首页 > 最新文献

Knowledge Engineering and Data Science最新文献

英文 中文
Sentiment Analysis of Amazon Product Reviews using Supervised Machine Learning Techniques 使用监督机器学习技术对亚马逊产品评论进行情感分析
Pub Date : 2022-06-07 DOI: 10.17977/um018v5i12022p101-108
Naveed Sultan
Today, everything is sold online, and many individuals can post reviews about different products to show feedback. Serves as feedback for businesses regarding buyer reviews, performance, product quality, and seller service. The project focuses on buyer opinions based on Mobile Phone reviews. Sentiment analysis is the function of analyzing all these data, obtaining opinions about these products and services that classify them as positive, negative, or neutral. This insight can help companies improve their products and help potential buyers make the right decisions. Once the preprocessing is classified on a trained dataset, these reviews must be preprocessed to remove unwanted data such as stop words, verbs, pos tagging, punctuation, and attachments. Many techniques are present to perform such tasks, but in this article, we will use a model that will use different inspection machine techniques.
今天,所有的东西都在网上销售,许多人可以发布关于不同产品的评论来显示反馈。为企业提供关于买方评论、性能、产品质量和卖方服务的反馈。该项目侧重于基于手机评论的买家意见。情感分析是分析所有这些数据的功能,获得对这些产品和服务的意见,将其分类为积极,消极或中性。这种洞察力可以帮助公司改进产品,并帮助潜在买家做出正确的决定。在训练数据集上对预处理进行分类后,必须对这些评论进行预处理,以删除不需要的数据,如停止词、动词、词性标注、标点符号和附件。目前有许多技术可以执行此类任务,但在本文中,我们将使用一个使用不同检测机技术的模型。
{"title":"Sentiment Analysis of Amazon Product Reviews using Supervised Machine Learning Techniques","authors":"Naveed Sultan","doi":"10.17977/um018v5i12022p101-108","DOIUrl":"https://doi.org/10.17977/um018v5i12022p101-108","url":null,"abstract":"Today, everything is sold online, and many individuals can post reviews about different products to show feedback. Serves as feedback for businesses regarding buyer reviews, performance, product quality, and seller service. The project focuses on buyer opinions based on Mobile Phone reviews. Sentiment analysis is the function of analyzing all these data, obtaining opinions about these products and services that classify them as positive, negative, or neutral. This insight can help companies improve their products and help potential buyers make the right decisions. Once the preprocessing is classified on a trained dataset, these reviews must be preprocessed to remove unwanted data such as stop words, verbs, pos tagging, punctuation, and attachments. Many techniques are present to perform such tasks, but in this article, we will use a model that will use different inspection machine techniques.","PeriodicalId":52868,"journal":{"name":"Knowledge Engineering and Data Science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67523422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Effect of Resampling on Classifier Performance: an Empirical Study 重新采样对分类器性能的影响:一项实证研究
Pub Date : 2022-06-07 DOI: 10.17977/um018v5i12022p87-100
U. Pujianto, Muhammad Iqbal Akbar, Niendhitta Tamia Lassela, D. Sutaji
An imbalanced class on a dataset is a common classification problem. The effect of using imbalanced class datasets can cause a decrease in the performance of the classifier. Resampling is one of the solutions to this problem. This study used 100 datasets from 3 websites: UCI Machine Learning, Kaggle, and OpenML. Each dataset will go through 3 processing stages: the resampling process, the classification process, and the significance testing process between performance evaluation values of the combination of classifier and the resampling using paired t-test. The resampling used in the process is Random Undersampling, Random Oversampling, and SMOTE. The classifier used in the classification process is Naïve Bayes Classifier, Decision Tree, and Neural Network. The classification results in accuracy, precision, recall, and f-measure values are tested using paired t-tests to determine the significance of the classifier's performance from datasets that were not resampled and those that had applied the resampling. The paired t-test is also used to find a combination between the classifier and the resampling that gives significant results. This study obtained two results. The first result is that resampling on imbalanced class datasets can substantially affect the classifier's performance more than the classifier's performance from datasets that are not applied the resampling technique. The second result is that combining the Neural Network Algorithm without the resampling provides significance based on the accuracy value. Combining the Neural Network Algorithm with the SMOTE technique provides significant performance based on the amount of precision, recall, and f-measure.
数据集上的不平衡类是一个常见的分类问题。使用不平衡的类数据集会导致分类器性能的下降。重采样是解决这一问题的方法之一。这项研究使用了来自3个网站的100个数据集:UCI机器学习、Kaggle和OpenML。每个数据集将经过3个处理阶段:重采样过程、分类过程、分类器组合的性能评价值与重采样使用配对t检验的显著性检验过程。在此过程中使用的重采样是随机欠采样,随机过采样和SMOTE。在分类过程中使用的分类器是Naïve贝叶斯分类器,决策树和神经网络。分类结果的准确性、精密度、召回率和f测量值使用配对t检验来确定分类器性能的显著性,这些数据集来自未重新采样的数据集和应用重新采样的数据集。配对t检验也用于找到分类器和重采样之间的组合,从而产生显著的结果。这项研究得到了两个结果。第一个结果是,与未应用重采样技术的数据集相比,对不平衡类数据集进行重采样对分类器性能的影响更大。第二个结果是结合不重采样的神经网络算法提供了基于精度值的意义。将神经网络算法与SMOTE技术相结合,基于精度、召回率和f-measure的数量提供了显著的性能。
{"title":"The Effect of Resampling on Classifier Performance: an Empirical Study","authors":"U. Pujianto, Muhammad Iqbal Akbar, Niendhitta Tamia Lassela, D. Sutaji","doi":"10.17977/um018v5i12022p87-100","DOIUrl":"https://doi.org/10.17977/um018v5i12022p87-100","url":null,"abstract":"An imbalanced class on a dataset is a common classification problem. The effect of using imbalanced class datasets can cause a decrease in the performance of the classifier. Resampling is one of the solutions to this problem. This study used 100 datasets from 3 websites: UCI Machine Learning, Kaggle, and OpenML. Each dataset will go through 3 processing stages: the resampling process, the classification process, and the significance testing process between performance evaluation values of the combination of classifier and the resampling using paired t-test. The resampling used in the process is Random Undersampling, Random Oversampling, and SMOTE. The classifier used in the classification process is Naïve Bayes Classifier, Decision Tree, and Neural Network. The classification results in accuracy, precision, recall, and f-measure values are tested using paired t-tests to determine the significance of the classifier's performance from datasets that were not resampled and those that had applied the resampling. The paired t-test is also used to find a combination between the classifier and the resampling that gives significant results. This study obtained two results. The first result is that resampling on imbalanced class datasets can substantially affect the classifier's performance more than the classifier's performance from datasets that are not applied the resampling technique. The second result is that combining the Neural Network Algorithm without the resampling provides significance based on the accuracy value. Combining the Neural Network Algorithm with the SMOTE technique provides significant performance based on the amount of precision, recall, and f-measure.","PeriodicalId":52868,"journal":{"name":"Knowledge Engineering and Data Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46476639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Knowledge Engineering and Data Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1