manner, providing information on the functionality and state of those cells. For these reasons, together with their ability to be detected in diverse biofluids, there is increasing interest in the study of TDEVs, particularly their metabolic cargo, as diagnostic and prognostic tools in cancer management. This review presents a compilation of metabolism-related molecules (enzymes and metabolites) described in cancer extracellular vesicles (EVs) with potential use as cancer biomarkers, and discusses the challenges arising in this rapidly evolving field.</p>","PeriodicalId":520322,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"5 3","pages":"455-470"},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aim: Normal tension glaucoma (NTG) is a common optic neuropathy that can be challenging to diagnose due to the intraocular pressure remaining within the normal range. Early diagnosis and intervention are crucial for the effective lifelong management of patients.
Methods: This study recruited a total of 225 participants. Small extracellular vesicles (sEVs) RNA from circulating plasma was analyzed via transcriptomic sequencing, and its expression levels were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Logistic regression, linear regression, and receiver operating characteristic (ROC) curve analyses were performed to examine the association of biomarkers with clinicopathological characteristics.
Results: Analysis of sEVs mRNAs in NTG patients revealed mitochondrial dysfunction and enrichment of central nervous system degenerative pathways, reflecting the pathological features of NTG. Compared with those in the controls, the expression levels of sEVs let-7b-5p in the plasma of NTG patients were significantly lower, with an area under the curve (AUC) of 0.870 (95%CI: 0.797-0.943) (P < 0.0001), and the AUC combined with age was 0.923 (95%CI: 0.851-0.996) (P < 0.0001). In addition, we found that let-7b-5p levels were significantly correlated with the severity and visual field defects of NTG patients and had good specificity compared with other ophthalmic diseases.
Conclusion: The sEVs RNA signatures in circulating plasma from NTG revealed mitochondrial dysfunction and that sEVs let-7b-5p can be a useful noninvasive biomarker for NTG.
{"title":"Transcriptomic analysis of plasma-derived small extracellular vesicles reveals the pathological characteristics of normal tension glaucoma.","authors":"Sheng-Lan Xu, Jun-Hua Li, Wen-Meng Zhang, Meng-Jun Fu, Hui-Min Xing, Hua Ma, Xian-Hui Gong, Rong-Han Wu, Yuan-Bo Liang, Ren-Zhe Cui, Zai-Long Chi","doi":"10.20517/evcna.2024.45","DOIUrl":"10.20517/evcna.2024.45","url":null,"abstract":"<p><strong>Aim: </strong>Normal tension glaucoma (NTG) is a common optic neuropathy that can be challenging to diagnose due to the intraocular pressure remaining within the normal range. Early diagnosis and intervention are crucial for the effective lifelong management of patients.</p><p><strong>Methods: </strong>This study recruited a total of 225 participants. Small extracellular vesicles (sEVs) RNA from circulating plasma was analyzed via transcriptomic sequencing, and its expression levels were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Logistic regression, linear regression, and receiver operating characteristic (ROC) curve analyses were performed to examine the association of biomarkers with clinicopathological characteristics.</p><p><strong>Results: </strong>Analysis of sEVs mRNAs in NTG patients revealed mitochondrial dysfunction and enrichment of central nervous system degenerative pathways, reflecting the pathological features of NTG. Compared with those in the controls, the expression levels of sEVs let-7b-5p in the plasma of NTG patients were significantly lower, with an area under the curve (AUC) of 0.870 (95%CI: 0.797-0.943) (<i>P</i> < 0.0001), and the AUC combined with age was 0.923 (95%CI: 0.851-0.996) (<i>P</i> < 0.0001). In addition, we found that let-7b-5p levels were significantly correlated with the severity and visual field defects of NTG patients and had good specificity compared with other ophthalmic diseases.</p><p><strong>Conclusion: </strong>The sEVs RNA signatures in circulating plasma from NTG revealed mitochondrial dysfunction and that sEVs let-7b-5p can be a useful noninvasive biomarker for NTG.</p>","PeriodicalId":520322,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"5 3","pages":"438-454"},"PeriodicalIF":0.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648459/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29eCollection Date: 2024-01-01DOI: 10.20517/evcna.2024.43
Hannah M Nelson, Shimian Qu, Liyu Huang, Muhammad Shameer, Kevin C Corn, Sydney N Chapman, Nicole L Luthcke, Sara A Schuster, Tellie D Stamaris, Lauren A Turnbull, Lucas L Guy, Xiao Liu, Danielle L Michell, Elizabeth M Semler, Kasey C Vickers, Qi Liu, Jeffrey L Franklin, Alissa M Weaver, Marjan Rafat, Robert J Coffey, James G Patton
Aim: Extracellular communication via the transfer of vesicles and nanoparticles is now recognized to play an important role in tumor microenvironment interactions. Cancer cells upregulate and secrete abundant levels of miR-100 and miR-125b that can alter gene expression in donor and recipient cells. In this study, we sought to identify targets of miR-100 and miR-125b and conclusively demonstrate that microRNAs (miRNAs) can be functionally transferred from donor to recipient cells.
Methods: To identify targets of miR-100 and miR-125b, we used bioinformatic approaches comparing multiple colorectal cancer (CRC) cell lines, including knockout lines lacking one or both of these miRNAs. We also used spheroid and 3D growth conditions in collagen to test colony growth and invasiveness. We also used Transwell co-culture systems to demonstrate functional miRNA transfer.
Results: From an initial list of 96 potential mRNA targets, we identified and tested 15 targets, with 8 showing significant downregulation in the presence of miR-100 and miR-125b. Among these, cingulin (CGN) and protein tyrosine phosphatase receptor type-R (PTPRR) are downregulated in multiple cancers, consistent with regulation by increased levels of miR-100 and miR-125b. We also show that increased cellular levels of miR-100 and miR-125b enhance 3D growth and invasiveness in CRC and glioblastoma cell lines. Lastly, we demonstrate that extracellular transfer of miR-100 and miR-125b can silence both reporter and endogenous mRNA targets in recipient cells and also increase the invasiveness of recipient spheroid colonies when grown under 3D conditions in type I collagen.
Conclusion: miR-100 and miR-125b target multiple mRNAs that can regulate 3D cell-autonomous growth and invasiveness. By extracellular transfer, miR-100 and miR-125b can also increase colony growth and invasiveness in recipient cells through non-cell-autonomous mechanisms.
{"title":"Transfer of <i>miR-100</i> and <i>miR-125b</i> increases 3D growth and invasiveness in recipient cancer cells.","authors":"Hannah M Nelson, Shimian Qu, Liyu Huang, Muhammad Shameer, Kevin C Corn, Sydney N Chapman, Nicole L Luthcke, Sara A Schuster, Tellie D Stamaris, Lauren A Turnbull, Lucas L Guy, Xiao Liu, Danielle L Michell, Elizabeth M Semler, Kasey C Vickers, Qi Liu, Jeffrey L Franklin, Alissa M Weaver, Marjan Rafat, Robert J Coffey, James G Patton","doi":"10.20517/evcna.2024.43","DOIUrl":"10.20517/evcna.2024.43","url":null,"abstract":"<p><strong>Aim: </strong>Extracellular communication via the transfer of vesicles and nanoparticles is now recognized to play an important role in tumor microenvironment interactions. Cancer cells upregulate and secrete abundant levels of <i>miR-100</i> and <i>miR-125b</i> that can alter gene expression in donor and recipient cells. In this study, we sought to identify targets of <i>miR-100</i> and <i>miR-125b</i> and conclusively demonstrate that microRNAs (miRNAs) can be functionally transferred from donor to recipient cells.</p><p><strong>Methods: </strong>To identify targets of <i>miR-100</i> and <i>miR-125b</i>, we used bioinformatic approaches comparing multiple colorectal cancer (CRC) cell lines, including knockout lines lacking one or both of these miRNAs. We also used spheroid and 3D growth conditions in collagen to test colony growth and invasiveness. We also used Transwell co-culture systems to demonstrate functional miRNA transfer.</p><p><strong>Results: </strong>From an initial list of 96 potential mRNA targets, we identified and tested 15 targets, with 8 showing significant downregulation in the presence of <i>miR-100</i> and <i>miR-125b</i>. Among these, cingulin (CGN) and protein tyrosine phosphatase receptor type-R (PTPRR) are downregulated in multiple cancers, consistent with regulation by increased levels of <i>miR-100</i> and <i>miR-125b.</i> We also show that increased cellular levels of <i>miR-100</i> and <i>miR-125b</i> enhance 3D growth and invasiveness in CRC and glioblastoma cell lines. Lastly, we demonstrate that extracellular transfer of <i>miR-100</i> and <i>miR-125b</i> can silence both reporter and endogenous mRNA targets in recipient cells and also increase the invasiveness of recipient spheroid colonies when grown under 3D conditions in type I collagen.</p><p><strong>Conclusion: </strong><i>miR-100</i> and <i>miR-125b</i> target multiple mRNAs that can regulate 3D cell-autonomous growth and invasiveness. By extracellular transfer, <i>miR-100</i> and <i>miR-125b</i> can also increase colony growth and invasiveness in recipient cells through non-cell-autonomous mechanisms.</p>","PeriodicalId":520322,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"5 3","pages":"397-416"},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648436/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142856749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}