首页 > 最新文献

Molecular Pharmaceutics最新文献

英文 中文
Lipopolysaccharide Induces Resistance to CAR-T Cell Therapy of Colorectal Cancer Cells through TGF-β-Mediated Stemness Enhancement
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-21 DOI: 10.1021/acs.molpharmaceut.4c0026410.1021/acs.molpharmaceut.4c00264
Min Tao, Mengmeng Xue, Daoyu Zhou, Luyao Zhang, Xiaojuan Hou, Xinyu Zhu, Shiyao Feng, Haixin Yan, Xiaofeng Qian, Lixin Wei, Chen Zong*, Xue Yang* and Li Zhang*, 

Chimeric antigen receptor-T (CAR-T) cell therapy is a cellular immunotherapy that has emerged in recent years, and increasing studies showed that therapeutic resistance to CAR-T cell therapy presents in colorectal cancer patients. Lipopolysaccharide (LPS), a component of the cell wall of Gram-negative bacteria, is known to preserve a high concentration in the colon. Whether LPS is a contributing factor to the development of resistance in colorectal cancer cells against CAR-T cell therapy remains unclear. For in vivo experiments, colorectal cancer cells COLO205 were pretreated with LPS for 24 h and then were injected into nude mice through the tail vein, followed by CAR-T cells transplantation one day later. Later, the number of tumors in the lung tissues of the mice was observed. The in vitro experiments were performed on COLO205 cells, which were treated with LPS for 24 h. The effect of LPS on the stemness of COLO205 and SW620 cells was observed by using the colony formation assay and spheroidization experiments. The effect of LPS on the expression of stemness-related genes, including CD44, SOX2, and NANOG, was observed by qRT-PCR assay, Western blotting assay, and immunofluorescence staining. Inhibitors of TGF-β and the MYD88 inhibitor were used to study the mechanisms by which LPS induces the stemness enhancement and resistance to CAR-T cell therapy of COLO205 cells. The correlation between MYD88 and TGFB1, as well as the correlation between TGFB1 and stemness-related genes was analyzed using the TCGA database. Both the in vivo assay of nude mice and the in vitro assay showed that LPS pretreatment could induce resistance to CAR-T cell therapy of colorectal cancer cells. LPS could enhance COLO205 and SW620 cells stemness presented by upregulation of CD44, SOX2, and NANOG. The reverse interfering assay using the TGF-β inhibitor indicated that the autosecretion of TGF-β induced by LPS played a critical role in the stemness enhancement of colorectal cancer cells. The TCGA database analysis revealed a strong positive correlation between MYD88 and TGFB1. Additionally, TGFB1 has been found to upregulate the expression of genes associated with stemness. Further mechanism studies showed that the TLR4/MYD88 pathway medicates LPS-induced TGF-β expression. Our results suggested that LPS-induced resistance to CAR-T cell therapy of colorectal cancer cells through stemness enhancement. TLR4/MYD88 signal pathway-dependent TGF-β expression was involved in stemness enhancement and CAR-T cell therapy resistance. In conclusion, our findings help us to understand the underlying mechanisms of CAR-T cell therapy resistance and indicate that inhibitors of TGF-β and MYD88 are promising targeting candidates to promote a therapeutic effect of CAR-T cell therapy in colorectal cancer in the clinic.

{"title":"Lipopolysaccharide Induces Resistance to CAR-T Cell Therapy of Colorectal Cancer Cells through TGF-β-Mediated Stemness Enhancement","authors":"Min Tao,&nbsp;Mengmeng Xue,&nbsp;Daoyu Zhou,&nbsp;Luyao Zhang,&nbsp;Xiaojuan Hou,&nbsp;Xinyu Zhu,&nbsp;Shiyao Feng,&nbsp;Haixin Yan,&nbsp;Xiaofeng Qian,&nbsp;Lixin Wei,&nbsp;Chen Zong*,&nbsp;Xue Yang* and Li Zhang*,&nbsp;","doi":"10.1021/acs.molpharmaceut.4c0026410.1021/acs.molpharmaceut.4c00264","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.4c00264https://doi.org/10.1021/acs.molpharmaceut.4c00264","url":null,"abstract":"<p >Chimeric antigen receptor-T (CAR-T) cell therapy is a cellular immunotherapy that has emerged in recent years, and increasing studies showed that therapeutic resistance to CAR-T cell therapy presents in colorectal cancer patients. Lipopolysaccharide (LPS), a component of the cell wall of Gram-negative bacteria, is known to preserve a high concentration in the colon. Whether LPS is a contributing factor to the development of resistance in colorectal cancer cells against CAR-T cell therapy remains unclear. For <i>in vivo</i> experiments, colorectal cancer cells COLO205 were pretreated with LPS for 24 h and then were injected into nude mice through the tail vein, followed by CAR-T cells transplantation one day later. Later, the number of tumors in the lung tissues of the mice was observed. The <i>in vitro</i> experiments were performed on COLO205 cells, which were treated with LPS for 24 h. The effect of LPS on the stemness of COLO205 and SW620 cells was observed by using the colony formation assay and spheroidization experiments. The effect of LPS on the expression of stemness-related genes, including CD44, SOX2, and NANOG, was observed by qRT-PCR assay, Western blotting assay, and immunofluorescence staining. Inhibitors of TGF-β and the MYD88 inhibitor were used to study the mechanisms by which LPS induces the stemness enhancement and resistance to CAR-T cell therapy of COLO205 cells. The correlation between <i>MYD88</i> and <i>TGFB1</i>, as well as the correlation between <i>TGFB1</i> and stemness-related genes was analyzed using the TCGA database. Both the <i>in vivo</i> assay of nude mice and the <i>in vitro</i> assay showed that LPS pretreatment could induce resistance to CAR-T cell therapy of colorectal cancer cells. LPS could enhance COLO205 and SW620 cells stemness presented by upregulation of CD44, SOX2, and NANOG. The reverse interfering assay using the TGF-β inhibitor indicated that the autosecretion of TGF-β induced by LPS played a critical role in the stemness enhancement of colorectal cancer cells. The TCGA database analysis revealed a strong positive correlation between <i>MYD88</i> and <i>TGFB1</i>. Additionally, <i>TGFB1</i> has been found to upregulate the expression of genes associated with stemness. Further mechanism studies showed that the TLR4/MYD88 pathway medicates LPS-induced TGF-β expression. Our results suggested that LPS-induced resistance to CAR-T cell therapy of colorectal cancer cells through stemness enhancement. TLR4/MYD88 signal pathway-dependent TGF-β expression was involved in stemness enhancement and CAR-T cell therapy resistance. In conclusion, our findings help us to understand the underlying mechanisms of CAR-T cell therapy resistance and indicate that inhibitors of TGF-β and MYD88 are promising targeting candidates to promote a therapeutic effect of CAR-T cell therapy in colorectal cancer in the clinic.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":"22 4","pages":"1790–1803 1790–1803"},"PeriodicalIF":4.5,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143785031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Approaches for Predicting Drug Interactions with Human Organic Anion Transporter 4 (OAT4)
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-20 DOI: 10.1021/acs.molpharmaceut.4c0098410.1021/acs.molpharmaceut.4c00984
Lucy Martinez-Guerrero, Patricia A. Vignaux, Joshua S. Harris, Thomas R. Lane, Fabio Urbina, Stephen H. Wright, Sean Ekins* and Nathan J. Cherrington*, 

Human Organic Anion Transporter 4 (OAT4) is predominantly expressed in the kidneys, particularly in the apical membrane of the proximal tubule cells. This transporter is involved in the renal handling of endogenous and exogenous organic anions (OAs), making it an important transporter for drug–drug interactions (DDIs). To better understand OAT4-compound interactions, we generated single concentration (25 μM) in vitro inhibition data for over 1400 small molecules against the uptake of the fluorescent OA 6-carboxyfluorescein (6-CF) in Chinese hamster ovary (CHO) cells. Several drugs exhibiting higher than 50% inhibition in this initial screen were selected to determine IC50 values against three structurally distinct OAT4 substrates: estrone sulfate (ES), ochratoxin A (OTA), and 6-CF. These IC50 values were then compared to the drug plasma concentration as per the 2020 FDA drug–drug interaction (DDI) guidance. Several screened compounds, including some not previously reported, emerged as novel inhibitors of OAT4. These data were also used to build machine learning classification models to predict the activity of potential OAT4 inhibitors. We compared multiple machine learning algorithms and data cleaning techniques to model these screening data and investigated the utility of conformal predictors to predict OAT4 inhibition of a leave-out set. These experimental and computational approaches allowed us to model diverse and unbalanced data to enable predictions for DDIs mediated by this transporter.

{"title":"Computational Approaches for Predicting Drug Interactions with Human Organic Anion Transporter 4 (OAT4)","authors":"Lucy Martinez-Guerrero,&nbsp;Patricia A. Vignaux,&nbsp;Joshua S. Harris,&nbsp;Thomas R. Lane,&nbsp;Fabio Urbina,&nbsp;Stephen H. Wright,&nbsp;Sean Ekins* and Nathan J. Cherrington*,&nbsp;","doi":"10.1021/acs.molpharmaceut.4c0098410.1021/acs.molpharmaceut.4c00984","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.4c00984https://doi.org/10.1021/acs.molpharmaceut.4c00984","url":null,"abstract":"<p >Human Organic Anion Transporter 4 (OAT4) is predominantly expressed in the kidneys, particularly in the apical membrane of the proximal tubule cells. This transporter is involved in the renal handling of endogenous and exogenous organic anions (OAs), making it an important transporter for drug–drug interactions (DDIs). To better understand OAT4-compound interactions, we generated single concentration (25 μM) <i>in vitro</i> inhibition data for over 1400 small molecules against the uptake of the fluorescent OA 6-carboxyfluorescein (6-CF) in Chinese hamster ovary (CHO) cells. Several drugs exhibiting higher than 50% inhibition in this initial screen were selected to determine IC<sub>50</sub> values against three structurally distinct OAT4 substrates: estrone sulfate (ES), ochratoxin A (OTA), and 6-CF. These IC<sub>50</sub> values were then compared to the drug plasma concentration as per the 2020 FDA drug–drug interaction (DDI) guidance. Several screened compounds, including some not previously reported, emerged as novel inhibitors of OAT4. These data were also used to build machine learning classification models to predict the activity of potential OAT4 inhibitors. We compared multiple machine learning algorithms and data cleaning techniques to model these screening data and investigated the utility of conformal predictors to predict OAT4 inhibition of a leave-out set. These experimental and computational approaches allowed us to model diverse and unbalanced data to enable predictions for DDIs mediated by this transporter.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":"22 4","pages":"1847–1858 1847–1858"},"PeriodicalIF":4.5,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143785018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lyophilization Strategy Enhances the Thermostability and Field-Based Stability of Conjugated and Comixed Subunit Liposomal Adjuvant-containing Tuberculosis Vaccine Formulation (ID93 + GLA-LSQ)
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-19 DOI: 10.1021/acs.molpharmaceut.5c0015010.1021/acs.molpharmaceut.5c00150
Babatunde Ayodeji Adeagbo*, Morayo Alao, Ochuko Orherhe, Abdulafeez Akinloye, Gerhardt Boukes, Elize Willenburg, Caryn Fenner, Oluseye Oladotun Bolaji and Christopher B. Fox, 

ID93 + GLA-LSQ is an adjuvanted recombinant protein vaccine candidate that has demonstrated robust T-cell immunity and reduced bacterial burden in preclinical studies. Here, we explored the strategy of lyophilization by introducing 10% Trehalose as a bulking agent and cryoprotectant to develop a thermostable single-vial formulation of ID93 + GLA-LSQ. We further examined the stability of lyophilized formulations stored at 4 and 37 °C in the research laboratory and field stability across five study sites. Co-mixed (CoVL) and conjugated (ConjVL) formulations were prepared and assessed for various stability parameters including cake quality, melting point, liposome reformation, particle size, GLA/QS-21 concentration, presence of ID93, and biological activity for three months in the research laboratory and nine months at ambient temperature in five health centers. Stability assessment for both formulations stored in the research laboratory for three months showed that they were physically stable and biologically active. The field-based ambient stability assessment showed that the formulations maintained physical integrity, liposomal structure, and antigen integrity, with limited chemical degradation of GLA and QS-21 adjuvants observed. ConjVL retains GLA slightly better than the CoVL formulation, and a moderate increase in particle size was observed after nine months. These findings showed that the formulations demonstrate a promising stability profile after extended storage at ambient temperature, suggesting the potential for real-world application without strict refrigeration requirements.

{"title":"Lyophilization Strategy Enhances the Thermostability and Field-Based Stability of Conjugated and Comixed Subunit Liposomal Adjuvant-containing Tuberculosis Vaccine Formulation (ID93 + GLA-LSQ)","authors":"Babatunde Ayodeji Adeagbo*,&nbsp;Morayo Alao,&nbsp;Ochuko Orherhe,&nbsp;Abdulafeez Akinloye,&nbsp;Gerhardt Boukes,&nbsp;Elize Willenburg,&nbsp;Caryn Fenner,&nbsp;Oluseye Oladotun Bolaji and Christopher B. Fox,&nbsp;","doi":"10.1021/acs.molpharmaceut.5c0015010.1021/acs.molpharmaceut.5c00150","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.5c00150https://doi.org/10.1021/acs.molpharmaceut.5c00150","url":null,"abstract":"<p >ID93 + GLA-LSQ is an adjuvanted recombinant protein vaccine candidate that has demonstrated robust T-cell immunity and reduced bacterial burden in preclinical studies. Here, we explored the strategy of lyophilization by introducing 10% Trehalose as a bulking agent and cryoprotectant to develop a thermostable single-vial formulation of ID93 + GLA-LSQ. We further examined the stability of lyophilized formulations stored at 4 and 37 °C in the research laboratory and field stability across five study sites. Co-mixed (CoVL) and conjugated (ConjVL) formulations were prepared and assessed for various stability parameters including cake quality, melting point, liposome reformation, particle size, GLA/QS-21 concentration, presence of ID93, and biological activity for three months in the research laboratory and nine months at ambient temperature in five health centers. Stability assessment for both formulations stored in the research laboratory for three months showed that they were physically stable and biologically active. The field-based ambient stability assessment showed that the formulations maintained physical integrity, liposomal structure, and antigen integrity, with limited chemical degradation of GLA and QS-21 adjuvants observed. ConjVL retains GLA slightly better than the CoVL formulation, and a moderate increase in particle size was observed after nine months. These findings showed that the formulations demonstrate a promising stability profile after extended storage at ambient temperature, suggesting the potential for real-world application without strict refrigeration requirements.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":"22 4","pages":"2306–2315 2306–2315"},"PeriodicalIF":4.5,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143784998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topical Administration of Mucoadhesive Liposomes–Epoetin-β for Targeting the Ocular Posterior Segment
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-18 DOI: 10.1021/acs.molpharmaceut.5c0007910.1021/acs.molpharmaceut.5c00079
Sarvenaz Pakian, Mohammad reza Nabid*, Leila Satarian, Hamid Sadeghi Abandansari* and Ahmad Mirkani, 

Delivering drugs to the posterior eye segment is a complex task, particularly for treating retinal diseases. Neuroprotective approaches to maintain neuronal integrity have garnered significant attention in recent research. Here, we developed a mucoadhesive nanoparticulate system based on thiolated hyaluronic acid-modified cationic liposomes (HA-SH@liposomes) for topical administration. To fabricate these liposomes, we utilized microfluidic technology with a toroidal mixer to ensure consistent size and stability. Cationic liposomes were prepared by using the microfluidic method, and Epoetin-β (EPOβ), a neuroprotective agent, was loaded into the liposomes. Following this, HA-SH was conjugated to the EPOβ/HA-SH@liposomes using a postmicrofluidics conjugation method, wherein HA-SH was added dropwise to facilitate electrostatic interactions between the cationic liposomes and the anionic polymer. The resulting liposomes exhibited a mean size of 144 ± 1.3 nm and a polydispersity index (PDI) of 0.09 ± 0.01, indicating their uniformity. We evaluated the biocompatibility of the EPOβ/HA-SH@liposomes in vitro using live/dead and MTS assays on the RGC-5 cell line, demonstrating no notable cytotoxicity compared to the controls. To assess the in vivo performance, we conducted extensive ophthalmological examinations in C57/BL6 mice, including immunofluorescence staining to track the distribution of EPOβ and EPOβ/HA-SH@liposomes within the eyeball. Additionally, we quantified EPOβ levels in the retina using an enzyme-linked immunosorbent assay (ELISA) kit after the topical application of free EPOβ and the EPOβ/HA-SH@liposome formulation. The immunofluorescence staining revealed efficient delivery of EPOβ into the retina and choroid via the transcorneal route when administered as EPOβ/HA-SH@liposomes. ELISA results showed that the liposomal formulation achieved approximately 1.9× greater penetration efficiency than free EPOβ. Furthermore, optokinetic response (OKR) assays indicated that animals treated with EPOβ/HA-SH@liposomes exhibited slightly improved visual acuity compared with those treated with free EPOβ, though the difference was not statistically significant. In conclusion, the topical ocular administration of EPOβ/HA-SH@liposomes facilitated the efficient delivery of EPOβ to the retina, promoting retinal recovery and confirming its neuroprotective properties. This preclinical study provides a foundation for innovative strategies in the topical delivery of neuroprotective agents in ocular therapy.

{"title":"Topical Administration of Mucoadhesive Liposomes–Epoetin-β for Targeting the Ocular Posterior Segment","authors":"Sarvenaz Pakian,&nbsp;Mohammad reza Nabid*,&nbsp;Leila Satarian,&nbsp;Hamid Sadeghi Abandansari* and Ahmad Mirkani,&nbsp;","doi":"10.1021/acs.molpharmaceut.5c0007910.1021/acs.molpharmaceut.5c00079","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.5c00079https://doi.org/10.1021/acs.molpharmaceut.5c00079","url":null,"abstract":"<p >Delivering drugs to the posterior eye segment is a complex task, particularly for treating retinal diseases. Neuroprotective approaches to maintain neuronal integrity have garnered significant attention in recent research. Here, we developed a mucoadhesive nanoparticulate system based on thiolated hyaluronic acid-modified cationic liposomes (HA-SH@liposomes) for topical administration. To fabricate these liposomes, we utilized microfluidic technology with a toroidal mixer to ensure consistent size and stability. Cationic liposomes were prepared by using the microfluidic method, and Epoetin-β (EPOβ), a neuroprotective agent, was loaded into the liposomes. Following this, HA-SH was conjugated to the EPOβ/HA-SH@liposomes using a postmicrofluidics conjugation method, wherein HA-SH was added dropwise to facilitate electrostatic interactions between the cationic liposomes and the anionic polymer. The resulting liposomes exhibited a mean size of 144 ± 1.3 nm and a polydispersity index (PDI) of 0.09 ± 0.01, indicating their uniformity. We evaluated the biocompatibility of the EPOβ/HA-SH@liposomes in vitro using live/dead and MTS assays on the RGC-5 cell line, demonstrating no notable cytotoxicity compared to the controls. To assess the in vivo performance, we conducted extensive ophthalmological examinations in C57/BL6 mice, including immunofluorescence staining to track the distribution of EPOβ and EPOβ/HA-SH@liposomes within the eyeball. Additionally, we quantified EPOβ levels in the retina using an enzyme-linked immunosorbent assay (ELISA) kit after the topical application of free EPOβ and the EPOβ/HA-SH@liposome formulation. The immunofluorescence staining revealed efficient delivery of EPOβ into the retina and choroid via the transcorneal route when administered as EPOβ/HA-SH@liposomes. ELISA results showed that the liposomal formulation achieved approximately 1.9× greater penetration efficiency than free EPOβ. Furthermore, optokinetic response (OKR) assays indicated that animals treated with EPOβ/HA-SH@liposomes exhibited slightly improved visual acuity compared with those treated with free EPOβ, though the difference was not statistically significant. In conclusion, the topical ocular administration of EPOβ/HA-SH@liposomes facilitated the efficient delivery of EPOβ to the retina, promoting retinal recovery and confirming its neuroprotective properties. This preclinical study provides a foundation for innovative strategies in the topical delivery of neuroprotective agents in ocular therapy.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":"22 4","pages":"2287–2305 2287–2305"},"PeriodicalIF":4.5,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143784993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic Insights into the Antibiofilm Activity of Simvastatin and Lovastatin against Bacillus subtilis.
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-18 DOI: 10.1021/acs.molpharmaceut.5c00191
Nidhi Verma, Mamta Bajiya, Ragini Dolhey, Surabhi, Abhishek Singh Yadav, Chhavi Chaudhary, Dhankesh Meena, Hemant Arya, Tarun K Bhatt, Jay Kant Yadav, Jayendra Nath Shukla, Shiv Swaroop, Janmejay Pandey

Statins have been reported for diverse pleiotropic activities, including antimicrobial and antibiofilm. However, due to the limited understanding of their mode of action, none of the statins have gained approval for antimicrobial or antibiofilm applications. In a recent drug repurposing study, we observed that two statins (i.e., Simvastatin and Lovastatin) interact stably with TasA(28-261), the principal extracellular matrix protein of Bacillus subtilis, and also induce inhibition of biofilm formation. Nevertheless, the underlying mechanism remained elusive. In the present study, we examined the impact of these statins on the physiological activity of TasA(28-261), specifically its interaction with TapA(33-253) and aggregation into the amyloid-like structure using purified recombinant TasA(28-261) and TapA(33-253) in amyloid detection-specific in vitro assays (i.e., CR binding and ThT staining assays). Results revealed that both statins interfered with amyloid formation by the TasA(28-261)-TapA(33-253) complex, while neither statin inhibited amyloid formation by lysozyme, a model amyloid-forming protein. Moreover, neither statin significantly altered the expressions of terminal regulatory genes (viz, sinR, sinI) and terminal effector genes (viz, tasA, tapA, and bslA) involved in biofilm formation by B. subtilis. While the intricate interplay between Simvastatin and Lovastatin with the diverse molecular constituents of B. subtilis biofilm remains to be elucidated conclusively, the findings obtained during the present study suggest that the underlying mechanism for Simvastatin- and Lovastatin-mediated inhibition of B. subtilis biofilm formation is manifested by interfering with the aggregation and amyloid formation by TasA(28-261)-TapA(33-253). These results represent one of the first experimental evidence for the underlying mechanism of antibiofilm activity of statins and offer valuable directions for future research to harness statins as antibiofilm therapeutics.

{"title":"Mechanistic Insights into the Antibiofilm Activity of Simvastatin and Lovastatin against <i>Bacillus subtilis</i>.","authors":"Nidhi Verma, Mamta Bajiya, Ragini Dolhey, Surabhi, Abhishek Singh Yadav, Chhavi Chaudhary, Dhankesh Meena, Hemant Arya, Tarun K Bhatt, Jay Kant Yadav, Jayendra Nath Shukla, Shiv Swaroop, Janmejay Pandey","doi":"10.1021/acs.molpharmaceut.5c00191","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.5c00191","url":null,"abstract":"<p><p>Statins have been reported for diverse pleiotropic activities, including antimicrobial and antibiofilm. However, due to the limited understanding of their mode of action, none of the statins have gained approval for antimicrobial or antibiofilm applications. In a recent drug repurposing study, we observed that two statins (<i>i.e</i>., Simvastatin and Lovastatin) interact stably with TasA<sub>(28-261)</sub>, the principal extracellular matrix protein of <i>Bacillus subtilis</i>, and also induce inhibition of biofilm formation. Nevertheless, the underlying mechanism remained elusive. In the present study, we examined the impact of these statins on the physiological activity of TasA<sub>(28-261)</sub>, specifically its interaction with TapA<sub>(33-253)</sub> and aggregation into the amyloid-like structure using purified recombinant TasA<sub>(28-261)</sub> and TapA<sub>(33-253)</sub> in amyloid detection-specific <i>in vitro</i> assays (<i>i.e</i>., CR binding and ThT staining assays). Results revealed that both statins interfered with amyloid formation by the TasA<sub>(28-261)</sub>-TapA<sub>(33-253)</sub> complex, while neither statin inhibited amyloid formation by lysozyme, a model amyloid-forming protein. Moreover, neither statin significantly altered the expressions of terminal regulatory genes (<i>viz</i>, <i>sinR</i>, <i>sinI</i>) and terminal effector genes (<i>viz</i>, <i>tasA</i>, <i>tapA</i>, and <i>bslA</i>) involved in biofilm formation by <i>B. subtilis</i>. While the intricate interplay between Simvastatin and Lovastatin with the diverse molecular constituents of <i>B. subtilis</i> biofilm remains to be elucidated conclusively, the findings obtained during the present study suggest that the underlying mechanism for Simvastatin- and Lovastatin-mediated inhibition of <i>B. subtilis</i> biofilm formation is manifested by interfering with the aggregation and amyloid formation by TasA<sub>(28-261)</sub>-TapA<sub>(33-253)</sub>. These results represent one of the first experimental evidence for the underlying mechanism of antibiofilm activity of statins and offer valuable directions for future research to harness statins as antibiofilm therapeutics.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Retention of NTSR1-Targeted Radionuclide Therapeutics via Covalent Inhibitors in Pancreatic, Colorectal, and Prostate Cancer Models
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-18 DOI: 10.1021/acs.molpharmaceut.4c0132410.1021/acs.molpharmaceut.4c01324
Wenting Zhang, Wei Fan, Katie Brake, Alireza Basiri, Megan A. Hyun, Lynette M. Smith, Subodh M. Lele, Abhijit Aithal, Maneesh Jain and Jered C. Garrison*, 

Neurotensin receptor subtype 1 (NTSR1) is overexpressed in numerous cancers. Our laboratory is exploring the utilization of covalent cysteine protease inhibitors (e.g., E-64) to increase tumor retention of targeted radionuclide therapeutics (TRTs) through protein adduct formation. Using this approach, we reported [177Lu]Lu-NA-ET1, an NTSR1-targeted construct. In this work, we continue the exploration of [177Lu]Lu-NA-ET1 in three different NTSR1-positive cancer models. [177Lu]Lu-3BP-227, a clinically investigated NTSR1-targeted construct, was utilized as a comparative benchmark. Both [177Lu]Lu-NA-ET1 and [177Lu]Lu-3BP-227 underwent in vitro investigation, including internalization and autoradiographic sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) studies, in NTSR1-positive AsPC-1, HT-29, and PC-3 cell lines. Biodistribution, human radiation dosimetry, and in vivo autoradiographic SDS-PAGE studies were performed by using the same models. A dose escalation study using 585 MBq (15.8 mCi) of [177Lu]Lu-NA-ET1 was implemented in immunocompetent CF-1 mice. In all three cell lines, [177Lu]Lu-NA-ET1 demonstrated similar cellular uptake profiles relative to those of [177Lu]Lu-3BP-227. Biodistribution studies of [177Lu]Lu-NA-ET1 revealed increased (1.9–4.4-fold) tumor retention and radiation dose delivery relative to the control. Analysis of the in vitro and in vivo cellular and tissue lysates showed protein adducts that ranged from approximately 25–35 kDa, consistent with cysteine cathepsins, the speculative protein binding partner. A total of 585 MBq (15.8 mCi) of [177Lu]Lu-NA-ET1 was administered and found to be well-tolerated. Incorporating the covalent inhibitor in [177Lu]Lu-NA-ET1 resulted in an improved retention and radiation dose delivery profile compared to [177Lu]Lu-3BP-227. Examination of the therapeutic potential of [177Lu]Lu-NA-ET1 and further exploration of the chemical biology of this approach is underway.

{"title":"Enhanced Retention of NTSR1-Targeted Radionuclide Therapeutics via Covalent Inhibitors in Pancreatic, Colorectal, and Prostate Cancer Models","authors":"Wenting Zhang,&nbsp;Wei Fan,&nbsp;Katie Brake,&nbsp;Alireza Basiri,&nbsp;Megan A. Hyun,&nbsp;Lynette M. Smith,&nbsp;Subodh M. Lele,&nbsp;Abhijit Aithal,&nbsp;Maneesh Jain and Jered C. Garrison*,&nbsp;","doi":"10.1021/acs.molpharmaceut.4c0132410.1021/acs.molpharmaceut.4c01324","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.4c01324https://doi.org/10.1021/acs.molpharmaceut.4c01324","url":null,"abstract":"<p >Neurotensin receptor subtype 1 (NTSR1) is overexpressed in numerous cancers. Our laboratory is exploring the utilization of covalent cysteine protease inhibitors (e.g., E-64) to increase tumor retention of targeted radionuclide therapeutics (TRTs) through protein adduct formation. Using this approach, we reported [<sup>177</sup>Lu]Lu-NA-ET1, an NTSR1-targeted construct. In this work, we continue the exploration of [<sup>177</sup>Lu]Lu-NA-ET1 in three different NTSR1-positive cancer models. [<sup>177</sup>Lu]Lu-3BP-227, a clinically investigated NTSR1-targeted construct, was utilized as a comparative benchmark. Both [<sup>177</sup>Lu]Lu-NA-ET1 and [<sup>177</sup>Lu]Lu-3BP-227 underwent in vitro investigation, including internalization and autoradiographic sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) studies, in NTSR1-positive AsPC-1, HT-29, and PC-3 cell lines. Biodistribution, human radiation dosimetry, and in vivo autoradiographic SDS-PAGE studies were performed by using the same models. A dose escalation study using 585 MBq (15.8 mCi) of [<sup>177</sup>Lu]Lu-NA-ET1 was implemented in immunocompetent CF-1 mice. In all three cell lines, [<sup>177</sup>Lu]Lu-NA-ET1 demonstrated similar cellular uptake profiles relative to those of [<sup>177</sup>Lu]Lu-3BP-227. Biodistribution studies of [<sup>177</sup>Lu]Lu-NA-ET1 revealed increased (1.9–4.4-fold) tumor retention and radiation dose delivery relative to the control. Analysis of the in vitro and in vivo cellular and tissue lysates showed protein adducts that ranged from approximately 25–35 kDa, consistent with cysteine cathepsins, the speculative protein binding partner. A total of 585 MBq (15.8 mCi) of [<sup>177</sup>Lu]Lu-NA-ET1 was administered and found to be well-tolerated. Incorporating the covalent inhibitor in [<sup>177</sup>Lu]Lu-NA-ET1 resulted in an improved retention and radiation dose delivery profile compared to [<sup>177</sup>Lu]Lu-3BP-227. Examination of the therapeutic potential of [<sup>177</sup>Lu]Lu-NA-ET1 and further exploration of the chemical biology of this approach is underway.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":"22 4","pages":"2131–2141 2131–2141"},"PeriodicalIF":4.5,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143784994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Multifunctional Peptide-Decorated Nanofibers for Targeted Delivery of Temozolomide across the Blood–Brain Barrier
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-16 DOI: 10.1021/acs.molpharmaceut.4c0112510.1021/acs.molpharmaceut.4c01125
Rosa Bellavita, Teresa Barra, Simone Braccia, Marina Prisco, Salvatore Valiante, Assunta Lombardi, Linda Leone, Jessica Pisano, Rodolfo Esposito, Flavia Nastri, Gerardino D’Errico, Annarita Falanga and Stefania Galdiero*, 

A nanoplatform based on self-assembling peptides was developed with the ability to effectively transport and deliver a wide range of moieties across the blood–brain barrier (BBB) for the treatment of glioblastoma. Its surface was functionalized to have a targeted release of TMZ thanks to the targeting peptide that binds to EGFRvIII, which is overexpressed on tumor cells, and gH625, which acts as an enhancer of penetration. Furthermore, the on-demand release of TMZ was achieved through matrix metalloproteinase-9 (MMP-9) cleavage. Nanofibers were characterized for their stability, critical aggregation concentration, and morphology. Next, the effect on both 2D and 3D glioblastoma/astrocytoma (U-87) and glioma (U-118) cell lines was evaluated. The Annexin V/Propidium iodide showed an increase in necrotic and apoptotic cells, and the morphological analysis allowed to discover that both U-118 and U-87 spheroids are smaller in surface, perimeter, and Feret’s diameter when treated with NF-TMZ. The developed nanofiber was demonstrated to permeate the BBB in vitro in a 3D spheroidal biodynamic BBB model. Finally, there were no cytotoxic effects of nanofibers without the drug on spheroids, while a significant decrease in viability was observed when NF-TMZ was used. Overall, these results open new opportunities for the evaluation of the efficacy and safety of this nanoplatform in in vivo studies.

我们开发出了一种基于自组装肽的纳米平台,它能够有效地通过血脑屏障(BBB)运输和递送多种药物,用于治疗胶质母细胞瘤。由于靶向肽能与肿瘤细胞上过度表达的表皮生长因子受体三代(EGFRvIII)结合,而 gH625 则能起到增强渗透的作用,因此它的表面经过功能化处理,能定向释放 TMZ。此外,TMZ的按需释放是通过基质金属蛋白酶-9(MMP-9)裂解实现的。研究人员对纳米纤维的稳定性、临界聚集浓度和形态进行了表征。接着,评估了纳米纤维对二维和三维胶质母细胞瘤/母细胞瘤(U-87)和胶质瘤(U-118)细胞系的影响。Annexin V/Propidium iodide 显示坏死和凋亡细胞增加,形态学分析发现,经 NF-TMZ 处理后,U-118 和 U-87 球形细胞的表面、周长和 Feret 直径都变小了。在三维球状生物动力 BBB 模型中,所开发的纳米纤维被证明能在体外渗透 BBB。最后,不含药物的纳米纤维对球体没有细胞毒性作用,而使用 NF-TMZ 时则观察到存活率显著下降。总之,这些结果为评估这种纳米平台在体内研究中的有效性和安全性提供了新的机会。
{"title":"Engineering Multifunctional Peptide-Decorated Nanofibers for Targeted Delivery of Temozolomide across the Blood–Brain Barrier","authors":"Rosa Bellavita,&nbsp;Teresa Barra,&nbsp;Simone Braccia,&nbsp;Marina Prisco,&nbsp;Salvatore Valiante,&nbsp;Assunta Lombardi,&nbsp;Linda Leone,&nbsp;Jessica Pisano,&nbsp;Rodolfo Esposito,&nbsp;Flavia Nastri,&nbsp;Gerardino D’Errico,&nbsp;Annarita Falanga and Stefania Galdiero*,&nbsp;","doi":"10.1021/acs.molpharmaceut.4c0112510.1021/acs.molpharmaceut.4c01125","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.4c01125https://doi.org/10.1021/acs.molpharmaceut.4c01125","url":null,"abstract":"<p >A nanoplatform based on self-assembling peptides was developed with the ability to effectively transport and deliver a wide range of moieties across the blood–brain barrier (BBB) for the treatment of glioblastoma. Its surface was functionalized to have a targeted release of TMZ thanks to the targeting peptide that binds to EGFRvIII, which is overexpressed on tumor cells, and gH625, which acts as an enhancer of penetration. Furthermore, the on-demand release of TMZ was achieved through matrix metalloproteinase-9 (MMP-9) cleavage. Nanofibers were characterized for their stability, critical aggregation concentration, and morphology. Next, the effect on both 2D and 3D glioblastoma/astrocytoma (U-87) and glioma (U-118) cell lines was evaluated. The Annexin V/Propidium iodide showed an increase in necrotic and apoptotic cells, and the morphological analysis allowed to discover that both U-118 and U-87 spheroids are smaller in surface, perimeter, and Feret’s diameter when treated with NF-TMZ. The developed nanofiber was demonstrated to permeate the BBB <i>in vitro</i> in a 3D spheroidal biodynamic BBB model. Finally, there were no cytotoxic effects of nanofibers without the drug on spheroids, while a significant decrease in viability was observed when NF-TMZ was used. Overall, these results open new opportunities for the evaluation of the efficacy and safety of this nanoplatform in <i>in vivo</i> studies.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":"22 4","pages":"1920–1938 1920–1938"},"PeriodicalIF":4.5,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.molpharmaceut.4c01125","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143784982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Characterization of the [177Lu]Lu-Labeled Anti-CDH17 Nanobody Derivative for Radioimmunotherapy in the Gastric Cancer Xenograft Model
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-15 DOI: 10.1021/acs.molpharmaceut.4c0128510.1021/acs.molpharmaceut.4c01285
Chenkai Mao, Shicheng Li, Rencai Fan, Jiaqi Zhang, Xinying Fan, Zhen Shentu, Zhixiang Zhuang* and Lei Gan*, 

Cadherin 17 (CDH17) is highly expressed in digestive system cancers, and the potential of nanobodies targeting CDH17 as imaging probes and delivery vehicles for radioactive β-particles warrants exploration for their theranostic potential in CDH17-overexpressing gastric cancer (GC). In this study, we screened an anti-CDH17 nanobody library and constructed two antibodies: anti-CDH17 VHH (recombinant nanobody fused with a polyhistidine tag) and anti-CDH17 VHH-ABD (recombinant nanobody fused with an albumin-binding domain). VHH targeting CDH17 and its derivative VHH-ABD were conjugated with DOTA and labeled with radionuclide 177Lu. The pharmacokinetics and theranostic efficacy of these agents were evaluated in the GC xenograft models. [177Lu]Lu-VHH and [177Lu]Lu-VHH-ABD exhibited high radiochemical purity (>99%, n = 3) and successfully delineated CDH17-positive gastric cancer tissues on SPECT/CT imaging. Compared with the rapid renal clearance of [177Lu]Lu-VHH, [177Lu]Lu-VHH-ABD demonstrated prolonged circulation times with increased and sustained tumor accumulation. Survival experiments in the MKN-45 tumor model revealed that two doses of [177Lu]Lu-VHH-ABD effectively suppressed tumor growth, with limited systemic biotoxicity. Histological analysis using hematoxylin and eosin (H&E) staining and Ki67 immunohistochemistry confirmed structural disruption and low tumor cell proliferative activity in the tumor tissue. In preclinical studies, [177Lu]Lu-anti-CDH17 VHH-ABD demonstrated substantial antitumor efficacy with manageable toxicity, offering promising clinical potential as a viable therapeutic option for CDH17-overexpressing GC.

靶向 CDH17 的纳米抗体可作为成像探针和放射性 β 粒子的运载工具,其在 CDH17 高表达胃癌(GC)中的治疗潜力值得探索。在这项研究中,我们筛选了抗CDH17纳米抗体库,并构建了两种抗体:抗CDH17 VHH(融合了聚组氨酸标签的重组纳米抗体)和抗CDH17 VHH-ABD(融合了白蛋白结合域的重组纳米抗体)。靶向 CDH17 的 VHH 及其衍生物 VHH-ABD 与 DOTA 共轭,并用放射性核素 177Lu 标记。在 GC 异种移植模型中评估了这些药物的药代动力学和治疗效果。[177Lu]Lu-VHH和[177Lu]Lu-VHH-ABD显示出很高的放射化学纯度(99%,n = 3),并在SPECT/CT成像中成功描绘出CDH17阳性胃癌组织。与[177Lu]Lu-VHH在肾脏的快速清除相比,[177Lu]Lu-VHH-ABD的循环时间更长,肿瘤蓄积也更多更持久。MKN-45肿瘤模型的生存实验表明,两种剂量的[177Lu]Lu-VHH-ABD可有效抑制肿瘤生长,且全身生物毒性有限。使用苏木精和伊红(H&E)染色法和 Ki67 免疫组织化学法进行的组织学分析证实,肿瘤组织的结构遭到破坏,肿瘤细胞的增殖活性较低。在临床前研究中,[177Lu]Lu-抗 CDH17 VHH-ABD 表现出了显著的抗肿瘤疗效,且毒性可控,作为 CDH17 表达过高的 GC 的一种可行治疗方案,具有广阔的临床前景。
{"title":"Development and Characterization of the [177Lu]Lu-Labeled Anti-CDH17 Nanobody Derivative for Radioimmunotherapy in the Gastric Cancer Xenograft Model","authors":"Chenkai Mao,&nbsp;Shicheng Li,&nbsp;Rencai Fan,&nbsp;Jiaqi Zhang,&nbsp;Xinying Fan,&nbsp;Zhen Shentu,&nbsp;Zhixiang Zhuang* and Lei Gan*,&nbsp;","doi":"10.1021/acs.molpharmaceut.4c0128510.1021/acs.molpharmaceut.4c01285","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.4c01285https://doi.org/10.1021/acs.molpharmaceut.4c01285","url":null,"abstract":"<p >Cadherin 17 (CDH17) is highly expressed in digestive system cancers, and the potential of nanobodies targeting CDH17 as imaging probes and delivery vehicles for radioactive β-particles warrants exploration for their theranostic potential in CDH17-overexpressing gastric cancer (GC). In this study, we screened an anti-CDH17 nanobody library and constructed two antibodies: anti-CDH17 VHH (recombinant nanobody fused with a polyhistidine tag) and anti-CDH17 VHH-ABD (recombinant nanobody fused with an albumin-binding domain). VHH targeting CDH17 and its derivative VHH-ABD were conjugated with DOTA and labeled with radionuclide <sup>177</sup>Lu. The pharmacokinetics and theranostic efficacy of these agents were evaluated in the GC xenograft models. [<sup>177</sup>Lu]Lu-VHH and [<sup>177</sup>Lu]Lu-VHH-ABD exhibited high radiochemical purity (&gt;99%, <i>n</i> = 3) and successfully delineated CDH17-positive gastric cancer tissues on SPECT/CT imaging. Compared with the rapid renal clearance of [<sup>177</sup>Lu]Lu-VHH, [<sup>177</sup>Lu]Lu-VHH-ABD demonstrated prolonged circulation times with increased and sustained tumor accumulation. Survival experiments in the MKN-45 tumor model revealed that two doses of [<sup>177</sup>Lu]Lu-VHH-ABD effectively suppressed tumor growth, with limited systemic biotoxicity. Histological analysis using hematoxylin and eosin (H&amp;E) staining and Ki67 immunohistochemistry confirmed structural disruption and low tumor cell proliferative activity in the tumor tissue. In preclinical studies, [<sup>177</sup>Lu]Lu-anti-CDH17 VHH-ABD demonstrated substantial antitumor efficacy with manageable toxicity, offering promising clinical potential as a viable therapeutic option for CDH17-overexpressing GC.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":"22 4","pages":"2077–2087 2077–2087"},"PeriodicalIF":4.5,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143784964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cancer Targeting Radiopeptidomimetics in Molecular Nuclear Medicine.
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-13 DOI: 10.1021/acs.molpharmaceut.4c01180
Drishty Satpati

Peptides are highly receptor-affine molecules exhibiting suitable pharmacokinetics. Additionally, low-cost production, simple protocols allowing easy modifications, and tolerance toward harsh reaction conditions make peptides ideal ligands for preparation of radiopharmaceuticals for cancer detection and treatment. However, natural peptides being substrates for enzymes are susceptible to proteolysis, which limits the in vivo lifetime and the target uptake. Therefore, the majority of peptides are not able to progress beyond preclinical research. Advancement of peptides for clinical analysis needs modification to instill improved features. Continuous increase and further expected rise in cancer cases in the next decade require development of more disease-directed and promising radiopharmaceuticals. Redesigned peptide, mimicking the original peptide with similar or improved affinity and high metabolic stability, shall have significant edge. This review outlines the design of peptidomimetics by incorporation of D-amino acids (inverso); reversal of D-amino acid sequence (retro-inverso), and reversal of L-amino acid sequence (retro). Clinically successful radiopeptidomimetics prepared using the three approaches have been elaborated to elucidate the important role of peptidomimetics in cancer management.

{"title":"Cancer Targeting Radiopeptidomimetics in Molecular Nuclear Medicine.","authors":"Drishty Satpati","doi":"10.1021/acs.molpharmaceut.4c01180","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.4c01180","url":null,"abstract":"<p><p>Peptides are highly receptor-affine molecules exhibiting suitable pharmacokinetics. Additionally, low-cost production, simple protocols allowing easy modifications, and tolerance toward harsh reaction conditions make peptides ideal ligands for preparation of radiopharmaceuticals for cancer detection and treatment. However, natural peptides being substrates for enzymes are susceptible to proteolysis, which limits the <i>in vivo</i> lifetime and the target uptake. Therefore, the majority of peptides are not able to progress beyond preclinical research. Advancement of peptides for clinical analysis needs modification to instill improved features. Continuous increase and further expected rise in cancer cases in the next decade require development of more disease-directed and promising radiopharmaceuticals. Redesigned peptide, mimicking the original peptide with similar or improved affinity and high metabolic stability, shall have significant edge. This review outlines the design of peptidomimetics by incorporation of D-amino acids (inverso); reversal of D-amino acid sequence (retro-inverso), and reversal of L-amino acid sequence (retro). Clinically successful radiopeptidomimetics prepared using the three approaches have been elaborated to elucidate the important role of peptidomimetics in cancer management.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143612840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Head-to-Head Comparison of the in Vivo Performance of Highly Reactive and Polar 18F-Labeled Tetrazines
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-13 DOI: 10.1021/acs.molpharmaceut.4c0112910.1021/acs.molpharmaceut.4c01129
Lars Hvass*, Marius Müller, Markus Staudt, Rocio García-Vázquez, Tobias K. Gustavsson, Vladimir Shalgunov, Jesper T. Jørgensen, Umberto M. Battisti*, Matthias M. Herth* and Andreas Kjaer*, 

Pretargeted imaging harnessing tetrazine ligation has gained increased interest over recent years. Targeting vectors with slow pharmacokinetics may be visualized using short-lived radionuclides, such as fluorine-18 (18F) for positron emission tomography (PET), and result in improved target-to-background ratios compared to conventionally radiolabeled slowly accumulating vectors. We recently developed different radiochemical protocols enabling the direct radiofluorination of various tetrazine scaffolds, resulting in the development of various highly reactive and polar 18F-labeled tetrazines as lead candidates for pretargeted imaging. Here, we performed a direct head-to-head-comparison of our lead candidates to evaluate the most promising for future clinical translation. For that, all 18F-labeled tetrazine-scaffolds were synthesized in similar molar activity for improved comparability of their in vivo pretargeting performance. Intriguingly, previously reported dicarboxylic acid lead candidates with a net charge of −1 were outperformed by respective monocarboxylic acid derivatives bearing a net charge of 0, warranting further evaluation of such scaffolds prior to their clinical translation.

近年来,利用四嗪结扎进行靶前成像越来越受到关注。使用短寿命放射性核素(如用于正电子发射断层扫描(PET)的氟-18 (18F))可以对药代动力学缓慢的靶向载体进行可视化,与传统的放射性标记缓慢蓄积载体相比,靶-背景比得到了改善。我们最近开发出了不同的放射化学方案,可以直接对各种四嗪支架进行放射性氟化,从而开发出了各种高活性和极性的 18F 标记四嗪,作为预靶向成像的先导候选物。在这里,我们对候选先导化合物进行了直接的正面比较,以评估最有希望在未来实现临床转化的化合物。为此,我们以相似的摩尔活性合成了所有 18F 标记的四嗪affolds,以提高其体内预靶向性能的可比性。耐人寻味的是,之前报道过的净电荷为-1的二羧酸先导候选化合物的性能优于净电荷为0的单羧酸衍生物,因此在临床应用之前有必要对这类支架进行进一步评估。
{"title":"Head-to-Head Comparison of the in Vivo Performance of Highly Reactive and Polar 18F-Labeled Tetrazines","authors":"Lars Hvass*,&nbsp;Marius Müller,&nbsp;Markus Staudt,&nbsp;Rocio García-Vázquez,&nbsp;Tobias K. Gustavsson,&nbsp;Vladimir Shalgunov,&nbsp;Jesper T. Jørgensen,&nbsp;Umberto M. Battisti*,&nbsp;Matthias M. Herth* and Andreas Kjaer*,&nbsp;","doi":"10.1021/acs.molpharmaceut.4c0112910.1021/acs.molpharmaceut.4c01129","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.4c01129https://doi.org/10.1021/acs.molpharmaceut.4c01129","url":null,"abstract":"<p >Pretargeted imaging harnessing tetrazine ligation has gained increased interest over recent years. Targeting vectors with slow pharmacokinetics may be visualized using short-lived radionuclides, such as fluorine-18 (<sup>18</sup>F) for positron emission tomography (PET), and result in improved target-to-background ratios compared to conventionally radiolabeled slowly accumulating vectors. We recently developed different radiochemical protocols enabling the direct radiofluorination of various tetrazine scaffolds, resulting in the development of various highly reactive and polar <sup>18</sup>F-labeled tetrazines as lead candidates for pretargeted imaging. Here, we performed a direct head-to-head-comparison of our lead candidates to evaluate the most promising for future clinical translation. For that, all <sup>18</sup>F-labeled tetrazine-scaffolds were synthesized in similar molar activity for improved comparability of their <i>in vivo</i> pretargeting performance. Intriguingly, previously reported dicarboxylic acid lead candidates with a net charge of −1 were outperformed by respective monocarboxylic acid derivatives bearing a net charge of 0, warranting further evaluation of such scaffolds prior to their clinical translation.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":"22 4","pages":"1911–1919 1911–1919"},"PeriodicalIF":4.5,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.molpharmaceut.4c01129","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143784961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Pharmaceutics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1