Pub Date : 2024-03-04DOI: 10.1186/s43020-023-00125-2
Yunhan Qi, Zheng Yao, Mingquan Lu
With the evolution of Global Navigation Satellite System (GNSS), new generation GNSS signals have adopted the dual-frequency multiplexing modulation techniques, which jointly modulate multiple signals located on multiple sub-frequencies into a Wideband Multiplexed Signal (WMS). Although WMSs were proposed initially to reduce the complexity of satellite transmitters and improve the transmission efficiency of signals, their multi-component structures and wide root mean square bandwidths introduced by high-frequency subcarriers also provide the possibility to improve the GNSS ranging precision. Therefore, this paper proposes a Dual-assisted Multi-component Tracking (DMT) technique, which can not only fully use high-frequency subcarriers in WMSs, but also effectively track carrier, subcarrier, and code by jointly utilizing all components in WMS. In this paper, the tracking and ranging performances of DMT are comprehensively analyzed theoretically and by simulation and real experiments. The results show that compared with existing WMS tracking methods, DMT can achieve tracking results with lower tracking jitters and ranging results with higher precision, providing a highly advantageous solution for new generation GNSS signal processing.
{"title":"Dual-assisted high-precision tracking technique for wideband multiplexed signals in new generation GNSS","authors":"Yunhan Qi, Zheng Yao, Mingquan Lu","doi":"10.1186/s43020-023-00125-2","DOIUrl":"https://doi.org/10.1186/s43020-023-00125-2","url":null,"abstract":"With the evolution of Global Navigation Satellite System (GNSS), new generation GNSS signals have adopted the dual-frequency multiplexing modulation techniques, which jointly modulate multiple signals located on multiple sub-frequencies into a Wideband Multiplexed Signal (WMS). Although WMSs were proposed initially to reduce the complexity of satellite transmitters and improve the transmission efficiency of signals, their multi-component structures and wide root mean square bandwidths introduced by high-frequency subcarriers also provide the possibility to improve the GNSS ranging precision. Therefore, this paper proposes a Dual-assisted Multi-component Tracking (DMT) technique, which can not only fully use high-frequency subcarriers in WMSs, but also effectively track carrier, subcarrier, and code by jointly utilizing all components in WMS. In this paper, the tracking and ranging performances of DMT are comprehensively analyzed theoretically and by simulation and real experiments. The results show that compared with existing WMS tracking methods, DMT can achieve tracking results with lower tracking jitters and ranging results with higher precision, providing a highly advantageous solution for new generation GNSS signal processing.","PeriodicalId":52643,"journal":{"name":"Satellite Navigation","volume":"3 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-19DOI: 10.1186/s43020-023-00124-3
Jinye Ma, Shouchuan Fang, Jianhu Zhao
The conventional technique for positioning seafloor geophones in ocean bottom seismic exploration encounters several challenges, including the significant impact of outliers on positioning results, underutilization of high-precision observations, and low efficiency in real-time data processing. These issues inevitably affect the quality of seismic exploration outcomes. To address these challenges and enhance the accuracy of geophone positioning, this paper proposes a rigorous real-time acoustic positioning method for geophones based on sequential adjustment and Baarda's outlier detection approach. The proposed method comprises three key steps: grouping the original acoustic observations, constructing the intra-group acoustic positioning model, and synthesizing the positioning results across the different groups. The validity and practicality of this approach are confirmed through a simulation experiment as well as the field experiment conducted in the Bohai Sea, China. The results demonstrate that the proposed method effectively eliminates outliers in the original observations and maximizes the utilization of high-quality observations. Compared to traditional acoustic positioning methods, it significantly reduces positioning errors from meters to decimeters, and in some cases can achieve centimeter-level precision. When the sound velocity profile in the operating sea area is measured, the method can attain the posterior standard deviation at the millimeter level and positioning errors within 10 cm. When the sound velocity profile is unknown, the method can achieve the posterior standard deviation at centimeter-level and positioning errors of approximately 20 cm.
{"title":"A rigorous real-time acoustic positioning method for ocean bottom seismic exploration","authors":"Jinye Ma, Shouchuan Fang, Jianhu Zhao","doi":"10.1186/s43020-023-00124-3","DOIUrl":"https://doi.org/10.1186/s43020-023-00124-3","url":null,"abstract":"The conventional technique for positioning seafloor geophones in ocean bottom seismic exploration encounters several challenges, including the significant impact of outliers on positioning results, underutilization of high-precision observations, and low efficiency in real-time data processing. These issues inevitably affect the quality of seismic exploration outcomes. To address these challenges and enhance the accuracy of geophone positioning, this paper proposes a rigorous real-time acoustic positioning method for geophones based on sequential adjustment and Baarda's outlier detection approach. The proposed method comprises three key steps: grouping the original acoustic observations, constructing the intra-group acoustic positioning model, and synthesizing the positioning results across the different groups. The validity and practicality of this approach are confirmed through a simulation experiment as well as the field experiment conducted in the Bohai Sea, China. The results demonstrate that the proposed method effectively eliminates outliers in the original observations and maximizes the utilization of high-quality observations. Compared to traditional acoustic positioning methods, it significantly reduces positioning errors from meters to decimeters, and in some cases can achieve centimeter-level precision. When the sound velocity profile in the operating sea area is measured, the method can attain the posterior standard deviation at the millimeter level and positioning errors within 10 cm. When the sound velocity profile is unknown, the method can achieve the posterior standard deviation at centimeter-level and positioning errors of approximately 20 cm.","PeriodicalId":52643,"journal":{"name":"Satellite Navigation","volume":"6 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139921295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tropospheric delay is a significant error source in Global Navigation Satellite Systems (GNSS) positioning. Slant Path Delay (SPD) is commonly derived by multiplying Zenith Tropospheric Delay (ZTD) with a mapping function. However, mapping functions, assuming atmospheric isotropy, restrict the accuracy of derived SPDs. To improve the accuracy, a horizontal gradient correction is introduced to account for azimuth-dependent SPD variations, treating the atmosphere as anisotropic. This study uncovers that, amidst atmospheric dynamics and spatiotemporal changes in moisture content, the SPD deviates from that based on traditional isotropy or anisotropy assumption. It innovatively introduces the concept that SPD exhibits non-isotropy with respect to azimuth angles. Hypothesis validation involves assessing SPD accuracy using three mapping functions at five International GNSS Service (IGS) stations, referencing the SPD with the ray-tracing method. It subsequently evaluates the SPD accuracy with horizontal gradient correction based on Vienna Mapping Function 3 (VMF3) estimation. Lastly, the non-isotropic of SPD is analyzed through the ray-tracing method. The results indicate the smallest residual (1.1–82.7 mm) between the SPDs with VMF3 and those with the ray-tracing. However, introducing horizontal gradient correction yields no significant improvement of SPD accuracy. Considering potential decimeter-level differences in SPD due to non-isotropic tropospheric delay across azimuth angles, a precise grasp and summary of these variations is pivotal for accurate tropospheric delay modeling. This finding provides vital support for future high-precision tropospheric delay modeling.
对流层延迟是全球导航卫星系统(GNSS)定位的一个重要误差源。斜路径延迟(SPD)通常是通过将天顶对流层延迟(ZTD)与映射函数相乘得出的。然而,假设大气各向同性的映射函数限制了推导出的 SPD 的精度。为了提高精度,引入了水平梯度校正,将大气视为各向异性,以考虑与方位角有关的 SPD 变化。这项研究发现,在大气动力学和含水量的时空变化中,SPD 偏离了传统的各向同性或各向异性假设。它创新性地提出了 SPD 在方位角上表现出非各向同性的概念。假设验证包括在五个国际全球导航卫星系统服务(IGS)站点使用三种制图函数评估 SPD 精确度,并用射线追踪方法参考 SPD。随后,根据维也纳测绘函数 3(VMF3)的估算,通过水平梯度校正评估 SPD 的精度。最后,通过射线追踪法分析了 SPD 的非各向异性。结果表明,使用 VMF3 的 SPD 与使用光线追踪的 SPD 之间的残差(1.1-82.7 毫米)最小。然而,引入水平梯度校正并不能显著提高 SPD 的精度。考虑到各方位角非各向同性对流层延迟导致的 SPD 可能存在分米级的差异,准确把握和总结这些变化对于准确的对流层延迟建模至关重要。这一发现为未来高精度对流层延迟建模提供了重要支持。
{"title":"An initial investigation of the non-isotropic feature of GNSS tropospheric delay","authors":"Ying Xu, Zaozao Yang, Hongzhan Zhou, Fangzhao Zhang","doi":"10.1186/s43020-023-00122-5","DOIUrl":"https://doi.org/10.1186/s43020-023-00122-5","url":null,"abstract":"Tropospheric delay is a significant error source in Global Navigation Satellite Systems (GNSS) positioning. Slant Path Delay (SPD) is commonly derived by multiplying Zenith Tropospheric Delay (ZTD) with a mapping function. However, mapping functions, assuming atmospheric isotropy, restrict the accuracy of derived SPDs. To improve the accuracy, a horizontal gradient correction is introduced to account for azimuth-dependent SPD variations, treating the atmosphere as anisotropic. This study uncovers that, amidst atmospheric dynamics and spatiotemporal changes in moisture content, the SPD deviates from that based on traditional isotropy or anisotropy assumption. It innovatively introduces the concept that SPD exhibits non-isotropy with respect to azimuth angles. Hypothesis validation involves assessing SPD accuracy using three mapping functions at five International GNSS Service (IGS) stations, referencing the SPD with the ray-tracing method. It subsequently evaluates the SPD accuracy with horizontal gradient correction based on Vienna Mapping Function 3 (VMF3) estimation. Lastly, the non-isotropic of SPD is analyzed through the ray-tracing method. The results indicate the smallest residual (1.1–82.7 mm) between the SPDs with VMF3 and those with the ray-tracing. However, introducing horizontal gradient correction yields no significant improvement of SPD accuracy. Considering potential decimeter-level differences in SPD due to non-isotropic tropospheric delay across azimuth angles, a precise grasp and summary of these variations is pivotal for accurate tropospheric delay modeling. This finding provides vital support for future high-precision tropospheric delay modeling.","PeriodicalId":52643,"journal":{"name":"Satellite Navigation","volume":"1 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139469932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1186/s43020-023-00121-6
Hai Zhu, Kejie Chen, Haishan Chai, Yuanbin Ye, Wenjian Liu
As global temperature rises, the frequency of extreme climate events, e.g., severe droughts and floods, has increased significantly and caused severe damage over the past years. To this regard, precipitation efficiency, a crucial meteorological parameter, could provide valuable insights for a better understanding of the patterns and characteristics of these extreme events. In this study, taking Guangdong province as an exemplary region, we first obtained long-term and high-resolution historical records of precipitation efficiency by integrating the observations from a dense network of Global Navigation Satellite System (GNSS) stations with precipitation data, and then characterized the extreme drought and wetness through climate indices. We found a distinct seasonal trend in precipitation efficiency in Guangdong, with annual fluctuations ranging from 10 to 25%. Notably, precipitation efficiency is higher in proximity to the Pearl River Delta Plain and gradually decreases towards the east and west. The occurrence of anomalous peaks and valleys in precipitation efficiency generally corresponds to dry and wet conditions, respectively. A total of 9 extreme wet events and 6 dry events occurred from January 2007 to May 2022, with durations from 3 to 6 months. Our results also demonstrated that both wet and dry frequencies exhibit an increasing trend with the expansion of the time scale, and the frequency of extreme events near the Pearl River Delta Plain surpasses that of other regions. Furthermore, the propagation time from meteorological anomalies to agricultural and hydrological anomalies is about 3 months. The periodic characteristics of meteorological anomalies are identified as the primary driver for other anomalous periodic patterns. Our work unveils the long-term dynamic behavior of precipitation efficiency, as well as the characteristics of extreme drought and wetness events in the regions characterized by intricate land–atmosphere interactions.
{"title":"Characterizing extreme drought and wetness in Guangdong, China using global navigation satellite system and precipitation data","authors":"Hai Zhu, Kejie Chen, Haishan Chai, Yuanbin Ye, Wenjian Liu","doi":"10.1186/s43020-023-00121-6","DOIUrl":"https://doi.org/10.1186/s43020-023-00121-6","url":null,"abstract":"As global temperature rises, the frequency of extreme climate events, e.g., severe droughts and floods, has increased significantly and caused severe damage over the past years. To this regard, precipitation efficiency, a crucial meteorological parameter, could provide valuable insights for a better understanding of the patterns and characteristics of these extreme events. In this study, taking Guangdong province as an exemplary region, we first obtained long-term and high-resolution historical records of precipitation efficiency by integrating the observations from a dense network of Global Navigation Satellite System (GNSS) stations with precipitation data, and then characterized the extreme drought and wetness through climate indices. We found a distinct seasonal trend in precipitation efficiency in Guangdong, with annual fluctuations ranging from 10 to 25%. Notably, precipitation efficiency is higher in proximity to the Pearl River Delta Plain and gradually decreases towards the east and west. The occurrence of anomalous peaks and valleys in precipitation efficiency generally corresponds to dry and wet conditions, respectively. A total of 9 extreme wet events and 6 dry events occurred from January 2007 to May 2022, with durations from 3 to 6 months. Our results also demonstrated that both wet and dry frequencies exhibit an increasing trend with the expansion of the time scale, and the frequency of extreme events near the Pearl River Delta Plain surpasses that of other regions. Furthermore, the propagation time from meteorological anomalies to agricultural and hydrological anomalies is about 3 months. The periodic characteristics of meteorological anomalies are identified as the primary driver for other anomalous periodic patterns. Our work unveils the long-term dynamic behavior of precipitation efficiency, as well as the characteristics of extreme drought and wetness events in the regions characterized by intricate land–atmosphere interactions.","PeriodicalId":52643,"journal":{"name":"Satellite Navigation","volume":"16 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139064012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-04DOI: 10.1186/s43020-023-00120-7
Shuqiang Xue, Baojin Li, Zhen Xiao, Yue Sun, Jingsen Li
In-field Sound Speed Profile (SSP) measurement is still indispensable for achieving centimeter-level-precision Global Navigation Satellite System (GNSS)-Acoustic (GNSS-A) positioning in current state of the art. However, in-field SSP measurement on the one hand causes a huge cost and on the other hand prevents GNSS-A from global seafloor geodesy especially for real-time applications. We propose an Empirical Sound Speed Profile (ESSP) model with three unknown temperature parameters jointly estimated with the seafloor geodetic station coordinates, which is called the 1st-level optimization. Furthermore, regarding the sound speed variations of ESSP we propose a so-called 2nd-level optimization to achieve the centimeter-level-precision positioning for monitoring the seafloor tectonic movement. Long-term seafloor geodetic data analysis shows that, the proposed two-level optimization approach can achieve almost the same positioning result with that based on the in-field SSP. The influence of substituting the in-field SSP with ESSP on the horizontal coordinates is less than 3 mm, while that on the vertical coordinate is only 2–3 cm in the standard deviation sense.
{"title":"Centimeter-level-precision seafloor geodetic positioning model with self-structured empirical sound speed profile","authors":"Shuqiang Xue, Baojin Li, Zhen Xiao, Yue Sun, Jingsen Li","doi":"10.1186/s43020-023-00120-7","DOIUrl":"https://doi.org/10.1186/s43020-023-00120-7","url":null,"abstract":"In-field Sound Speed Profile (SSP) measurement is still indispensable for achieving centimeter-level-precision Global Navigation Satellite System (GNSS)-Acoustic (GNSS-A) positioning in current state of the art. However, in-field SSP measurement on the one hand causes a huge cost and on the other hand prevents GNSS-A from global seafloor geodesy especially for real-time applications. We propose an Empirical Sound Speed Profile (ESSP) model with three unknown temperature parameters jointly estimated with the seafloor geodetic station coordinates, which is called the 1st-level optimization. Furthermore, regarding the sound speed variations of ESSP we propose a so-called 2nd-level optimization to achieve the centimeter-level-precision positioning for monitoring the seafloor tectonic movement. Long-term seafloor geodetic data analysis shows that, the proposed two-level optimization approach can achieve almost the same positioning result with that based on the in-field SSP. The influence of substituting the in-field SSP with ESSP on the horizontal coordinates is less than 3 mm, while that on the vertical coordinate is only 2–3 cm in the standard deviation sense.","PeriodicalId":52643,"journal":{"name":"Satellite Navigation","volume":"875 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-13DOI: 10.1186/s43020-023-00119-0
Duo Wang, Guanwen Huang, Yuan Du, Qin Zhang, Zhengwei Bai, Jing Tian
Abstract The Real-Time Kinematic (RTK) positioning method of the Global Navigation Satellite System (GNSS) has been widely used for landslide monitoring. The stability of its reference station is crucial to obtain accurate and reliable monitoring results. Unstable reference stations due to the geological environment and human activities are difficult to detect and in practical applications often ignored. As a result, it affects the positioning solutions and subsequently the interpretation and detection of landslide motions, which must be addressed in GNSS landslide monitoring. To solve this problem, we propose using the Precise Point Positioning (PPP) technique to analyze the stability of the reference station by verifying its position. The deformations of the monitoring stations are then compensated. First, the reference station coordinates are obtained by the PPP technique and tectonic motion is considered in data processing. The change or breakout of the reference station position is then determined using a cumulative sum control chart method. Finally, each monitoring station’s displacements are compensated according to the displacements of the reference station. According to the results of the Tengqing landslide experiment, the PPP technique can be used in GNSS landslide monitoring to analyze the stability of reference stations. With PPP, millimeter-level accuracy for the coordinates of reference stations is achieved. Compared to the traditional deformation series, the compensated displacement series more reliably reflects the landslide motions. This study will increase the reliability of monitoring results and contribute to implementing GNSS in monitoring landslides.
{"title":"Stability analysis of reference station and compensation for monitoring stations in GNSS landslide monitoring","authors":"Duo Wang, Guanwen Huang, Yuan Du, Qin Zhang, Zhengwei Bai, Jing Tian","doi":"10.1186/s43020-023-00119-0","DOIUrl":"https://doi.org/10.1186/s43020-023-00119-0","url":null,"abstract":"Abstract The Real-Time Kinematic (RTK) positioning method of the Global Navigation Satellite System (GNSS) has been widely used for landslide monitoring. The stability of its reference station is crucial to obtain accurate and reliable monitoring results. Unstable reference stations due to the geological environment and human activities are difficult to detect and in practical applications often ignored. As a result, it affects the positioning solutions and subsequently the interpretation and detection of landslide motions, which must be addressed in GNSS landslide monitoring. To solve this problem, we propose using the Precise Point Positioning (PPP) technique to analyze the stability of the reference station by verifying its position. The deformations of the monitoring stations are then compensated. First, the reference station coordinates are obtained by the PPP technique and tectonic motion is considered in data processing. The change or breakout of the reference station position is then determined using a cumulative sum control chart method. Finally, each monitoring station’s displacements are compensated according to the displacements of the reference station. According to the results of the Tengqing landslide experiment, the PPP technique can be used in GNSS landslide monitoring to analyze the stability of reference stations. With PPP, millimeter-level accuracy for the coordinates of reference stations is achieved. Compared to the traditional deformation series, the compensated displacement series more reliably reflects the landslide motions. This study will increase the reliability of monitoring results and contribute to implementing GNSS in monitoring landslides.","PeriodicalId":52643,"journal":{"name":"Satellite Navigation","volume":"47 18","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136281593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.1186/s43020-023-00118-1
Kecai Jiang, Wenwen Li, Min Li, Jianghui Geng, Haixia Lyu, Qile Zhao, Jingnan Liu
Abstract The Haiyang-2D altimetry mission of China is one of the first Low Earth Orbit (LEO) satellites that can receive new B1C/B2a signals from the BeiDou-3 Navigation Satellite System (BDS-3) for Precise Orbit Determination (POD). In this work, the achievable accuracy of the single-receiver ambiguity resolution for onboard LEO satellites is studied based on the real measurements of new BDS-3 frequencies. Under normal conditions, six BDS-3 satellites on average are visible. However, the multipath of the B1C/B2a code observations presents some patchy patterns that cause near-field variations with an amplitude of approximately 40 cm and deteriorate the ambiguity-fixed rate. By modeling those errors, for the B2a code, a remarkable reduction of 53% in the Root Mean Square (RMS) is achieved at high elevations, along with an increase of 8% in the ambiguity-fixed rates. Additionally, an analysis of the onboard antenna's phase center offsets reveals that when compared to the solutions with float ambiguities, the estimated values in the antenna’s Z direction in the solutions with fixed ambiguities are notably smaller. The independent validation of the resulting POD using satellite laser ranging at 16 selected high-performance stations shows that the residuals are reduced by a minimum of 15.4% for ambiguity-fixed solutions with an RMS consistency of approximately 2.2 cm. Furthermore, when compared to the DORIS-derived orbits, a 4.3 cm 3D RMS consistency is achieved for the BDS-3-derived orbits, and the along-track bias is reduced from 2.9 to 0.4 cm using ambiguity fixing.
{"title":"Precise orbit determination of Haiyang-2D using onboard BDS-3 B1C/B2a observations with ambiguity resolution","authors":"Kecai Jiang, Wenwen Li, Min Li, Jianghui Geng, Haixia Lyu, Qile Zhao, Jingnan Liu","doi":"10.1186/s43020-023-00118-1","DOIUrl":"https://doi.org/10.1186/s43020-023-00118-1","url":null,"abstract":"Abstract The Haiyang-2D altimetry mission of China is one of the first Low Earth Orbit (LEO) satellites that can receive new B1C/B2a signals from the BeiDou-3 Navigation Satellite System (BDS-3) for Precise Orbit Determination (POD). In this work, the achievable accuracy of the single-receiver ambiguity resolution for onboard LEO satellites is studied based on the real measurements of new BDS-3 frequencies. Under normal conditions, six BDS-3 satellites on average are visible. However, the multipath of the B1C/B2a code observations presents some patchy patterns that cause near-field variations with an amplitude of approximately 40 cm and deteriorate the ambiguity-fixed rate. By modeling those errors, for the B2a code, a remarkable reduction of 53% in the Root Mean Square (RMS) is achieved at high elevations, along with an increase of 8% in the ambiguity-fixed rates. Additionally, an analysis of the onboard antenna's phase center offsets reveals that when compared to the solutions with float ambiguities, the estimated values in the antenna’s Z direction in the solutions with fixed ambiguities are notably smaller. The independent validation of the resulting POD using satellite laser ranging at 16 selected high-performance stations shows that the residuals are reduced by a minimum of 15.4% for ambiguity-fixed solutions with an RMS consistency of approximately 2.2 cm. Furthermore, when compared to the DORIS-derived orbits, a 4.3 cm 3D RMS consistency is achieved for the BDS-3-derived orbits, and the along-track bias is reduced from 2.9 to 0.4 cm using ambiguity fixing.","PeriodicalId":52643,"journal":{"name":"Satellite Navigation","volume":"19 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135585289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-16DOI: 10.1186/s43020-023-00117-2
Tongwen Fan, Tisheng Zhang, Hongping Zhang, Jun Mo, Xiaoji Niu
Abstract The Galileo navigation satellite system (Galileo) E5 Alternative Binary Offset Carrier (AltBOC) signal brings various challenges due to its complex modulation, wide bandwidth, and multi-peaked auto-correlation function. While wideband tracking needs to solve the ambiguity problem and design dedicated baseband channels, the single-sideband cannot have the outstanding performance of the AltBOC signal. We propose a new tracking method called “Double Sideband Combined Tracking” (DSCT), which can fully exploit the AltBOC signal’s code tracking accuracy without ambiguity and ensure compatibility with Binary Phase Shift Keying (BPSK) processing channels, easily implemented in hardware. The DSCT employs one phase locked loop and one delay locked loop to track the carrier and code, respectively. The double-sideband correlation results used by the two loops are recovered by coherently combining the single-sideband correlation results of the two BPSK channels. Meanwhile, the combined model, the loop discriminator, and the ambiguity detection of the DSCT are discussed. Furthermore, the code tracking error caused by thermal noise is modeled and analyzed. The test results based on real Galileo E5 signals show that the DSCT exhibits better or comparable code tracking accuracy to the AltBOC wideband tracking method. When the loop falsely locks onto a side-peak, the DSCT can quickly detect and re-lock on the main peak.
{"title":"A double sideband combined tracking method for Galileo E5 AltBOC signals","authors":"Tongwen Fan, Tisheng Zhang, Hongping Zhang, Jun Mo, Xiaoji Niu","doi":"10.1186/s43020-023-00117-2","DOIUrl":"https://doi.org/10.1186/s43020-023-00117-2","url":null,"abstract":"Abstract The Galileo navigation satellite system (Galileo) E5 Alternative Binary Offset Carrier (AltBOC) signal brings various challenges due to its complex modulation, wide bandwidth, and multi-peaked auto-correlation function. While wideband tracking needs to solve the ambiguity problem and design dedicated baseband channels, the single-sideband cannot have the outstanding performance of the AltBOC signal. We propose a new tracking method called “Double Sideband Combined Tracking” (DSCT), which can fully exploit the AltBOC signal’s code tracking accuracy without ambiguity and ensure compatibility with Binary Phase Shift Keying (BPSK) processing channels, easily implemented in hardware. The DSCT employs one phase locked loop and one delay locked loop to track the carrier and code, respectively. The double-sideband correlation results used by the two loops are recovered by coherently combining the single-sideband correlation results of the two BPSK channels. Meanwhile, the combined model, the loop discriminator, and the ambiguity detection of the DSCT are discussed. Furthermore, the code tracking error caused by thermal noise is modeled and analyzed. The test results based on real Galileo E5 signals show that the DSCT exhibits better or comparable code tracking accuracy to the AltBOC wideband tracking method. When the loop falsely locks onto a side-peak, the DSCT can quickly detect and re-lock on the main peak.","PeriodicalId":52643,"journal":{"name":"Satellite Navigation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136077803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Low-cost Global Navigation Satellite System (GNSS) devices offer a cost-effective alternative to traditional GNSS systems, making GNSS technology accessible to a wider range of applications. Nevertheless, low-cost GNSS devices often face the challenges in effectively capturing and tracking satellite signals, which leads to losing the observations at certain frequencies. Moreover, the observation peculiarities of low-cost devices are in contradistinction to those of traditional geodetic GNSS receivers. In this contribution, a low-cost PPP-RTK model that considers the unique characteristics of different types of measurements is developed and its performance is fully evaluated with u-blox F9P receivers equipped with three distinctive antenna configurations: vertical dipole, microstrip patch, and helix antennas. Several static and kinematic experiments in different scenarios are conducted to verify the effectiveness of the proposed method. The results indicate that the mixed-frequency PPP-RTK model outperforms the traditional dual-frequency one with higher positioning accuracy and fixing percentage. Among the three low-cost antennas tested, the vertical dipole antenna demonstrates the best performance under static conditions and shows a comparable performance as geodetic antennas with a positioning accuracy of 0.02 m, 0.01 m and 0.07 m in the east, north, and up components, respectively. Under low-speed kinematic scenarios, the helix antenna outperforms the other two with a positioning accuracy of (0.07 m, 0.07 m, 0.34 m). Furthermore, the helix antenna is also proved to be the best choice for vehicle navigation with an ambiguity fixing rate of over 95% and a positioning accuracy of (0.13 m, 0.14 m, 0.36 m).
{"title":"Performance analysis of frequency-mixed PPP-RTK using low-cost GNSS chipset with different antenna configurations","authors":"Xingxing Li, Hailong Gou, Xin Li, Zhiheng Shen, Hongbo Lyu, Yuxuan Zhou, Hao Wang, Qian Zhang","doi":"10.1186/s43020-023-00116-3","DOIUrl":"https://doi.org/10.1186/s43020-023-00116-3","url":null,"abstract":"Abstract Low-cost Global Navigation Satellite System (GNSS) devices offer a cost-effective alternative to traditional GNSS systems, making GNSS technology accessible to a wider range of applications. Nevertheless, low-cost GNSS devices often face the challenges in effectively capturing and tracking satellite signals, which leads to losing the observations at certain frequencies. Moreover, the observation peculiarities of low-cost devices are in contradistinction to those of traditional geodetic GNSS receivers. In this contribution, a low-cost PPP-RTK model that considers the unique characteristics of different types of measurements is developed and its performance is fully evaluated with u-blox F9P receivers equipped with three distinctive antenna configurations: vertical dipole, microstrip patch, and helix antennas. Several static and kinematic experiments in different scenarios are conducted to verify the effectiveness of the proposed method. The results indicate that the mixed-frequency PPP-RTK model outperforms the traditional dual-frequency one with higher positioning accuracy and fixing percentage. Among the three low-cost antennas tested, the vertical dipole antenna demonstrates the best performance under static conditions and shows a comparable performance as geodetic antennas with a positioning accuracy of 0.02 m, 0.01 m and 0.07 m in the east, north, and up components, respectively. Under low-speed kinematic scenarios, the helix antenna outperforms the other two with a positioning accuracy of (0.07 m, 0.07 m, 0.34 m). Furthermore, the helix antenna is also proved to be the best choice for vehicle navigation with an ambiguity fixing rate of over 95% and a positioning accuracy of (0.13 m, 0.14 m, 0.36 m).","PeriodicalId":52643,"journal":{"name":"Satellite Navigation","volume":"123 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135094839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-18DOI: 10.1186/s43020-023-00115-4
Xiaobin Wang, Yuanxi Yang, Bo Wang, Yuting Lin, Chunhao Han
Abstract The timescales incorporated into the Primary Frequency Standard (PFS) exhibit excellent stability and accuracy. However, during the dead time of PFS, the reliability of the timescale can be compromised. To address this issue, a resilient timekeeping algorithm with a Multi-observation Fusion Kalman Filter (MFKF) is proposed. This algorithm fuses the frequency measurements from hydrogen masers with various reference frequency standards, including PFS and commercial cesium beam atomic clocks. The simulation results show that the time deviation and instability of the timescale generated by MFKF are improved compared to those with Kalman filtering. The experimental results demonstrate that even within 70 days of PFS dead time the resilient timescale generated by MFKF can operate reliably. Furthermore, it is theoretically proven that MFKF produces a smaller post-covariance than that with single-observation Kalman filtering.
{"title":"Resilient timekeeping algorithm with multi-observation fusion Kalman filter","authors":"Xiaobin Wang, Yuanxi Yang, Bo Wang, Yuting Lin, Chunhao Han","doi":"10.1186/s43020-023-00115-4","DOIUrl":"https://doi.org/10.1186/s43020-023-00115-4","url":null,"abstract":"Abstract The timescales incorporated into the Primary Frequency Standard (PFS) exhibit excellent stability and accuracy. However, during the dead time of PFS, the reliability of the timescale can be compromised. To address this issue, a resilient timekeeping algorithm with a Multi-observation Fusion Kalman Filter (MFKF) is proposed. This algorithm fuses the frequency measurements from hydrogen masers with various reference frequency standards, including PFS and commercial cesium beam atomic clocks. The simulation results show that the time deviation and instability of the timescale generated by MFKF are improved compared to those with Kalman filtering. The experimental results demonstrate that even within 70 days of PFS dead time the resilient timescale generated by MFKF can operate reliably. Furthermore, it is theoretically proven that MFKF produces a smaller post-covariance than that with single-observation Kalman filtering.","PeriodicalId":52643,"journal":{"name":"Satellite Navigation","volume":"213 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135110874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}