Pub Date : 2023-05-09eCollection Date: 2023-05-01DOI: 10.1007/s42995-023-00167-0
Guanming Guo, Fei Zhao, Ivan Nijs, Jinbao Liao
Exploring how food web complexity emerges and evolves in island ecosystems remains a major challenge in ecology. Food webs assembled from multiple islands are commonly recognized as highly complex trophic networks that are dynamic in both space and time. In the context of global climate change, it remains unclear whether food web complexity will decrease in a monotonic fashion when undergoing habitat destruction (e.g., the inundation of islands due to sea-level rise). Here, we develop a simple yet comprehensive patch-dynamic framework for complex food web metacommunities subject to the competition-colonization tradeoff between basal species. We found that oscillations in food web topological complexity (characterized by species diversity, mean food chain length and the degree of omnivory) emerge along the habitat destruction gradient. This outcome is robust to changing parameters or relaxing the assumption of a strict competitive hierarchy. Having oscillations in food web complexity indicates that small habitat changes could have disproportionate negative effects on species diversity, thus the success of conservation actions should be evaluated not only on changes in biodiversity, but also on system robustness to habitat alteration. Overall, this study provides a parsimonious mechanistic explanation for the emergence of food web complexity in island ecosystems, further enriching our understanding of metacommunity assembly.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-023-00167-0.
{"title":"Colonization-competition dynamics of basal species shape food web complexity in island metacommunities.","authors":"Guanming Guo, Fei Zhao, Ivan Nijs, Jinbao Liao","doi":"10.1007/s42995-023-00167-0","DOIUrl":"10.1007/s42995-023-00167-0","url":null,"abstract":"<p><p>Exploring how food web complexity emerges and evolves in island ecosystems remains a major challenge in ecology. Food webs assembled from multiple islands are commonly recognized as highly complex trophic networks that are dynamic in both space and time. In the context of global climate change, it remains unclear whether food web complexity will decrease in a monotonic fashion when undergoing habitat destruction (e.g., the inundation of islands due to sea-level rise). Here, we develop a simple yet comprehensive patch-dynamic framework for complex food web metacommunities subject to the competition-colonization tradeoff between basal species. We found that oscillations in food web topological complexity (characterized by species diversity, mean food chain length and the degree of omnivory) emerge along the habitat destruction gradient. This outcome is robust to changing parameters or relaxing the assumption of a strict competitive hierarchy. Having oscillations in food web complexity indicates that small habitat changes could have disproportionate negative effects on species diversity, thus the success of conservation actions should be evaluated not only on changes in biodiversity, but also on system robustness to habitat alteration. Overall, this study provides a parsimonious mechanistic explanation for the emergence of food web complexity in island ecosystems, further enriching our understanding of metacommunity assembly.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00167-0.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 2","pages":"169-177"},"PeriodicalIF":5.7,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9637819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-30eCollection Date: 2023-05-01DOI: 10.1007/s42995-023-00168-z
Jin Chen, Li Xu, Xue-Qing Zhang, Xue Liu, Zi-Xuan Zhang, Qiu-Mei Zhu, Jian-Yu Liu, Muhammad Omer Iqbal, Ning Ding, Chang-Lun Shao, Mei-Yan Wei, Yu-Chao Gu
Non-alcoholic steatohepatitis (NASH) is a primary cause of cirrhosis and hepatocellular carcinoma. Unfortunately, there is no approved drug treatment for NASH. AMP-activated kinase (AMPK) is an important metabolic sensor and whole-body regulator. It has been proposed that AMPK activators could be used for treating metabolic diseases such as obesity, type 2 diabetes and NASH. In this study, we screened a marine natural compound library by monitoring AMPK activity and found a potent AMPK activator, candidusin A (CHNQD-0803). Further studies showed that CHNQD-0803 directly binds recombinant AMPK with a KD value of 4.728 × 10-8 M and activates AMPK at both molecular and intracellular levels. We then investigated the roles and mechanisms of CHNQD-0803 in PA-induced fat deposition, LPS-stimulated inflammation, TGF-β-induced fibrosis cell models and the MCD-induced mouse model of NASH. The results showed that CHNQD-0803 inhibited the expression of adipogenesis genes and reduced fat deposition, negatively regulated the NF-κB-TNFα inflammatory axis to suppress inflammation, and ameliorated liver injury and fibrosis. These data indicate that CHNQD-0803 as an AMPK activator is a novel potential therapeutic candidate for NASH treatment.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-023-00168-z.
{"title":"Discovery of a natural small-molecule AMP-activated kinase activator that alleviates nonalcoholic steatohepatitis.","authors":"Jin Chen, Li Xu, Xue-Qing Zhang, Xue Liu, Zi-Xuan Zhang, Qiu-Mei Zhu, Jian-Yu Liu, Muhammad Omer Iqbal, Ning Ding, Chang-Lun Shao, Mei-Yan Wei, Yu-Chao Gu","doi":"10.1007/s42995-023-00168-z","DOIUrl":"10.1007/s42995-023-00168-z","url":null,"abstract":"<p><p>Non-alcoholic steatohepatitis (NASH) is a primary cause of cirrhosis and hepatocellular carcinoma. Unfortunately, there is no approved drug treatment for NASH. AMP-activated kinase (AMPK) is an important metabolic sensor and whole-body regulator. It has been proposed that AMPK activators could be used for treating metabolic diseases such as obesity, type 2 diabetes and NASH. In this study, we screened a marine natural compound library by monitoring AMPK activity and found a potent AMPK activator, candidusin A (<b>CHNQD-0803</b>). Further studies showed that <b>CHNQD-0803</b> directly binds recombinant AMPK with a <i>K</i><sub>D</sub> value of 4.728 × 10<sup>-8</sup> M and activates AMPK at both molecular and intracellular levels. We then investigated the roles and mechanisms of <b>CHNQD-0803</b> in PA-induced fat deposition, LPS-stimulated inflammation, TGF-β-induced fibrosis cell models and the MCD-induced mouse model of NASH. The results showed that <b>CHNQD-0803</b> inhibited the expression of adipogenesis genes and reduced fat deposition, negatively regulated the NF-κB-TNFα inflammatory axis to suppress inflammation, and ameliorated liver injury and fibrosis. These data indicate that <b>CHNQD-0803</b> as an AMPK activator is a novel potential therapeutic candidate for NASH treatment.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00168-z.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 2","pages":"196-210"},"PeriodicalIF":5.7,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232707/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9637820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The majority of marine ammonia oxidizers belong to Thaumarchaeota, a phylum of Archaea, which is distributed throughout the water column. Marine surface waters contain distinct thaumarchaeotal phylotypes compared to the deeper ocean, but spatial dynamics of the surface-associated lineages are largely unsolved. This study of 120 seawater samples from the eastern Chinese marginal seas identified contrasting distribution and association patterns among thaumarchaeotal phylotypes across different dimensions. Horizontally, Nitrosopumilus-like and Nitrosopelagicus-like phylotypes dominated the surface water (3 m) of the Yellow Sea (YS) and East China Sea (ECS), respectively, along with increased abundance of total free-living Thaumarchaeota in ECS. Similar compositional changes were observed in the surface microlayer. The spatial heterogeneity of particle-attached Thaumarchaeota was less clear in surface microlayers than in surface waters. Vertically, the Nitrosopelagicus-like phylotype increased in abundance from surface to 90 m in ECS, which led to an increase in the proportion of Thaumarchaeota relative to total prokaryotes. This occurred mainly in the free-living fraction. These results indicate a clear size-fractionated niche partitioning, which is more pronounced at lower depths than in the surface water/surface microlayer. In addition, associations of Thaumarchaeota with other microbial taxa varied between phylotypes and size fractions. Our results show that a phylotype-resolved and size-fractionated spatial heterogeneity of the thaumarchaeotal community is present in surface oceanic waters and a vertical variation of the Nitrosopelagicus-like phylotype is present in shallow shelf waters.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-023-00169-y.
{"title":"Phylotype resolved spatial variation and association patterns of planktonic <i>Thaumarchaeota</i> in eastern Chinese marginal seas.","authors":"Jiwen Liu, Fuyan Huang, Jiao Liu, Xiaoyue Liu, Ruiyun Lin, Xiaosong Zhong, Brian Austin, Xiao-Hua Zhang","doi":"10.1007/s42995-023-00169-y","DOIUrl":"10.1007/s42995-023-00169-y","url":null,"abstract":"<p><p>The majority of marine ammonia oxidizers belong to <i>Thaumarchaeota</i>, a phylum of Archaea, which is distributed throughout the water column. Marine surface waters contain distinct thaumarchaeotal phylotypes compared to the deeper ocean, but spatial dynamics of the surface-associated lineages are largely unsolved. This study of 120 seawater samples from the eastern Chinese marginal seas identified contrasting distribution and association patterns among thaumarchaeotal phylotypes across different dimensions. Horizontally, <i>Nitrosopumilus</i>-like and <i>Nitrosopelagicus</i>-like phylotypes dominated the surface water (3 m) of the Yellow Sea (YS) and East China Sea (ECS), respectively, along with increased abundance of total free-living <i>Thaumarchaeota</i> in ECS. Similar compositional changes were observed in the surface microlayer. The spatial heterogeneity of particle-attached <i>Thaumarchaeota</i> was less clear in surface microlayers than in surface waters. Vertically, the <i>Nitrosopelagicus</i>-like phylotype increased in abundance from surface to 90 m in ECS, which led to an increase in the proportion of <i>Thaumarchaeota</i> relative to total prokaryotes. This occurred mainly in the free-living fraction. These results indicate a clear size-fractionated niche partitioning, which is more pronounced at lower depths than in the surface water/surface microlayer. In addition, associations of <i>Thaumarchaeota</i> with other microbial taxa varied between phylotypes and size fractions. Our results show that a phylotype-resolved and size-fractionated spatial heterogeneity of the thaumarchaeotal community is present in surface oceanic waters and a vertical variation of the <i>Nitrosopelagicus</i>-like phylotype is present in shallow shelf waters.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00169-y.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 2","pages":"257-270"},"PeriodicalIF":5.7,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232715/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9637369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The large yellow croaker (Larimichthyscrocea) is one of the most economically valuable marine fish in China and is a notable species in ecological studies owing to a serious collapse of wild germplasm in the past few decades. The stock division and species distribution, which have important implications for ecological protection, germplasm recovery, and fishery resource management, have been debated since the 1960s. However, it is still uncertain even how many stocks exist in this species. To address this, we evaluated the fine-scale genetic structure of large yellow croaker populations distributed along the eastern and southern Chinese coastline based on 7.64 million SNP markers. Compared with the widely accepted stock boundaries proposed in the 1960s, our results revealed that a climate-driven habitat change probably occurred between the Naozhou (Nanhai) Stock and the Ming-Yuedong (Mindong) Stock. The boundary between these two stocks might have shifted northwards from the Pearl River Estuary to the northern area of the Taiwan Strait, accompanied by highly asymmetric introgression. In addition, we found divergent landscapes of natural selection between the stocks inhabiting northern and southern areas. The northern population exhibited highly agminated signatures of strong natural selection in genes related to developmental processes, whereas moderate and interspersed selective signatures were detected in many immune-related genes in the southern populations. These findings establish the stock status and genome-wide evolutionary landscapes of large yellow croaker, providing a basis for conservation, fisheries management and further evolutionary biology studies.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-023-00165-2.
{"title":"Population structure and genome-wide evolutionary signatures reveal putative climate-driven habitat change and local adaptation in the large yellow croaker.","authors":"Baohua Chen, Yulin Bai, Jiaying Wang, Qiaozhen Ke, Zhixiong Zhou, Tao Zhou, Ying Pan, Renxie Wu, Xiongfei Wu, Weiqiang Zheng, Peng Xu","doi":"10.1007/s42995-023-00165-2","DOIUrl":"10.1007/s42995-023-00165-2","url":null,"abstract":"<p><p>The large yellow croaker (<i>Larimichthys</i> <i>crocea</i>) is one of the most economically valuable marine fish in China and is a notable species in ecological studies owing to a serious collapse of wild germplasm in the past few decades. The stock division and species distribution, which have important implications for ecological protection, germplasm recovery, and fishery resource management, have been debated since the 1960s. However, it is still uncertain even how many stocks exist in this species. To address this, we evaluated the fine-scale genetic structure of large yellow croaker populations distributed along the eastern and southern Chinese coastline based on 7.64 million SNP markers. Compared with the widely accepted stock boundaries proposed in the 1960s, our results revealed that a climate-driven habitat change probably occurred between the Naozhou (Nanhai) Stock and the Ming-Yuedong (Mindong) Stock. The boundary between these two stocks might have shifted northwards from the Pearl River Estuary to the northern area of the Taiwan Strait, accompanied by highly asymmetric introgression. In addition, we found divergent landscapes of natural selection between the stocks inhabiting northern and southern areas. The northern population exhibited highly agminated signatures of strong natural selection in genes related to developmental processes, whereas moderate and interspersed selective signatures were detected in many immune-related genes in the southern populations. These findings establish the stock status and genome-wide evolutionary landscapes of large yellow croaker, providing a basis for conservation, fisheries management and further evolutionary biology studies.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00165-2.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 2","pages":"141-154"},"PeriodicalIF":5.7,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232709/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9637818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31eCollection Date: 2023-05-01DOI: 10.1007/s42995-023-00170-5
Huawei Lv, Haibo Su, Yaxin Xue, Jia Jia, Hongkai Bi, Shoubao Wang, Jinkun Zhang, Mengdi Zhu, Mahmoud Emam, Hong Wang, Kui Hong, Xing-Nuo Li
Metabolites of microorganisms have long been considered as potential sources for drug discovery. In this study, five new depsidone derivatives, talaronins A-E (1-5) and three new xanthone derivatives, talaronins F-H (6-8), together with 16 known compounds (9-24), were isolated from the ethyl acetate extract of the mangrove-derived fungus Talaromyces species WHUF0362. The structures were elucidated by analysis of spectroscopic data and chemical methods including alkaline hydrolysis and Mosher's method. Compounds 1 and 2 each attached a dimethyl acetal group at the aromatic ring. A putative biogenetic relationship of the isolated metabolites was presented and suggested that the depsidones and the xanthones probably had the same biosynthetic precursors such as chrysophanol or rheochrysidin. The antimicrobial activity assay indicated that compounds 5, 9, 10, and 14 showed potent activity against Helicobacter pylori with minimum inhibitory concentration (MIC) values in the range of 2.42-36.04 μmol/L. While secalonic acid D (19) demonstrated significant antimicrobial activity against four strains of H. pylori with MIC values in the range of 0.20 to 1.57 μmol/L. Furthermore, secalonic acid D (19) exhibited cytotoxicity against cancer cell lines Bel-7402 and HCT-116 with IC50 values of 0.15 and 0.19 μmol/L, respectively. The structure-activity relationship of depsidone derivatives revealed that the presence of the lactone ring and the hydroxyl at C-10 was crucial to the antimicrobial activity against H. pylori. The depsidone derivatives are promising leads to inhibit H. pylori and provide an avenue for further development of novel antibiotics.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-023-00170-5.
{"title":"Polyketides with potential bioactivities from the mangrove-derived fungus <i>Talaromyces</i> sp. WHUF0362.","authors":"Huawei Lv, Haibo Su, Yaxin Xue, Jia Jia, Hongkai Bi, Shoubao Wang, Jinkun Zhang, Mengdi Zhu, Mahmoud Emam, Hong Wang, Kui Hong, Xing-Nuo Li","doi":"10.1007/s42995-023-00170-5","DOIUrl":"10.1007/s42995-023-00170-5","url":null,"abstract":"<p><p>Metabolites of microorganisms have long been considered as potential sources for drug discovery. In this study, five new depsidone derivatives, talaronins A-E (<b>1-5</b>) and three new xanthone derivatives, talaronins F-H (<b>6-8</b>), together with 16 known compounds (<b>9-24</b>), were isolated from the ethyl acetate extract of the mangrove-derived fungus <i>Talaromyces</i> species WHUF0362. The structures were elucidated by analysis of spectroscopic data and chemical methods including alkaline hydrolysis and Mosher's method. Compounds <b>1</b> and <b>2</b> each attached a dimethyl acetal group at the aromatic ring. A putative biogenetic relationship of the isolated metabolites was presented and suggested that the depsidones and the xanthones probably had the same biosynthetic precursors such as chrysophanol or rheochrysidin. The antimicrobial activity assay indicated that compounds <b>5</b>, <b>9</b>, <b>10</b>, and <b>14</b> showed potent activity against <i>Helicobacter pylori</i> with minimum inhibitory concentration (MIC) values in the range of 2.42-36.04 μmol/L. While secalonic acid D (<b>19</b>) demonstrated significant antimicrobial activity against four strains of <i>H. pylori</i> with MIC values in the range of 0.20 to 1.57 μmol/L. Furthermore, secalonic acid D (<b>19</b>) exhibited cytotoxicity against cancer cell lines Bel-7402 and HCT-116 with IC<sub>50</sub> values of 0.15 and 0.19 μmol/L, respectively. The structure-activity relationship of depsidone derivatives revealed that the presence of the lactone ring and the hydroxyl at C-10 was crucial to the antimicrobial activity against <i>H. pylori</i>. The depsidone derivatives are promising leads to inhibit <i>H. pylori</i> and provide an avenue for further development of novel antibiotics.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00170-5.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 2","pages":"232-241"},"PeriodicalIF":5.7,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232383/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9584950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-24eCollection Date: 2023-02-01DOI: 10.1007/s42995-023-00164-3
Shuangfei Zhang, Russell T Hill, Hui Wang
The Permian Basin is a unique ecosystem located in the southwest of the USA. An unanswered question is whether the bacteria in the Permian Basin adapted to the changing paleomarine environment and survived in the remnants of Permian groundwater. In our previous study, a novel bacterial strain, Permianibacter aggregans HW001T, was isolated from microalgae cultures incubated with Permian Basin waters, and was shown to originate from the Permian Ocean. In this study, strain HW001T was shown to be the representative strain of a novel family, classified as 'Permianibacteraceae'. The results of molecular dating suggested that the strain HW001T diverged ~ 447 million years ago (mya), which is the early Permian period (~ 250 mya). Genome analysis was used to access its potential energy utilization and biosynthesis capacity. A large number of transporters, carbohydrate-active enzymes and protein-degradation related genes have been annotated in the genome of strain HW001T. In addition, a series of important metabolic pathways, such as peptidoglycan biosynthesis, osmotic stress response system and multifunctional quorum sensing were annotated, which may confer the ability to adapt to various unfavorable environmental conditions. Finally, the evolutionary history of strain HW001T was reconstructed and the horizontal transfer of genes was predicted, indicating that the adaptation of P. aggregans to a changing marine environment depends on the evolution of their metabolic capabilities, especially in signal transmission. In conclusion, the results of this study provide genomic information for revealing the adaptive mechanism of strain HW001T to the changing ancient oceans.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-023-00164-3.
{"title":"Genomic characterization and molecular dating of the novel bacterium <i>Permianibacter aggregans</i> HW001<sup>T</sup>, which originated from Permian ground water.","authors":"Shuangfei Zhang, Russell T Hill, Hui Wang","doi":"10.1007/s42995-023-00164-3","DOIUrl":"10.1007/s42995-023-00164-3","url":null,"abstract":"<p><p>The Permian Basin is a unique ecosystem located in the southwest of the USA. An unanswered question is whether the bacteria in the Permian Basin adapted to the changing paleomarine environment and survived in the remnants of Permian groundwater. In our previous study, a novel bacterial strain, <i>Permianibacter aggregans</i> HW001<sup>T</sup>, was isolated from microalgae cultures incubated with Permian Basin waters, and was shown to originate from the Permian Ocean. In this study, strain HW001<sup>T</sup> was shown to be the representative strain of a novel family, classified as 'Permianibacteraceae'. The results of molecular dating suggested that the strain HW001<sup>T</sup> diverged ~ 447 million years ago (mya), which is the early Permian period (~ 250 mya). Genome analysis was used to access its potential energy utilization and biosynthesis capacity. A large number of transporters, carbohydrate-active enzymes and protein-degradation related genes have been annotated in the genome of strain HW001<sup>T</sup>. In addition, a series of important metabolic pathways, such as peptidoglycan biosynthesis, osmotic stress response system and multifunctional quorum sensing were annotated, which may confer the ability to adapt to various unfavorable environmental conditions. Finally, the evolutionary history of strain HW001<sup>T</sup> was reconstructed and the horizontal transfer of genes was predicted, indicating that the adaptation of <i>P. aggregans</i> to a changing marine environment depends on the evolution of their metabolic capabilities, especially in signal transmission. In conclusion, the results of this study provide genomic information for revealing the adaptive mechanism of strain HW001<sup>T</sup> to the changing ancient oceans.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00164-3.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 1","pages":"12-27"},"PeriodicalIF":5.7,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077173/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9440770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-22eCollection Date: 2023-02-01DOI: 10.1007/s42995-023-00163-4
Zhiqiang Ye, Trent Bishop, Yaohai Wang, Ryan Shahriari, Michael Lynch
Sex determination (SD) involves mechanisms that determine whether an individual will develop into a male, female, or in rare cases, hermaphrodite. Crustaceans harbor extremely diverse SD systems, including hermaphroditism, environmental sex determination (ESD), genetic sex determination (GSD), and cytoplasmic sex determination (e.g., Wolbachia controlled SD systems). Such diversity lays the groundwork for researching the evolution of SD in crustaceans, i.e., transitions among different SD systems. However, most previous research has focused on understanding the mechanism of SD within a single lineage or species, overlooking the transition across different SD systems. To help bridge this gap, we summarize the understanding of SD in various clades of crustaceans, and discuss how different SD systems might evolve from one another. Furthermore, we review the genetic basis for transitions between different SD systems (i.e., Dmrt genes) and propose the microcrustacean Daphnia (clade Branchiopoda) as a model to study the transition from ESD to GSD.
{"title":"Evolution of sex determination in crustaceans.","authors":"Zhiqiang Ye, Trent Bishop, Yaohai Wang, Ryan Shahriari, Michael Lynch","doi":"10.1007/s42995-023-00163-4","DOIUrl":"10.1007/s42995-023-00163-4","url":null,"abstract":"<p><p>Sex determination (SD) involves mechanisms that determine whether an individual will develop into a male, female, or in rare cases, hermaphrodite. Crustaceans harbor extremely diverse SD systems, including hermaphroditism, environmental sex determination (ESD), genetic sex determination (GSD), and cytoplasmic sex determination (e.g., <i>Wolbachia</i> controlled SD systems). Such diversity lays the groundwork for researching the evolution of SD in crustaceans, i.e., transitions among different SD systems. However, most previous research has focused on understanding the mechanism of SD within a single lineage or species, overlooking the transition across different SD systems. To help bridge this gap, we summarize the understanding of SD in various clades of crustaceans, and discuss how different SD systems might evolve from one another. Furthermore, we review the genetic basis for transitions between different SD systems (i.e., <i>Dmrt</i> genes) and propose the microcrustacean <i>Daphnia</i> (clade Branchiopoda) as a model to study the transition from ESD to GSD.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 1","pages":"1-11"},"PeriodicalIF":5.8,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9384079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The complex life histories of demersal fishes are artificially separated into multiple stages along with changes in morphology and habitat. It is worth exploring whether the phenotypes expressed earlier and later during the life cycle are related or decoupled. The life stages of first year Pacific cod (Gadus macrocephalus) were tracked over different hatch years and regions to test whether the early life history had a long-lasting effect on subsequent growth. We further explored the contribution of growth in the early and subsequent life history stages to body size at the end of each stage. In addition to the accessory growth centre and the first annual ring, the other two checks on the otolith possibly related to settlement and entering deeper waters were identified in 75 Pacific cod individuals. The direct and indirect relationships among the life history stages was interpreted based on path analysis. The results showed that growth prior to the formation of the accessory growth centre had a significant effect on the absolute growth of the fish before and after settlement and migration to deep water. However, there was no or moderate evidence that early growth affected the body size at each stage, which was mainly regulated by growth during the stage. This study supports the lasting effect of early growth and clarifies that it affects size mainly by indirectly regulating staged growth. Quantifying the phenotype relationships and identifying the internal mechanisms form the basis for assessing population dynamics and understanding the processes behind the changes.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-022-00145-y.
{"title":"Early life history affects fish size mainly by indirectly regulating the growth during each stage: a case study in a demersal fish.","authors":"Rui Wu, Qinghuan Zhu, Satoshi Katayama, Yongjun Tian, Jianchao Li, Kunihiro Fujiwara, Yoji Narimatsu","doi":"10.1007/s42995-022-00145-y","DOIUrl":"10.1007/s42995-022-00145-y","url":null,"abstract":"<p><p>The complex life histories of demersal fishes are artificially separated into multiple stages along with changes in morphology and habitat. It is worth exploring whether the phenotypes expressed earlier and later during the life cycle are related or decoupled. The life stages of first year Pacific cod (<i>Gadus macrocephalus</i>) were tracked over different hatch years and regions to test whether the early life history had a long-lasting effect on subsequent growth. We further explored the contribution of growth in the early and subsequent life history stages to body size at the end of each stage. In addition to the accessory growth centre and the first annual ring, the other two checks on the otolith possibly related to settlement and entering deeper waters were identified in 75 Pacific cod individuals. The direct and indirect relationships among the life history stages was interpreted based on path analysis. The results showed that growth prior to the formation of the accessory growth centre had a significant effect on the absolute growth of the fish before and after settlement and migration to deep water. However, there was no or moderate evidence that early growth affected the body size at each stage, which was mainly regulated by growth during the stage. This study supports the lasting effect of early growth and clarifies that it affects size mainly by indirectly regulating staged growth. Quantifying the phenotype relationships and identifying the internal mechanisms form the basis for assessing population dynamics and understanding the processes behind the changes.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-022-00145-y.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 1","pages":"75-84"},"PeriodicalIF":5.7,"publicationDate":"2023-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077272/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9752857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) regulates the expression of various critical mediators of cancer and is considered as one of the central communication nodes in cell growth and survival. Marine natural products (MNP) represent great resources for discovery of bioactive lead compounds, especially anti-cancer agents. Through the medium-throughput screening of our in-house MNP library, Pretrichodermamide B, an epidithiodiketopiperazine, was identified as a JAK/STAT3 signaling inhibitor. Further studies identified that Pretrichodermamide B directly binds to STAT3, preventing phosphorylation and thus inhibiting JAK/STAT3 signaling. Moreover, it suppressed cancer cell growth, in vitro, at low micromolar concentrations and demonstrated efficacy in vivo by decreasing tumor growth in a xenograft mouse model. In addition, it was shown that Pretrichodermamide B was able to induce cell cycle arrest and promote cell apoptosis. This study demonstrated that Pretrichodermamide B is a novel STAT3 inhibitor, which should be considered for further exploration as a promising anti-cancer therapy.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-022-00162-x.
Janus 激酶(JAK)/信号转导和激活转录 3(STAT3)调节各种癌症关键介质的表达,被认为是细胞生长和存活的核心通讯节点之一。海洋天然产物(MNP)是发现生物活性先导化合物(尤其是抗癌剂)的重要资源。通过对我们内部的 MNP 库进行中等通量筛选,Pretrichodermamide B(一种表二硫二酮哌嗪)被鉴定为 JAK/STAT3 信号抑制剂。进一步研究发现,Pretrichodermamide B 可直接与 STAT3 结合,阻止其磷酸化,从而抑制 JAK/STAT3 信号转导。此外,它还能在体外低微摩尔浓度下抑制癌细胞的生长,并通过降低异种移植小鼠模型中肿瘤的生长而显示出体内疗效。此外,研究还表明 Pretrichodermamide B 能够诱导细胞周期停滞并促进细胞凋亡。这项研究表明,Pretrichodermamide B 是一种新型 STAT3 抑制剂,应考虑将其作为一种有前景的抗癌疗法进行进一步探索:在线版本包含补充材料,可查阅 10.1007/s42995-022-00162-x。
{"title":"Identification of marine natural product Pretrichodermamide B as a STAT3 inhibitor for efficient anticancer therapy.","authors":"Rui Li, Yue Zhou, Xinxin Zhang, Lujia Yang, Jieyu Liu, Samantha M Wightman, Ling Lv, Zhiqing Liu, Chang-Yun Wang, Chenyang Zhao","doi":"10.1007/s42995-022-00162-x","DOIUrl":"10.1007/s42995-022-00162-x","url":null,"abstract":"<p><p>The Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) regulates the expression of various critical mediators of cancer and is considered as one of the central communication nodes in cell growth and survival. Marine natural products (MNP) represent great resources for discovery of bioactive lead compounds, especially anti-cancer agents. Through the medium-throughput screening of our in-house MNP library, Pretrichodermamide B, an epidithiodiketopiperazine, was identified as a JAK/STAT3 signaling inhibitor. Further studies identified that Pretrichodermamide B directly binds to STAT3, preventing phosphorylation and thus inhibiting JAK/STAT3 signaling. Moreover, it suppressed cancer cell growth, in vitro, at low micromolar concentrations and demonstrated efficacy in vivo by decreasing tumor growth in a xenograft mouse model. In addition, it was shown that Pretrichodermamide B was able to induce cell cycle arrest and promote cell apoptosis. This study demonstrated that Pretrichodermamide B is a novel STAT3 inhibitor, which should be considered for further exploration as a promising anti-cancer therapy.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-022-00162-x.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 1","pages":"94-101"},"PeriodicalIF":5.8,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077262/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9384075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The roles of dietary cholesterol in fish physiology are currently contradictory. The issue reflects the limited studies on the metabolic consequences of cholesterol intake in fish. The present study investigated the metabolic responses to high cholesterol intake in Nile tilapia (Oreochromis niloticus), which were fed with four cholesterol-contained diets (0.8, 1.6, 2.4 and 3.2%) and a control diet for eight weeks. All fish-fed cholesterol diets showed increased body weight, but accumulated cholesterol (the peak level was in the 1.6% cholesterol group). Then, we selected 1.6% cholesterol and control diets for further analysis. The high cholesterol diet impaired liver function and reduced mitochondria number in fish. Furthermore, high cholesterol intake triggered protective adaptation via (1) inhibiting endogenous cholesterol synthesis, (2) elevating the expression of genes related to cholesterol esterification and efflux, and (3) promoting chenodeoxycholic acid synthesis and efflux. Accordingly, high cholesterol intake reshaped the fish gut microbiome by increasing the abundance of Lactobacillus spp. and Mycobacterium spp., both of which are involved in cholesterol and/or bile acids catabolism. Moreover, high cholesterol intake inhibited lipid catabolic activities through mitochondrial β-oxidation, and lysosome-mediated lipophagy, and depressed insulin signaling sensitivity. Protein catabolism was elevated as a compulsory response to maintain energy homeostasis. Therefore, although high cholesterol intake promoted growth, it led to metabolic disorders in fish. For the first time, this study provides evidence for the systemic metabolic response to high cholesterol intake in fish. This knowledge contributes to an understanding of the metabolic syndromes caused by high cholesterol intake or deposition in fish.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-022-00158-7.
{"title":"High cholesterol intake remodels cholesterol turnover and energy homeostasis in Nile tilapia (<i>Oreochromis niloticus</i>).","authors":"Rui-Xin Li, Ling-Yun Chen, Samwel M Limbu, Yu-Cheng Qian, Wen-Hao Zhou, Li-Qiao Chen, Yuan Luo, Fang Qiao, Mei-Ling Zhang, Zhen-Yu Du","doi":"10.1007/s42995-022-00158-7","DOIUrl":"https://doi.org/10.1007/s42995-022-00158-7","url":null,"abstract":"<p><p>The roles of dietary cholesterol in fish physiology are currently contradictory. The issue reflects the limited studies on the metabolic consequences of cholesterol intake in fish. The present study investigated the metabolic responses to high cholesterol intake in Nile tilapia (<i>Oreochromis niloticus</i>), which were fed with four cholesterol-contained diets (0.8, 1.6, 2.4 and 3.2%) and a control diet for eight weeks. All fish-fed cholesterol diets showed increased body weight, but accumulated cholesterol (the peak level was in the 1.6% cholesterol group). Then, we selected 1.6% cholesterol and control diets for further analysis. The high cholesterol diet impaired liver function and reduced mitochondria number in fish. Furthermore, high cholesterol intake triggered protective adaptation via (1) inhibiting endogenous cholesterol synthesis, (2) elevating the expression of genes related to cholesterol esterification and efflux, and (3) promoting chenodeoxycholic acid synthesis and efflux. Accordingly, high cholesterol intake reshaped the fish gut microbiome by increasing the abundance of <i>Lactobacillus</i> spp. and <i>Mycobacterium</i> spp., both of which are involved in cholesterol and/or bile acids catabolism. Moreover, high cholesterol intake inhibited lipid catabolic activities through mitochondrial β-oxidation, and lysosome-mediated lipophagy, and depressed insulin signaling sensitivity. Protein catabolism was elevated as a compulsory response to maintain energy homeostasis. Therefore, although high cholesterol intake promoted growth, it led to metabolic disorders in fish. For the first time, this study provides evidence for the systemic metabolic response to high cholesterol intake in fish. This knowledge contributes to an understanding of the metabolic syndromes caused by high cholesterol intake or deposition in fish.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-022-00158-7.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 1","pages":"56-74"},"PeriodicalIF":5.7,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077235/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9384073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}