首页 > 最新文献

Data Science and Engineering最新文献

英文 中文
A Workload-Adaptive Streaming Partitioner for Distributed Graph Stores 分布式图存储的工作负载自适应流分区
IF 4.2 2区 计算机科学 Q1 Computer Science Pub Date : 2021-04-15 DOI: 10.1007/s41019-021-00156-2
A. Davoudian, Liu Chen, Hongwei Tu, Mengchi Liu
{"title":"A Workload-Adaptive Streaming Partitioner for Distributed Graph Stores","authors":"A. Davoudian, Liu Chen, Hongwei Tu, Mengchi Liu","doi":"10.1007/s41019-021-00156-2","DOIUrl":"https://doi.org/10.1007/s41019-021-00156-2","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84288801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Keyword Search on Large Graphs: A Survey 大型图形的关键字搜索:综述
IF 4.2 2区 计算机科学 Q1 Computer Science Pub Date : 2021-03-31 DOI: 10.1007/s41019-021-00154-4
Jianye Yang, Wu Yao, Wenjie Zhang
{"title":"Keyword Search on Large Graphs: A Survey","authors":"Jianye Yang, Wu Yao, Wenjie Zhang","doi":"10.1007/s41019-021-00154-4","DOIUrl":"https://doi.org/10.1007/s41019-021-00154-4","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87848322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Querying Optimal Routes for Group Meetup 查询分组聚会的最优路由
IF 4.2 2区 计算机科学 Q1 Computer Science Pub Date : 2021-03-15 DOI: 10.1007/s41019-021-00153-5
Bo Chen, Huaijie Zhu, Wei Liu, Jian Yin, Wang-Chien Lee, Jianliang Xu
{"title":"Querying Optimal Routes for Group Meetup","authors":"Bo Chen, Huaijie Zhu, Wei Liu, Jian Yin, Wang-Chien Lee, Jianliang Xu","doi":"10.1007/s41019-021-00153-5","DOIUrl":"https://doi.org/10.1007/s41019-021-00153-5","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75645763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A Survey of Traffic Prediction: from Spatio-Temporal Data to Intelligent Transportation 交通预测研究:从时空数据到智能交通
IF 4.2 2区 计算机科学 Q1 Computer Science Pub Date : 2021-01-23 DOI: 10.1007/s41019-020-00151-z
Haitao Yuan, Guoliang Li
{"title":"A Survey of Traffic Prediction: from Spatio-Temporal Data to Intelligent Transportation","authors":"Haitao Yuan, Guoliang Li","doi":"10.1007/s41019-020-00151-z","DOIUrl":"https://doi.org/10.1007/s41019-020-00151-z","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2021-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76395104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
OODIDA: On-Board/Off-Board Distributed Real-Time Data Analytics for Connected Vehicles OODIDA:车载/车载分布式实时数据分析
IF 4.2 2区 计算机科学 Q1 Computer Science Pub Date : 2021-01-22 DOI: 10.1007/s41019-021-00152-6
G. Ulm, Simon Smith, Adrian Nilsson, E. Gustavsson, M. Jirstrand
{"title":"OODIDA: On-Board/Off-Board Distributed Real-Time Data Analytics for Connected Vehicles","authors":"G. Ulm, Simon Smith, Adrian Nilsson, E. Gustavsson, M. Jirstrand","doi":"10.1007/s41019-021-00152-6","DOIUrl":"https://doi.org/10.1007/s41019-021-00152-6","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76276966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
SUMA: A Partial Materialization-Based Scalable Query Answering in OWL 2 DL SUMA: OWL 2dl中基于部分实体化的可扩展查询应答
IF 4.2 2区 计算机科学 Q1 Computer Science Pub Date : 2021-01-19 DOI: 10.1007/s41019-020-00150-0
Xiaoyu Qin, Xiaowang Zhang, Muhammad Qasim Yasin, Shujun Wang, Zhiyong Feng, Guohui Xiao
{"title":"SUMA: A Partial Materialization-Based Scalable Query Answering in OWL 2 DL","authors":"Xiaoyu Qin, Xiaowang Zhang, Muhammad Qasim Yasin, Shujun Wang, Zhiyong Feng, Guohui Xiao","doi":"10.1007/s41019-020-00150-0","DOIUrl":"https://doi.org/10.1007/s41019-020-00150-0","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77103071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation, Cost Model, and Plan Enumeration 改进DBMS查询优化器的综述:基数估计、成本模型和计划枚举
IF 4.2 2区 计算机科学 Q1 Computer Science Pub Date : 2021-01-05 DOI: 10.1007/s41019-020-00149-7
Hai Lan, Z. Bao, Yuwei Peng
{"title":"A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation, Cost Model, and Plan Enumeration","authors":"Hai Lan, Z. Bao, Yuwei Peng","doi":"10.1007/s41019-020-00149-7","DOIUrl":"https://doi.org/10.1007/s41019-020-00149-7","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76537659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 49
Predicting Geolocation of Tweets: Using Combination of CNN and BiLSTM. 基于CNN和BiLSTM的推文地理位置预测
IF 4.2 2区 计算机科学 Q1 Computer Science Pub Date : 2021-01-01 Epub Date: 2021-07-08 DOI: 10.1007/s41019-021-00165-1
Rhea Mahajan, Vibhakar Mansotra

Twitter is one of the most popular micro-blogging and social networking platforms where users post their opinions, preferences, activities, thoughts, views, etc., in form of tweets within the limit of 280 characters. In order to study and analyse the social behavior and activities of a user across a region, it becomes necessary to identify the location of the tweet. This paper aims to predict geolocation of real-time tweets at the city level collected for a period of 30 days by using a combination of convolutional neural network and a bidirectional long short-term memory by extracting features within the tweets and features associated with the tweets. We have also compared our results with previous baseline models and the findings of our experiment show a significant improvement over baselines methods achieving an accuracy of 92.6 with a median error of 22.4 km at city level prediction.

Twitter是最受欢迎的微博和社交网络平台之一,用户可以在280个字符以内以tweet的形式发布自己的观点、偏好、活动、想法、观点等。为了研究和分析一个地区用户的社会行为和活动,有必要确定推文的位置。本文旨在利用卷积神经网络和双向长短期记忆相结合的方法,通过提取推文内部特征和与推文相关的特征,对收集的30天的城市级实时推文进行地理定位预测。我们还将我们的结果与以前的基线模型进行了比较,我们的实验结果显示,在城市级预测中,基线方法的精度为92.6,中位误差为22.4公里,比基线方法有了显著的改进。
{"title":"Predicting Geolocation of Tweets: Using Combination of CNN and BiLSTM.","authors":"Rhea Mahajan,&nbsp;Vibhakar Mansotra","doi":"10.1007/s41019-021-00165-1","DOIUrl":"https://doi.org/10.1007/s41019-021-00165-1","url":null,"abstract":"<p><p>Twitter is one of the most popular micro-blogging and social networking platforms where users post their opinions, preferences, activities, thoughts, views, etc., in form of tweets within the limit of 280 characters. In order to study and analyse the social behavior and activities of a user across a region, it becomes necessary to identify the location of the tweet. This paper aims to predict geolocation of real-time tweets at the city level collected for a period of 30 days by using a combination of convolutional neural network and a bidirectional long short-term memory by extracting features within the tweets and features associated with the tweets. We have also compared our results with previous baseline models and the findings of our experiment show a significant improvement over baselines methods achieving an accuracy of 92.6 with a median error of 22.4 km at city level prediction.</p>","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41019-021-00165-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39178111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Image Preprocessing in Classification and Identification of Diabetic Eye Diseases. 图像预处理在糖尿病眼病分类与识别中的应用。
IF 4.2 2区 计算机科学 Q1 Computer Science Pub Date : 2021-01-01 Epub Date: 2021-08-17 DOI: 10.1007/s41019-021-00167-z
Rubina Sarki, Khandakar Ahmed, Hua Wang, Yanchun Zhang, Jiangang Ma, Kate Wang

Diabetic eye disease (DED) is a cluster of eye problem that affects diabetic patients. Identifying DED is a crucial activity in retinal fundus images because early diagnosis and treatment can eventually minimize the risk of visual impairment. The retinal fundus image plays a significant role in early DED classification and identification. An accurate diagnostic model's development using a retinal fundus image depends highly on image quality and quantity. This paper presents a methodical study on the significance of image processing for DED classification. The proposed automated classification framework for DED was achieved in several steps: image quality enhancement, image segmentation (region of interest), image augmentation (geometric transformation), and classification. The optimal results were obtained using traditional image processing methods with a new build convolution neural network (CNN) architecture. The new built CNN combined with the traditional image processing approach presented the best performance with accuracy for DED classification problems. The results of the experiments conducted showed adequate accuracy, specificity, and sensitivity.

糖尿病性眼病(DED)是困扰糖尿病患者的一系列眼病。在视网膜眼底图像中识别DED是一项至关重要的活动,因为早期诊断和治疗最终可以将视力损害的风险降至最低。视网膜眼底图像对早期DED的分类和鉴别具有重要意义。利用视网膜眼底图像建立准确的诊断模型在很大程度上取决于图像的质量和数量。本文系统地研究了图像处理对DED分类的意义。本文提出的DED自动分类框架分为以下几个步骤:图像质量增强、图像分割(感兴趣区域)、图像增强(几何变换)和分类。采用传统的图像处理方法,采用一种新的卷积神经网络(CNN)架构,获得了最优的图像处理效果。新构建的CNN与传统的图像处理方法相结合,在DED分类问题上表现出最好的性能和准确率。所进行的实验结果显示出足够的准确性、特异性和敏感性。
{"title":"Image Preprocessing in Classification and Identification of Diabetic Eye Diseases.","authors":"Rubina Sarki,&nbsp;Khandakar Ahmed,&nbsp;Hua Wang,&nbsp;Yanchun Zhang,&nbsp;Jiangang Ma,&nbsp;Kate Wang","doi":"10.1007/s41019-021-00167-z","DOIUrl":"https://doi.org/10.1007/s41019-021-00167-z","url":null,"abstract":"<p><p>Diabetic eye disease (DED) is a cluster of eye problem that affects diabetic patients. Identifying DED is a crucial activity in retinal fundus images because early diagnosis and treatment can eventually minimize the risk of visual impairment. The retinal fundus image plays a significant role in early DED classification and identification. An accurate diagnostic model's development using a retinal fundus image depends highly on image quality and quantity. This paper presents a methodical study on the significance of image processing for DED classification. The proposed automated classification framework for DED was achieved in several steps: image quality enhancement, image segmentation (region of interest), image augmentation (geometric transformation), and classification. The optimal results were obtained using traditional image processing methods with a new build convolution neural network (CNN) architecture. The new built CNN combined with the traditional image processing approach presented the best performance with accuracy for DED classification problems. The results of the experiments conducted showed adequate accuracy, specificity, and sensitivity.</p>","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41019-021-00167-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39335652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 38
Exploring Means to Enhance the Efficiency of GPU Bitmap Index Query Processing 探索提高GPU位图索引查询处理效率的方法
IF 4.2 2区 计算机科学 Q1 Computer Science Pub Date : 2020-11-30 DOI: 10.1007/s41019-020-00148-8
Brandon Tran, Brennan Schaffner, J. Myre, Jason Sawin, David Chiu
{"title":"Exploring Means to Enhance the Efficiency of GPU Bitmap Index Query Processing","authors":"Brandon Tran, Brennan Schaffner, J. Myre, Jason Sawin, David Chiu","doi":"10.1007/s41019-020-00148-8","DOIUrl":"https://doi.org/10.1007/s41019-020-00148-8","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88292955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Data Science and Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1