首页 > 最新文献

Data Science and Engineering最新文献

英文 中文
A Personalized Explainable Learner Implicit Friend Recommendation Method 一种个性化可解释学习者内隐好友推荐方法
IF 4.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-01-27 DOI: 10.1007/s41019-023-00204-z
Chunying Li, Bingyang Zhou, Weijie Lin, Zhikang Tang, Yong Tang, Yanchun Zhang, Jinli Cao
{"title":"A Personalized Explainable Learner Implicit Friend Recommendation Method","authors":"Chunying Li, Bingyang Zhou, Weijie Lin, Zhikang Tang, Yong Tang, Yanchun Zhang, Jinli Cao","doi":"10.1007/s41019-023-00204-z","DOIUrl":"https://doi.org/10.1007/s41019-023-00204-z","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":"92 1","pages":"23 - 35"},"PeriodicalIF":4.2,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82211202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A Novel Link Prediction Framework Based on Gravitational Field 一种新的基于引力场的链路预测框架
IF 4.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-01-16 DOI: 10.1007/s41019-022-00201-8
Yanlin Yang, Zhonglin Ye, Haixing Zhao, Lei Meng
{"title":"A Novel Link Prediction Framework Based on Gravitational Field","authors":"Yanlin Yang, Zhonglin Ye, Haixing Zhao, Lei Meng","doi":"10.1007/s41019-022-00201-8","DOIUrl":"https://doi.org/10.1007/s41019-022-00201-8","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":"44 1","pages":"47 - 60"},"PeriodicalIF":4.2,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87560620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Communication Efficient ADMM-based Distributed Algorithm Using Two-Dimensional Torus Grouping AllReduce 基于二维环面分组的分布式admm通信高效算法
IF 4.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-01-02 DOI: 10.1007/s41019-022-00202-7
Guozheng Wang, Yong-mei Lei, Zeyu Zhang, Cunlu Peng
{"title":"A Communication Efficient ADMM-based Distributed Algorithm Using Two-Dimensional Torus Grouping AllReduce","authors":"Guozheng Wang, Yong-mei Lei, Zeyu Zhang, Cunlu Peng","doi":"10.1007/s41019-022-00202-7","DOIUrl":"https://doi.org/10.1007/s41019-022-00202-7","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":"85 1","pages":"1-12"},"PeriodicalIF":4.2,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88221241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Multi-Model Fusion-Based Hierarchical Extraction for Chinese Epidemic Event. 基于多模型融合的中国疫情事件层次提取。
IF 4.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-01-01 DOI: 10.1007/s41019-022-00203-6
Zenghua Liao, Zongqiang Yang, Peixin Huang, Ning Pang, Xiang Zhao

In recent years, Coronavirus disease 2019 (COVID-19) has become a global epidemic, and some efforts have been devoted to tracking and controlling its spread. Extracting structured knowledge from involved epidemic case reports can inform the surveillance system, which is important for controlling the spread of outbreaks. Therefore, in this paper, we focus on the task of Chinese epidemic event extraction (EE), which is defined as the detection of epidemic-related events and corresponding arguments in the texts of epidemic case reports. To facilitate the research of this task, we first define the epidemic-related event types and argument roles. Then we manually annotate a Chinese COVID-19 epidemic dataset, named COVID-19 Case Report (CCR). We also propose a novel hierarchical EE architecture, named multi-model fusion-based hierarchical event extraction (MFHEE). In MFHEE, we introduce a multi-model fusion strategy to tackle the issue of recognition bias of previous EE models. The experimental results on CCR dataset show that our method can effectively extract epidemic events and outperforms other baselines on this dataset. The comparative experiments results on other generic datasets show that our method has good scalability and portability. The ablation studies also show that the proposed hierarchical structure and multi-model fusion strategy contribute to the precision of our model.

Supplementary information: The online version contains supplementary material available at 10.1007/s41019-022-00203-6.

近年来,2019冠状病毒病(COVID-19)已成为一种全球性流行病,人们在追踪和控制其传播方面做出了一些努力。从相关的流行病病例报告中提取结构化知识可以为监测系统提供信息,这对于控制疫情的传播非常重要。因此,本文重点研究中国疫情事件提取(Chinese epidemic event extraction, EE)的任务,将其定义为在疫情报告文本中发现与疫情相关的事件和相应的论点。为了便于本课题的研究,我们首先定义了与流行病相关的事件类型和争论角色。然后我们手工标注了一个中国COVID-19流行数据集,命名为COVID-19病例报告(CCR)。我们还提出了一种新的分层事件提取体系结构,称为基于多模型融合的分层事件提取(MFHEE)。在MFHEE中,我们引入了一种多模型融合策略来解决先前的EE模型的识别偏差问题。在CCR数据集上的实验结果表明,我们的方法可以有效地提取流行病事件,并且优于该数据集上的其他基线。在其他通用数据集上的对比实验结果表明,该方法具有良好的可扩展性和可移植性。烧蚀实验还表明,所提出的分层结构和多模型融合策略有助于提高模型的精度。补充信息:在线版本包含补充资料,下载地址:10.1007/s41019-022- 00206 -6。
{"title":"Multi-Model Fusion-Based Hierarchical Extraction for Chinese Epidemic Event.","authors":"Zenghua Liao,&nbsp;Zongqiang Yang,&nbsp;Peixin Huang,&nbsp;Ning Pang,&nbsp;Xiang Zhao","doi":"10.1007/s41019-022-00203-6","DOIUrl":"https://doi.org/10.1007/s41019-022-00203-6","url":null,"abstract":"<p><p>In recent years, Coronavirus disease 2019 (COVID-19) has become a global epidemic, and some efforts have been devoted to tracking and controlling its spread. Extracting structured knowledge from involved epidemic case reports can inform the surveillance system, which is important for controlling the spread of outbreaks. Therefore, in this paper, we focus on the task of Chinese epidemic event extraction (EE), which is defined as the detection of epidemic-related events and corresponding arguments in the texts of epidemic case reports. To facilitate the research of this task, we first define the epidemic-related event types and argument roles. Then we manually annotate a Chinese COVID-19 epidemic dataset, named COVID-19 Case Report (CCR). We also propose a novel hierarchical EE architecture, named <i>m</i>ulti-model <i>f</i>usion-based <i>h</i>ierarchical <i>e</i>vent <i>e</i>xtraction (MFHEE). In MFHEE, we introduce a multi-model fusion strategy to tackle the issue of recognition bias of previous EE models. The experimental results on CCR dataset show that our method can effectively extract epidemic events and outperforms other baselines on this dataset. The comparative experiments results on other generic datasets show that our method has good scalability and portability. The ablation studies also show that the proposed hierarchical structure and multi-model fusion strategy contribute to the precision of our model.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s41019-022-00203-6.</p>","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":"8 1","pages":"73-83"},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807097/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9377525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Survey on the Integration of Blockchains and Databases. 区块链与数据库集成综述。
IF 4.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-01-01 Epub Date: 2023-04-24 DOI: 10.1007/s41019-023-00212-z
Changhao Zhu, Junzhe Li, Ziyue Zhong, Cong Yue, Meihui Zhang

The success of blockchain technology in cryptocurrencies reveals its potential in the data management field. Recently, there is a trend in the database community to integrate blockchains and traditional databases to obtain security, efficiency, and privacy from the two distinctive but related systems. In this survey, we discuss the use of blockchain technology in the data management field and focus on the fusion system of blockchains and databases. We first classify existing blockchain-related data management technologies by their locations on the blockchain-database spectrum. Based on the taxonomy, we discuss three types of fusion systems and analyze their design spaces and trade-offs. Then, by further investigating the typical systems and techniques of each type of fusion system and comparing the solutions, we provide insights of each fusion model. Finally, we outline the unsolved challenges and promising directions in this field and believe that fusion systems will take a more important role in data management tasks. We hope this survey can help both academia and industry to better understand the advantages and limitations of blockchain-related data management systems and develop fusion systems that meet various requirements in practice.

区块链技术在加密货币领域的成功揭示了其在数据管理领域的潜力。最近,数据库界有一种趋势,即将区块链和传统数据库集成在一起,从这两个独特但相关的系统中获得安全、高效和隐私。在这项调查中,我们讨论了区块链技术在数据管理领域的应用,并重点关注区块链和数据库的融合系统。我们首先根据现有区块链相关数据管理技术在区块链数据库频谱上的位置对其进行分类。基于分类法,我们讨论了三种类型的融合系统,并分析了它们的设计空间和权衡。然后,通过进一步研究每种类型的融合系统的典型系统和技术,并比较解决方案,我们可以深入了解每种融合模型。最后,我们概述了该领域尚未解决的挑战和有希望的方向,并相信融合系统将在数据管理任务中发挥更重要的作用。我们希望这项调查能够帮助学术界和工业界更好地了解区块链相关数据管理系统的优势和局限性,并开发出满足实践中各种要求的融合系统。
{"title":"A Survey on the Integration of Blockchains and Databases.","authors":"Changhao Zhu,&nbsp;Junzhe Li,&nbsp;Ziyue Zhong,&nbsp;Cong Yue,&nbsp;Meihui Zhang","doi":"10.1007/s41019-023-00212-z","DOIUrl":"10.1007/s41019-023-00212-z","url":null,"abstract":"<p><p>The success of blockchain technology in cryptocurrencies reveals its potential in the data management field. Recently, there is a trend in the database community to integrate blockchains and traditional databases to obtain security, efficiency, and privacy from the two distinctive but related systems. In this survey, we discuss the use of blockchain technology in the data management field and focus on the fusion system of blockchains and databases. We first classify existing blockchain-related data management technologies by their locations on the blockchain-database spectrum. Based on the taxonomy, we discuss three types of fusion systems and analyze their design spaces and trade-offs. Then, by further investigating the typical systems and techniques of each type of fusion system and comparing the solutions, we provide insights of each fusion model. Finally, we outline the unsolved challenges and promising directions in this field and believe that fusion systems will take a more important role in data management tasks. We hope this survey can help both academia and industry to better understand the advantages and limitations of blockchain-related data management systems and develop fusion systems that meet various requirements in practice.</p>","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":"8 2","pages":"196-219"},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10124707/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9484493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Multi-level Mesh Mutual Attention Model for Visual Question Answering 面向视觉问答的多层次网格相互注意模型
IF 4.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-10-30 DOI: 10.1007/s41019-022-00200-9
Zhi Lei, Guixian Zhang, Lijuan Wu, Kui Zhang, Rongjiao Liang
{"title":"A Multi-level Mesh Mutual Attention Model for Visual Question Answering","authors":"Zhi Lei, Guixian Zhang, Lijuan Wu, Kui Zhang, Rongjiao Liang","doi":"10.1007/s41019-022-00200-9","DOIUrl":"https://doi.org/10.1007/s41019-022-00200-9","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":"117 1","pages":"339 - 353"},"PeriodicalIF":4.2,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89312092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Joint Attention Networks with Inherent and Contextual Preference-Awareness for Successive POI Recommendation 具有内在和情境偏好意识的连续POI推荐联合注意网络
IF 4.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-10-28 DOI: 10.1007/s41019-022-00199-z
Haiting Zhong, W. He, Li-zhen Cui, Lei Liu, Zhongmin Yan, Kun Zhao
{"title":"Joint Attention Networks with Inherent and Contextual Preference-Awareness for Successive POI Recommendation","authors":"Haiting Zhong, W. He, Li-zhen Cui, Lei Liu, Zhongmin Yan, Kun Zhao","doi":"10.1007/s41019-022-00199-z","DOIUrl":"https://doi.org/10.1007/s41019-022-00199-z","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":"8 1","pages":"370 - 382"},"PeriodicalIF":4.2,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88717608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An Efficient Algorithm of Star Subgraph Queries on Urban Traffic Knowledge Graph 城市交通知识图星形子图查询的一种高效算法
IF 4.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-10-21 DOI: 10.1007/s41019-022-00198-0
Tao Sun, Jianqiu Xu, Caiping Hu
{"title":"An Efficient Algorithm of Star Subgraph Queries on Urban Traffic Knowledge Graph","authors":"Tao Sun, Jianqiu Xu, Caiping Hu","doi":"10.1007/s41019-022-00198-0","DOIUrl":"https://doi.org/10.1007/s41019-022-00198-0","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":"12 1","pages":"383 - 401"},"PeriodicalIF":4.2,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81601798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An Adaptive Elastic Multi-model Big Data Analysis and Information Extraction System 自适应弹性多模型大数据分析与信息提取系统
IF 4.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-10-12 DOI: 10.1007/s41019-022-00196-2
Qiang Yin, Jianhua Wang, Sheng Du, Jianquan Leng, Jintao Li, Yinhao Hong, Feng Zhang, Yunpeng Chai, Xiao Zhang, Xiaonan Zhao, Mengyu Li, Song Xiao, Wei Lu
{"title":"An Adaptive Elastic Multi-model Big Data Analysis and Information Extraction System","authors":"Qiang Yin, Jianhua Wang, Sheng Du, Jianquan Leng, Jintao Li, Yinhao Hong, Feng Zhang, Yunpeng Chai, Xiao Zhang, Xiaonan Zhao, Mengyu Li, Song Xiao, Wei Lu","doi":"10.1007/s41019-022-00196-2","DOIUrl":"https://doi.org/10.1007/s41019-022-00196-2","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":"27 1","pages":"328 - 338"},"PeriodicalIF":4.2,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84733067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
When Research Topic Trend Prediction Meets Fact-Based Annotations 当研究主题趋势预测满足基于事实的注解时
IF 4.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-10-12 DOI: 10.1007/s41019-022-00197-1
Jiachen Wang, Jiajie Xu, Wei Chen, Lei Zhao
{"title":"When Research Topic Trend Prediction Meets Fact-Based Annotations","authors":"Jiachen Wang, Jiajie Xu, Wei Chen, Lei Zhao","doi":"10.1007/s41019-022-00197-1","DOIUrl":"https://doi.org/10.1007/s41019-022-00197-1","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":"87 1","pages":"316 - 327"},"PeriodicalIF":4.2,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81190102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Data Science and Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1