The use of artificial intelligence (AI) in healthcare has made significant progress in the last 10 years. Many experts believe that utilization of AI technologies, especially deep learning, will bring about drastic changes in how physicians understand, diagnose, and treat diseases. One aspect of this development is AI-enhanced electrocardiography (ECG) analysis. It involves not only optimizing the traditional ECG analysis by the physician and improving the accuracy of automatic interpretation by the ECG device but also introducing entirely new diagnostic options enabled by AI. Examples include assessing left ventricular function, predicting atrial fibrillation, and diagnosing both cardiac and noncardiac conditions. Through AI, the ECG becomes a comprehensive tool for screening, diagnosis, and patient management, potentially revolutionizing clinical practices. This paper provides an overview of the current state of this development, discusses existing limitations, and explores the challenges that may arise for healthcare professionals in this context.