Pub Date : 2022-07-18DOI: 10.26599/BDMA.2022.9020003
Mohamed Khalifa Boutahir;Yousef Farhaoui;Mourade Azrour;Imad Zeroual;Ahmad El Allaoui
Solar radiation is capable of producing heat, causing chemical reactions, or generating electricity. Thus, the amount of solar radiation at different times of the day must be determined to design and equip all solar systems. Moreover, it is necessary to have a thorough understanding of different solar radiation components, such as Direct Normal Irradiance (DNI), Diffuse Horizontal Irradiance (DHI), and Global Horizontal Irradiance (GHI). Unfortunately, measurements of solar radiation are not easily accessible for the majority of regions on the globe. This paper aims to develop a set of deep learning models through feature importance algorithms to predict the DNI data. The proposed models are based on historical data of meteorological parameters and solar radiation properties in a specific location of the region of Errachidia, Morocco, from January 1, 2017, to December 31, 2019, with an interval of 60 minutes. The findings demonstrated that feature selection approaches play a crucial role in forecasting of solar radiation accurately when compared with the available data.
{"title":"Effect of Feature Selection on the Prediction of Direct Normal Irradiance","authors":"Mohamed Khalifa Boutahir;Yousef Farhaoui;Mourade Azrour;Imad Zeroual;Ahmad El Allaoui","doi":"10.26599/BDMA.2022.9020003","DOIUrl":"https://doi.org/10.26599/BDMA.2022.9020003","url":null,"abstract":"Solar radiation is capable of producing heat, causing chemical reactions, or generating electricity. Thus, the amount of solar radiation at different times of the day must be determined to design and equip all solar systems. Moreover, it is necessary to have a thorough understanding of different solar radiation components, such as Direct Normal Irradiance (DNI), Diffuse Horizontal Irradiance (DHI), and Global Horizontal Irradiance (GHI). Unfortunately, measurements of solar radiation are not easily accessible for the majority of regions on the globe. This paper aims to develop a set of deep learning models through feature importance algorithms to predict the DNI data. The proposed models are based on historical data of meteorological parameters and solar radiation properties in a specific location of the region of Errachidia, Morocco, from January 1, 2017, to December 31, 2019, with an interval of 60 minutes. The findings demonstrated that feature selection approaches play a crucial role in forecasting of solar radiation accurately when compared with the available data.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"5 4","pages":"309-317"},"PeriodicalIF":13.6,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9832761/09832772.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68067554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Total Contents","authors":"","doi":"","DOIUrl":"https://doi.org/","url":null,"abstract":"","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"5 4","pages":"I-II"},"PeriodicalIF":13.6,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9832761/09832764.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68067884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-18DOI: 10.26599/BDMA.2021.9020019
Zouhaier Brahmia;Fabio Grandi;Rafik Bouaziz
Nowadays, ontologies, which are defined under the OWL 2 Web Ontology Language (OWL 2), are being used in several fields like artificial intelligence, knowledge engineering, and Semantic Web environments to access data, answer queries, or infer new knowledge. In particular, ontologies can be used to model the semantics of big data as an enabling factor for the deployment of intelligent analytics. Big data are being widely stored and exchanged in JavaScript Object Notation (JSON) format, in particular by Web applications. However, JSON data collections lack explicit semantics as they are in general schema-less, which does not allow to efficiently leverage the benefits of big data. Furthermore, several applications require bookkeeping of the entire history of big data changes, for which no support is provided by mainstream Big Data management systems, including Not only SQL (NoSQL) database systems. In this paper, we propose an approach, named $tau text{JOWL}$