首页 > 最新文献

EJNMMI Radiopharmacy and Chemistry最新文献

英文 中文
Bacterial survival in radiopharmaceutical solutions: a critical impact on current practices 放射性药物溶液中的细菌存活率:对当前实践的关键影响。
IF 4.6 Q1 Medicine Pub Date : 2023-10-26 DOI: 10.1186/s41181-023-00221-3
Julien Leenhardt, Luc Choisnard, Maelle Plasse, Valérie Ardisson, Nicolas de Leiris, Loic Djaileb, Pierrick Bedouch, Marie-Dominique Brunet

Background

The aim of this brief communication is to highlight the potential bacteriological risk linked to the processes control of radiopharmaceutical preparations made in a radiopharmacy laboratory. Survival rate of Pseudomonas aeruginosa (ATCC: 27853) or Staphylococcus aureus (ATCC: 25923) or Staphylococcus epidermidis (ATCC: 1228) in multidose technetium-99 m solution was studied.

Results

Depending on the nature and level of contamination by pathogenic bacteria, the lethal effect of radioactivity is not systematically observed. We found that P. aeruginosa was indeed affected by radioactivity. However, this was not the case for S. epidermidis, as the quantity of bacteria found in both solutions (radioactive and non-radioactive) was rapidly reduced, probably due to a lack of nutrients. Finally, the example of S. aureus is an intermediate case where we observed that high radioactivity affected the bacteria, as did the absence of nutrients in the reaction medium. The results were discussed in the light of current practices on the sterility test method, which recommends waiting for radioactivity to decay before carrying out the sterility test.

Conclusion

In terms of patient safety, the results run counter to current practice and the latest EANM recommendation of 2021 that radiopharmaceutical preparations should be decayed before sterility testing.

背景:本简短交流的目的是强调与放射性药物实验室中制备的放射性药物制剂的过程控制相关的潜在细菌风险。研究了多剂量锝-99m溶液中铜绿假单胞菌(ATCC:27853)、金黄色葡萄球菌(ATCC:55923)或表皮葡萄球菌(ATC C:1228)的存活率。结果:根据致病菌污染的性质和水平,放射性的致死作用没有得到系统的观察。我们发现铜绿假单胞菌确实受到放射性的影响。然而,表皮葡萄球菌的情况并非如此,因为在两种溶液(放射性和非放射性)中发现的细菌数量迅速减少,可能是由于缺乏营养。最后,金黄色葡萄球菌的例子是一个中间案例,我们观察到高放射性影响了细菌,反应介质中缺乏营养物质也是如此。根据无菌检测方法的现行实践对结果进行了讨论,该方法建议在进行无菌检测之前等待放射性衰变。结论:就患者安全性而言,这一结果与目前的做法和2021年欧洲药品监督管理局的最新建议背道而驰,即放射性药物制剂应在无菌检测前腐烂。
{"title":"Bacterial survival in radiopharmaceutical solutions: a critical impact on current practices","authors":"Julien Leenhardt,&nbsp;Luc Choisnard,&nbsp;Maelle Plasse,&nbsp;Valérie Ardisson,&nbsp;Nicolas de Leiris,&nbsp;Loic Djaileb,&nbsp;Pierrick Bedouch,&nbsp;Marie-Dominique Brunet","doi":"10.1186/s41181-023-00221-3","DOIUrl":"10.1186/s41181-023-00221-3","url":null,"abstract":"<div><h3>Background</h3><p>The aim of this brief communication is to highlight the potential bacteriological risk linked to the processes control of radiopharmaceutical preparations made in a radiopharmacy laboratory. Survival rate of <i>Pseudomonas aeruginosa</i> (<i>ATCC: 27853</i>) or <i>Staphylococcus aureus (ATCC: 25923)</i> or <i>Staphylococcus epidermidis (ATCC: 1228)</i> in multidose technetium-99 m solution was studied.</p><h3>Results</h3><p>Depending on the nature and level of contamination by pathogenic bacteria, the lethal effect of radioactivity is not systematically observed. We found that <i>P. aeruginosa</i> was indeed affected by radioactivity. However, this was not the case for <i>S. epidermidis</i>, as the quantity of bacteria found in both solutions (radioactive and non-radioactive) was rapidly reduced, probably due to a lack of nutrients. Finally, the example of <i>S. aureus</i> is an intermediate case where we observed that high radioactivity affected the bacteria, as did the absence of nutrients in the reaction medium. The results were discussed in the light of current practices on the sterility test method, which recommends waiting for radioactivity to decay before carrying out the sterility test.</p><h3>Conclusion</h3><p>In terms of patient safety, the results run counter to current practice and the latest EANM recommendation of 2021 that radiopharmaceutical preparations should be decayed before sterility testing.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602993/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50160261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dosimetry of [18F]TRACK, the first PET tracer for imaging of TrkB/C receptors in humans [18F]TRACK的剂量测定,这是第一种用于人体TrkB/C受体成像的PET示踪剂。
IF 4.6 Q1 Medicine Pub Date : 2023-10-23 DOI: 10.1186/s41181-023-00219-x
Alexander Thiel, Alexey Kostikov, Hailey Ahn, Youstina Daoud, Jean-Paul Soucy, Stephan Blinder, Carolin Jaworski, Carmen Wängler, Björn Wängler, Freimut Juengling, Shirin A. Enger, Ralf Schirrmacher

Background

Reduced expression or impaired signalling of tropomyosin receptor kinases (Trk receptors) are found in a vast spectrum of CNS disorders. [18F]TRACK is the first PET radioligand for TrkB/C with proven in vivo brain penetration and on-target specific signal. Here we report dosimetry data for [18F]TRACK in healthy humans. 6 healthy participants (age 22–61 y, 3 female) were scanned on a General Electric Discovery PET/CT 690 scanner. [18F]TRACK was synthesized with high molar activities (Am = 250 ± 75 GBq/µmol), and a dynamic series of 12 whole-body scans were acquired after injection of 129 to 147 MBq of the tracer. Images were reconstructed with standard corrections using the manufacturer’s OSEM algorithm. Tracer concentration time-activity curves (TACs) were obtained using CT-derived volumes-of-interest. Organ-specific doses and the total effective dose were estimated using the Committee on Medical Internal Radiation Dose equation for adults and tabulated Source tissue values (S values).

Results

Average organ absorbed dose was highest for liver and gall bladder with 6.1E−2 (± 1.06E−2) mGy/MBq and 4.6 (± 1.18E−2) mGy/MBq, respectively. Total detriment weighted effective dose EDW was 1.63E−2 ± 1.68E−3 mSv/MBq. Organ-specific TACs indicated predominantly hepatic tracer elimination.

Conclusion

Total and organ-specific effective doses for [18F]TRACK are low and the dosimetry profile is similar to other 18F-labelled radio tracers currently used in clinical settings.

背景:原肌球蛋白受体激酶(Trk受体)的表达减少或信号传导受损存在于广泛的中枢神经系统疾病中。[18F]TRACK是TrkB/C的第一个PET放射性配体,已被证明具有体内脑穿透和靶向特异性信号。在这里,我们报告了健康人[18F]TRACK的剂量测定数据。6名健康参与者(年龄22-61岁,3名女性)在General Electric Discovery PET/CT 690扫描仪上进行扫描。[18F]TRACK的合成具有高摩尔活性(Am = 250 ± 75GBq/µmol),并在注射129至147MBq示踪剂后进行12次全身扫描的动态系列。使用制造商的OSEM算法通过标准校正重建图像。示踪剂浓度-时间-活性曲线(TAC)是使用CT衍生的感兴趣体积获得的。器官特异性剂量和总有效剂量是使用成人医学内部辐射剂量委员会方程和表中的源组织值(S值)估计的。结果:肝脏和胆囊的平均器官吸收剂量最高,为6.1E-2(± 1.06E-2)mGy/MBq和4.6(± 1.18E-2)mGy/MBq。总损害加权有效剂量EDW为1.63E-2 ± 1.68E-3mSv/MBq。器官特异性TAC主要显示肝脏示踪剂消除。结论:[18F]TRACK的总有效剂量和器官特异性有效剂量较低,剂量测定曲线与目前临床使用的其他18F标记的放射性示踪剂相似。
{"title":"Dosimetry of [18F]TRACK, the first PET tracer for imaging of TrkB/C receptors in humans","authors":"Alexander Thiel,&nbsp;Alexey Kostikov,&nbsp;Hailey Ahn,&nbsp;Youstina Daoud,&nbsp;Jean-Paul Soucy,&nbsp;Stephan Blinder,&nbsp;Carolin Jaworski,&nbsp;Carmen Wängler,&nbsp;Björn Wängler,&nbsp;Freimut Juengling,&nbsp;Shirin A. Enger,&nbsp;Ralf Schirrmacher","doi":"10.1186/s41181-023-00219-x","DOIUrl":"10.1186/s41181-023-00219-x","url":null,"abstract":"<div><h3>Background</h3><p>Reduced expression or impaired signalling of tropomyosin receptor kinases (Trk receptors) are found in a vast spectrum of CNS disorders. [<sup>18</sup>F]TRACK is the first PET radioligand for TrkB/C with proven in vivo brain penetration and on-target specific signal. Here we report dosimetry data for [<sup>18</sup>F]TRACK in healthy humans. 6 healthy participants (age 22–61 y, 3 female) were scanned on a General Electric Discovery PET/CT 690 scanner. [<sup>18</sup>F]TRACK was synthesized with high molar activities (A<sub>m</sub> = 250 ± 75 GBq/µmol), and a dynamic series of 12 whole-body scans were acquired after injection of 129 to 147 MBq of the tracer. Images were reconstructed with standard corrections using the manufacturer’s OSEM algorithm. Tracer concentration time-activity curves (TACs) were obtained using CT-derived volumes-of-interest. Organ-specific doses and the total effective dose were estimated using the Committee on Medical Internal Radiation Dose equation for adults and tabulated Source tissue values (S values).</p><h3>Results</h3><p>Average organ absorbed dose was highest for liver and gall bladder with 6.1E−2 (± 1.06E−2) mGy/MBq and 4.6 (± 1.18E−2) mGy/MBq, respectively. Total detriment weighted effective dose E<sub>DW</sub> was 1.63E−2 ± 1.68E−3 mSv/MBq. Organ-specific TACs indicated predominantly hepatic tracer elimination.</p><h3>Conclusion</h3><p>Total and organ-specific effective doses for [<sup>18</sup>F]TRACK are low and the dosimetry profile is similar to other <sup>18</sup>F-labelled radio tracers currently used in clinical settings.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593718/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49688222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TrisOxine abiotic siderophores for technetium complexation: radiolabeling and biodistribution studies 用于锝络合的三氧化三非生物铁载体:放射性标记和生物分布研究。
IF 4.6 Q1 Medicine Pub Date : 2023-10-19 DOI: 10.1186/s41181-023-00214-2
Julien Leenhardt, Alexandre Biguet Petit Jean, Florian Raes, Emilien N’Guessan, Marlène Debiossat, Clémence André, Sandrine Bacot, Mitra Ahmadi, Nicolas de Leiris, Loïc Djaileb, Catherine Ghezzi, Marie-Dominique Brunet, Alexis Broisat, Pascale Perret, Amaury du Moulinet d’Hardemare

Background

Despite the development of positron emission tomography (PET), single photon emission computed tomography (SPECT) still accounts for around 80% of all examinations performed in nuclear medicine departments. The search for new radiotracers or chelating agents for Technetium-99m is therefore still ongoing. O-TRENSOX and O-TRENOX two synthetic siderophores would be good candidates for this purpose as they are hexadentate ligands based on the very versatile and efficient 8-hydroxyquinoline chelating subunit. First, the radiolabeling of O-TRENOX and O-TRENSOX with 99mTc was investigated. Different parameters such as the quantity of chelating agent, type of reducing agent, pH and temperature of the reaction mixture were adjusted in order to find the best radiolabeling conditions. Then an assessment of the partition coefficient by measuring the distribution of each radiosynthesized complex between octanol and phosphate-buffered saline was realized. The complex’s charge was evaluated on three different celluloses (neutral, negatively charged P81 and positively charged DE81), and finally in vivo studies with biodistribution and SPECT imaging of [99mTc]Tc-O-TRENOX and [99mTc]Tc-O-TRENSOX were performed.

Results

The radiolabeling studies showed a rapid and efficient complexation of 99mTc with both chelating agents. Using tin pyrophosphate as the reducing agent and a minimum of 100 nmol of ligand, we obtained the [99mTc]Tc-O-TRENOX complex with a radiochemical purity of more than 98% and the [99mTc]Tc-O-TRENSOX complex with one above 97% at room temperature within 5 min. [99mTc]Tc-O-TRENOX complex was lipophilic and neutral, leading to a hepatobiliary elimination in mice. On the contrary, the [99mTc]Tc-O-TRENSOX complex was found to be hydrophilic and negatively charged. This was confirmed by a predominantly renal elimination in mice.

Conclusions

These encouraging results allow us to consider the O-TRENOX/99mTc and O-TRENSOX/99mTc complexes as serious candidates for SPECT imaging chelators. This study should be continued by conjugating these tris-oxine ligands to peptides or antibodies and comparing them with the other bifunctional agents used with Tc.

背景:尽管正电子发射断层扫描(PET)得到了发展,但单光子发射计算机断层扫描(SPECT)仍占核医学部门所有检查的80%左右。因此,寻找新的放射性示踪剂或锝-99m螯合剂的工作仍在进行中。O-TRENSOX和O-TRENOX两种合成铁载体将是实现这一目的的良好候选者,因为它们是基于非常通用和有效的8-羟基喹啉螯合亚基的六齿配体。首先,研究了99mTc对O-TRENOX和O-TRENSOX的放射性标记。调节不同的参数,如螯合剂的量、还原剂的类型、反应混合物的pH和温度,以找到最佳的放射性标记条件。然后,通过测量辛醇和磷酸盐缓冲盐水之间的每个放射合成复合物的分布来评估分配系数。在三种不同的纤维素(中性、带负电荷的P81和带正电荷的DE81)上评估了复合物的电荷,最后进行了具有生物分布的体内研究和[999mTc]Tc-O-TRENOX和[999mTC]Tc-O-TRENSOX的SPECT成像。结果:放射性标记研究显示99mTc与两种螯合剂都能快速有效地络合。使用焦磷酸锡作为还原剂和最低100nmol的配体,我们在室温下5分钟内获得了放射化学纯度超过98%的[999mTc]Tc-O-TRENOX复合物和放射化学纯度高于97%的[999mTC]Tc-O-TRENSOX复合物。相反,发现[999mTc]Tc-O-TRENSOX复合物是亲水性的并且带负电。这一点通过小鼠主要的肾脏消除得到了证实。结论:这些令人鼓舞的结果使我们能够将O-TRENOX/99mTc和O-TRENSOX/999mTc复合物视为SPECT成像螯合剂的重要候选者。这项研究应该通过将这些三氧嘧啶配体与肽或抗体偶联,并将其与Tc使用的其他双功能试剂进行比较来继续。
{"title":"TrisOxine abiotic siderophores for technetium complexation: radiolabeling and biodistribution studies","authors":"Julien Leenhardt,&nbsp;Alexandre Biguet Petit Jean,&nbsp;Florian Raes,&nbsp;Emilien N’Guessan,&nbsp;Marlène Debiossat,&nbsp;Clémence André,&nbsp;Sandrine Bacot,&nbsp;Mitra Ahmadi,&nbsp;Nicolas de Leiris,&nbsp;Loïc Djaileb,&nbsp;Catherine Ghezzi,&nbsp;Marie-Dominique Brunet,&nbsp;Alexis Broisat,&nbsp;Pascale Perret,&nbsp;Amaury du Moulinet d’Hardemare","doi":"10.1186/s41181-023-00214-2","DOIUrl":"10.1186/s41181-023-00214-2","url":null,"abstract":"<div><h3>Background</h3><p>Despite the development of positron emission tomography (PET), single photon emission computed tomography (SPECT) still accounts for around 80% of all examinations performed in nuclear medicine departments. The search for new radiotracers or chelating agents for Technetium-99m is therefore still ongoing. <i>O-</i>TRENSOX and <i>O-</i>TRENOX two synthetic siderophores would be good candidates for this purpose as they are hexadentate ligands based on the very versatile and efficient 8-hydroxyquinoline chelating subunit. First, the radiolabeling of <i>O-</i>TRENOX and <i>O</i>-TRENSOX with <sup>99m</sup>Tc was investigated. Different parameters such as the quantity of chelating agent, type of reducing agent, pH and temperature of the reaction mixture were adjusted in order to find the best radiolabeling conditions. Then an assessment of the partition coefficient by measuring the distribution of each radiosynthesized complex between octanol and phosphate-buffered saline was realized. The complex’s charge was evaluated on three different celluloses (neutral, negatively charged P81 and positively charged DE81), and finally in vivo studies with biodistribution and SPECT imaging of [<sup>99m</sup>Tc]Tc-<i>O-</i>TRENOX and [<sup>99m</sup>Tc]Tc-<i>O-</i>TRENSOX were performed.</p><h3>Results</h3><p>The radiolabeling studies showed a rapid and efficient complexation of <sup>99m</sup>Tc with both chelating agents. Using tin pyrophosphate as the reducing agent and a minimum of 100 nmol of ligand, we obtained the [<sup>99m</sup>Tc]Tc-<i>O-</i>TRENOX complex with a radiochemical purity of more than 98% and the [<sup>99m</sup>Tc]Tc-<i>O-</i>TRENSOX complex with one above 97% at room temperature within 5 min. [<sup>99m</sup>Tc]Tc-<i>O-</i>TRENOX complex was lipophilic and neutral, leading to a hepatobiliary elimination in mice. On the contrary, the [<sup>99m</sup>Tc]Tc-<i>O-</i>TRENSOX complex was found to be hydrophilic and negatively charged. This was confirmed by a predominantly renal elimination in mice.</p><h3>Conclusions</h3><p>These encouraging results allow us to consider the <i>O-</i>TRENOX/<sup>99m</sup>Tc and <i>O-</i>TRENSOX/<sup>99m</sup>Tc complexes as serious candidates for SPECT imaging chelators. This study should be continued by conjugating these tris-oxine ligands to peptides or antibodies and comparing them with the other bifunctional agents used with Tc.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587049/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49672881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and evaluation of a novel PET ligand, a GSK’963 analog, aiming at autoradiography and imaging of the receptor interacting protein kinase 1 in the brain 一种新的PET配体GSK’963类似物的合成和评估,旨在脑中受体相互作用蛋白激酶1的放射自显影和成像。
IF 4.6 Q1 Medicine Pub Date : 2023-10-18 DOI: 10.1186/s41181-023-00217-z
Hiroshi Ikenuma, Aya Ogata, Hiroko Koyama, Bin Ji, Hideki Ishii, Takashi Yamada, Junichiro Abe, Chie Seki, Yuji Nagai, Masanori Ichise, Takafumi Minamimoto, Makoto Higuchi, Ming-Rong Zhang, Takashi Kato, Kengo Ito, Masaaki Suzuki, Yasuyuki Kimura

Background

Receptor interacting protein kinase 1 (RIPK1) is a serine/threonine kinase, which regulates programmed cell death and inflammation. Recently, the involvement of RIPK1 in the pathophysiology of Alzheimer’s disease (AD) has been reported; RIPK1 is involved in microglia’s phenotypic transition to their dysfunctional states, and it is highly expressed in the neurons and microglia in the postmortem brains in AD patients. They prompt neurodegeneration leading to accumulations of pathological proteins in AD. Therefore, regulation of RIPK1 could be a potential therapeutic target for the treatment of AD, and in vivo imaging of RIPK1 may become a useful modality in studies of drug discovery and pathophysiology of AD. The purpose of this study was to develop a suitable radioligand for positron emission tomography (PET) imaging of RIPK1.

Results

(S)-2,2-dimethyl-1-(5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)propan-1-one (GSK’963) has a high affinity, selectivity for RIPK1, and favorable physiochemical properties based on its chemical structure. In this study, since 11C-labeling (half-life: 20.4 min) GSK’963 retaining its structure requiring the Grignard reaction of tert-butylmagnesium halides and [11C]carbon dioxide was anticipated to give a low yield, we decided instead to 11C-label a GSK’963 analog ((S)-2,2-dimethyl-1-(5-(m-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)propan-1-one, GG502), which has a high RIPK1 inhibitory activity equivalent to that of the original compound GSK’963. Thus, we successfully 11C-labeled GG502 using a Pd-mediated cross-coupling reaction in favorable yields (3.6 ± 1.9%) and radiochemical purities (> 96%), and molar activity (47–115 GBq/μmol). On autoradiography, radioactivity accumulation was observed for [11C]GG502 and decreased by non-radioactive GG502 in the mouse spleen and human brain, indicating the possibility of specific binding of this ligand to RIPK1. On brain PET imaging in a rhesus monkey, [11C]GG502 showed a good brain permeability (peak standardized uptake value (SUV) ~3.0), although there was no clear evidence of specific binding of [11C]GG502. On brain PET imaging in acute inflammation model rats, [11C]GG502 also showed a good brain permeability, and no significant increased uptake was observed in the lipopolysaccharide-treated side of striatum. On metabolite analysis in rats at 30 min after administration of [11C]GG502, ~55% and ~10% of radioactivity was from unmetabolized [11C]GG502 in the brain and the plasma, respectively.

Conclusions

We synthesized and evaluated a 11C-labeled PET ligand based on the methylated analog of GSK’963 for imaging of RIPK1 in the brain. Although in autoradiography of the resulting [11C]GG502 indicated the possibility of specific binding, the actual PET imaging failed to

背景:受体相互作用蛋白激酶1(RIPK1)是一种丝氨酸/苏氨酸激酶,调节程序性细胞死亡和炎症。最近,有报道称RIPK1参与阿尔茨海默病(AD)的病理生理学;RIPK1参与小胶质细胞向功能障碍状态的表型转变,在AD患者死后大脑的神经元和小胶质细胞中高度表达。它们促使神经退行性变,导致AD中病理蛋白的积累。因此,RIPK1的调节可能是治疗AD的潜在治疗靶点,RIPKl的体内成像可能成为研究AD药物发现和病理生理学的有用模式。本研究旨在开发一种适合RIPK1正电子发射断层扫描(PET)成像的放射性配体。结果:(S)-2,2-二甲基-1-(5-苯基-4,5-二氢-1H-吡唑-1-基)丙-1-酮(GSK’963)对RIPK1具有高亲和力、选择性和良好的理化性质。在本研究中,由于11C标记(半衰期:20.4分钟)GSK’963保留其需要叔丁基卤化镁和[11C]二氧化碳的格氏反应的结构,预计产率较低,因此我们决定用11C标记GSK’962类似物((S)-2,2-二甲基-1-(5-(间甲苯基)-4,5-二氢-1H-吡唑-1-基)丙-1-酮,GG502),其具有相当于原始化合物GSK’963的高RIPK1抑制活性。因此,我们使用Pd介导的交叉偶联反应以有利的产率成功地11C标记了GG502(3.6 ± 1.9%)和放射化学纯度(> 96%)和摩尔活性(47-115GBq/μmol)。在放射自显影上,在小鼠脾脏和人脑中观察到[11C]GG502的放射性积聚,并通过非放射性GG502减少,表明该配体与RIPK1特异性结合的可能性。在恒河猴的脑PET成像中,[11C]GG502显示出良好的脑通透性(峰值标准化摄取值(SUV) ~3.0),尽管没有明确的证据表明[11C]GG502具有特异性结合。在急性炎症模型大鼠的脑PET成像中,[11C]GG502也显示出良好的脑通透性,并且在脂多糖处理的纹状体侧未观察到摄取显著增加。在给予[11C]GG502后30分钟大鼠的代谢产物分析中, ~55%和 ~10%的放射性物质分别来自大脑和血浆中未代谢的[11C]GG502。结论:我们合成并评估了一种基于GSK’963甲基化类似物的11C标记的PET配体,用于脑中RIPK1的成像。尽管在所得[11C]GG502的放射自显影中表明了特异性结合的可能性,但尽管RIPK1具有良好的脑通透性,但实际的PET成像未能检测到任何与RIPK1特异结合的证据。可能需要进一步开发与当前化合物相比在体内对RIPK1具有更高结合亲和力和更稳定代谢产物谱的放射性配体。
{"title":"Synthesis and evaluation of a novel PET ligand, a GSK’963 analog, aiming at autoradiography and imaging of the receptor interacting protein kinase 1 in the brain","authors":"Hiroshi Ikenuma,&nbsp;Aya Ogata,&nbsp;Hiroko Koyama,&nbsp;Bin Ji,&nbsp;Hideki Ishii,&nbsp;Takashi Yamada,&nbsp;Junichiro Abe,&nbsp;Chie Seki,&nbsp;Yuji Nagai,&nbsp;Masanori Ichise,&nbsp;Takafumi Minamimoto,&nbsp;Makoto Higuchi,&nbsp;Ming-Rong Zhang,&nbsp;Takashi Kato,&nbsp;Kengo Ito,&nbsp;Masaaki Suzuki,&nbsp;Yasuyuki Kimura","doi":"10.1186/s41181-023-00217-z","DOIUrl":"10.1186/s41181-023-00217-z","url":null,"abstract":"<div><h3>Background</h3><p>Receptor interacting protein kinase 1 (RIPK1) is a serine/threonine kinase, which regulates programmed cell death and inflammation. Recently, the involvement of RIPK1 in the pathophysiology of Alzheimer’s disease (AD) has been reported; RIPK1 is involved in microglia’s phenotypic transition to their dysfunctional states, and it is highly expressed in the neurons and microglia in the postmortem brains in AD patients. They prompt neurodegeneration leading to accumulations of pathological proteins in AD. Therefore, regulation of RIPK1 could be a potential therapeutic target for the treatment of AD, and in vivo imaging of RIPK1 may become a useful modality in studies of drug discovery and pathophysiology of AD. The purpose of this study was to develop a suitable radioligand for positron emission tomography (PET) imaging of RIPK1.</p><h3>Results</h3><p>(<i>S</i>)-2,2-dimethyl-1-(5-phenyl-4,5-dihydro-1<i>H</i>-pyrazol-1-yl)propan-1-one (GSK’963) has a high affinity, selectivity for RIPK1, and favorable physiochemical properties based on its chemical structure. In this study, since <sup>11</sup>C-labeling (half-life: 20.4 min) GSK’963 retaining its structure requiring the Grignard reaction of <i>tert</i>-butylmagnesium halides and [<sup>11</sup>C]carbon dioxide was anticipated to give a low yield, we decided instead to <sup>11</sup>C-label a GSK’963 analog ((<i>S</i>)-2,2-dimethyl-1-(5-(<i>m</i>-tolyl)-4,5-dihydro-1<i>H</i>-pyrazol-1-yl)propan-1-one, GG502), which has a high RIPK1 inhibitory activity equivalent to that of the original compound GSK’963. Thus, we successfully <sup>11</sup>C-labeled GG502 using a Pd-mediated cross-coupling reaction in favorable yields (3.6 ± 1.9%) and radiochemical purities (&gt; 96%), and molar activity (47–115 GBq/μmol). On autoradiography, radioactivity accumulation was observed for [<sup>11</sup>C]GG502 and decreased by non-radioactive GG502 in the mouse spleen and human brain, indicating the possibility of specific binding of this ligand to RIPK1. On brain PET imaging in a rhesus monkey, [<sup>11</sup>C]GG502 showed a good brain permeability (peak standardized uptake value (SUV) ~3.0), although there was no clear evidence of specific binding of [<sup>11</sup>C]GG502. On brain PET imaging in acute inflammation model rats, [<sup>11</sup>C]GG502 also showed a good brain permeability, and no significant increased uptake was observed in the lipopolysaccharide-treated side of striatum. On metabolite analysis in rats at 30 min after administration of [<sup>11</sup>C]GG502, ~55% and ~10% of radioactivity was from unmetabolized [<sup>11</sup>C]GG502 in the brain and the plasma, respectively.</p><h3>Conclusions</h3><p>We synthesized and evaluated a <sup>11</sup>C-labeled PET ligand based on the methylated analog of GSK’963 for imaging of RIPK1 in the brain. Although in autoradiography of the resulting [<sup>11</sup>C]GG502 indicated the possibility of specific binding, the actual PET imaging failed to","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584749/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49672880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fully automated radiolabeling of [68Ga]Ga-EMP100 targeting c-MET for PET-CT clinical imaging 靶向c-MET的[68Ga]Ga-EMP100的全自动放射性标记用于PET-CT临床成像。
IF 4.6 Q1 Medicine Pub Date : 2023-10-16 DOI: 10.1186/s41181-023-00213-3
Timofei Rusu, Matthieu Delion, Charlotte Pirot, Amaury Blin, Anita Rodenas, Jean-Noël Talbot, Nicolas Veran, Christophe Portal, Françoise Montravers, Jacques Cadranel, Aurélie Prignon

Background

c-MET is a transmembrane receptor involved in many biological processes and contributes to cell proliferation and migration during cancer invasion process. Its expression is measured by immunehistochemistry on tissue biopsy in clinic, although this technique has its limitations. PET-CT could allow in vivo mapping of lesions expressing c-MET, providing whole-body detection. A number of radiopharmaceuticals are under development for this purpose but are not yet in routine clinical use. EMP100 is a cyclic oligopeptide bound to a DOTA chelator, with nanomolar affinity for c-MET. The aim of this project was to develop an automated method for radiolabelling the radiopharmaceutical [68Ga]Ga-EMP100.

Results

The main results showed an optimal pH range between 3.25 and 3.75 for the complexation reaction and a stabilisation of the temperature at 90 °C, resulting in an almost complete incorporation of gallium-68 after 10 min of heating. In these experiments, 90 µg of EMP-100 peptide were initially used and then lower amounts (30, 50, 75 µg) were explored to determine the minimum required for sufficient synthesis yield. Radiolysis impurities were identified by radio-HPLC and ascorbic acid and ethanol were used to improve the purity of the compound. Three batches of [68Ga]Ga-EMP100 were then prepared according to the optimised parameters and all met the established specifications. Finally, the stability of [68Ga]Ga-EMP100 was assessed at room temperature over 3 h with satisfactory results in terms of appearance, pH, radiochemical purity and sterility.

Conclusions

For the automated synthesis of [68Ga]Ga-EMP100, the parameters of pH, temperature, precursor peptide content and the use of adjuvants for impurity management were efficiently optimised, resulting in the production of three compliant and stable batches according to the principles of good manufacturing practice. [68Ga]Ga-EMP100 was successfully synthesised and is now available for clinical development in PET-CT imaging.

背景:c-MET是一种跨膜受体,参与多种生物学过程,在癌症侵袭过程中参与细胞增殖和迁移。它的表达是通过免疫组织化学在临床组织活检中测量的,尽管这种技术有其局限性。PET-CT可以在体内定位表达c-MET的病变,提供全身检测。许多放射性药物正在为此目的进行开发,但尚未在常规临床使用中。EMP100是一种与DOTA螯合剂结合的环状寡肽,对c-MET具有纳摩尔亲和力。该项目的目的是开发一种放射性药物[68Ga]Ga-EMP100的自动放射性标记方法。结果:主要结果显示,络合反应的最佳pH范围为3.25至3.75,温度稳定在90°C,加热10分钟后,镓-68几乎完全掺入。在这些实验中,最初使用90µg的EMP-100肽,然后探索较低的量(30、50、75µg),以确定足够合成产率所需的最小值。通过放射高效液相色谱法鉴定了放解杂质,并使用抗坏血酸和乙醇来提高化合物的纯度。然后根据优化的参数制备三批[68Ga]Ga-EMP100,所有批次均符合既定规范。最后,在室温下对[68Ga]Ga-EMP100的稳定性进行了3小时的评估,在外观、pH、放射化学纯度和无菌性方面取得了令人满意的结果。结论:对于[68Ga]Ga-EMP100的自动化合成,pH、温度、前体肽含量和杂质管理佐剂的使用等参数得到了有效优化,从而根据良好生产实践的原则生产出了三个符合要求且稳定的批次。[68Ga]Ga-EMP100已成功合成,目前可用于PET-CT成像的临床开发。
{"title":"Fully automated radiolabeling of [68Ga]Ga-EMP100 targeting c-MET for PET-CT clinical imaging","authors":"Timofei Rusu,&nbsp;Matthieu Delion,&nbsp;Charlotte Pirot,&nbsp;Amaury Blin,&nbsp;Anita Rodenas,&nbsp;Jean-Noël Talbot,&nbsp;Nicolas Veran,&nbsp;Christophe Portal,&nbsp;Françoise Montravers,&nbsp;Jacques Cadranel,&nbsp;Aurélie Prignon","doi":"10.1186/s41181-023-00213-3","DOIUrl":"10.1186/s41181-023-00213-3","url":null,"abstract":"<div><h3>Background</h3><p>c-MET is a transmembrane receptor involved in many biological processes and contributes to cell proliferation and migration during cancer invasion process. Its expression is measured by immunehistochemistry on tissue biopsy in clinic, although this technique has its limitations. PET-CT could allow in vivo mapping of lesions expressing c-MET, providing whole-body detection. A number of radiopharmaceuticals are under development for this purpose but are not yet in routine clinical use. EMP100 is a cyclic oligopeptide bound to a DOTA chelator, with nanomolar affinity for c-MET. The aim of this project was to develop an automated method for radiolabelling the radiopharmaceutical [<sup>68</sup>Ga]Ga-EMP100.</p><h3>Results</h3><p>The main results showed an optimal pH range between 3.25 and 3.75 for the complexation reaction and a stabilisation of the temperature at 90 °C, resulting in an almost complete incorporation of gallium-68 after 10 min of heating. In these experiments, 90 µg of EMP-100 peptide were initially used and then lower amounts (30, 50, 75 µg) were explored to determine the minimum required for sufficient synthesis yield. Radiolysis impurities were identified by radio-HPLC and ascorbic acid and ethanol were used to improve the purity of the compound. Three batches of [<sup>68</sup>Ga]Ga-EMP100 were then prepared according to the optimised parameters and all met the established specifications. Finally, the stability of [<sup>68</sup>Ga]Ga-EMP100 was assessed at room temperature over 3 h with satisfactory results in terms of appearance, pH, radiochemical purity and sterility.</p><h3>Conclusions</h3><p>For the automated synthesis of [<sup>68</sup>Ga]Ga-EMP100, the parameters of pH, temperature, precursor peptide content and the use of adjuvants for impurity management were efficiently optimised, resulting in the production of three compliant and stable batches according to the principles of good manufacturing practice. [<sup>68</sup>Ga]Ga-EMP100 was successfully synthesised and is now available for clinical development in PET-CT imaging.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579204/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41231396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fully automated radiosynthesis of [68Ga]Ga-FAPI-46 with cyclotron produced gallium 用回旋加速器产生的镓进行[68Ga]Ga-FAPI-46的全自动放射合成。
IF 4.6 Q1 Medicine Pub Date : 2023-10-16 DOI: 10.1186/s41181-023-00216-0
Adam J. Rosenberg, Yiu-Yin Cheung, Fei Liu, Carina Sollert, Todd E. Peterson, Jonathan A. Kropski

Background

Radiopharmaceuticals capable of targeting the fibroblast activation protein have become widely utilized in the research realm as well as show great promise to be commercialized; with [68Ga]Ga-FAPI-46 being one of the most widely utilized. Until now the synthesis has relied on generator-produced gallium-68. Here we present a developed method to utilize liquid-target cyclotron-produced gallium-68 to prepare [68Ga]Ga-FAPI-46.

Results

A fully-automated manufacturing process for [68Ga]Ga-FAPI-46 was developed starting with the 68Zn[p,n]68Ga cyclotron bombardment to provide [68Ga]GaCl3, automated purification of the [68Ga]GaCl3, chelation with the precursor, and final formulation/purification. The activity levels produced were sufficient for multiple clinical research doses, and the final product met all release criteria. Furthermore, the process consistently provides < 2% of Ga-66 and Ga-67 at the 4-h expiry, meeting the Ph. Eur. standards.

Conclusions

The automated radiosynthesis on the GE FASTlab 2 module purifies the cyclotron output into [68Ga]GaCl3, performs the labeling, formulates the product, and sterilizes the product while transferring to the final vial. Production of > 40 mCi (> 1480 MBq) of [68Ga]Ga-FAPI-46 in excellent radiochemical yield was achieved with all batches meeting release criteria.

背景:靶向成纤维细胞活化蛋白的放射性药物已在研究领域得到广泛应用,并显示出商业化的巨大前景;[68Ga]Ga-FAPI-46是应用最广泛的材料之一。到目前为止,合成一直依赖于发电机生产的镓-68。在这里,我们提出了一种利用液体靶回旋加速器产生的镓-68制备[68Ga]Ga-FAPI-46的开发方法。产生的活性水平足以用于多种临床研究剂量,最终产品符合所有释放标准。此外,该过程始终提供标准:结论:GE FASTlab 2模块上的自动化放射合成将回旋加速器输出净化为[68Ga]GaCl3,进行标记,配制产品,并在转移到最终小瓶时对产品进行消毒。生产> 40 mCi(> 1480MBq)的[68Ga]Ga-FAPI-46,所有批次都符合释放标准。
{"title":"Fully automated radiosynthesis of [68Ga]Ga-FAPI-46 with cyclotron produced gallium","authors":"Adam J. Rosenberg,&nbsp;Yiu-Yin Cheung,&nbsp;Fei Liu,&nbsp;Carina Sollert,&nbsp;Todd E. Peterson,&nbsp;Jonathan A. Kropski","doi":"10.1186/s41181-023-00216-0","DOIUrl":"10.1186/s41181-023-00216-0","url":null,"abstract":"<div><h3>Background</h3><p>Radiopharmaceuticals capable of targeting the fibroblast activation protein have become widely utilized in the research realm as well as show great promise to be commercialized; with [<sup>68</sup>Ga]Ga-FAPI-46 being one of the most widely utilized. Until now the synthesis has relied on generator-produced gallium-68. Here we present a developed method to utilize liquid-target cyclotron-produced gallium-68 to prepare [<sup>68</sup>Ga]Ga-FAPI-46.</p><h3>Results</h3><p>A fully-automated manufacturing process for [<sup>68</sup>Ga]Ga-FAPI-46 was developed starting with the <sup>68</sup>Zn[p,n]<sup>68</sup>Ga cyclotron bombardment to provide [<sup>68</sup>Ga]GaCl<sub>3</sub>, automated purification of the [<sup>68</sup>Ga]GaCl<sub>3</sub>, chelation with the precursor, and final formulation/purification. The activity levels produced were sufficient for multiple clinical research doses, and the final product met all release criteria. Furthermore, the process consistently provides &lt; 2% of Ga-66 and Ga-67 at the 4-h expiry, meeting the Ph. Eur. standards.</p><h3>Conclusions</h3><p>The automated radiosynthesis on the GE FASTlab 2 module purifies the cyclotron output into [<sup>68</sup>Ga]GaCl<sub>3</sub>, performs the labeling, formulates the product, and sterilizes the product while transferring to the final vial. Production of &gt; 40 mCi (&gt; 1480 MBq) of [<sup>68</sup>Ga]Ga-FAPI-46 in excellent radiochemical yield was achieved with all batches meeting release criteria.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579206/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41231397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
State of the art procedures towards reactive [18F]fluoride in PET tracer synthesis PET示踪剂合成中反应性[18F]氟化物的最新工艺。
IF 4.6 Q1 Medicine Pub Date : 2023-10-12 DOI: 10.1186/s41181-023-00203-5
Lizeth Y. F. Haveman, Danielle J. Vugts, Albert D. Windhorst

Background

Positron emission tomography (PET) is a powerful, non-invasive preclinical and clinical nuclear imaging technique used in disease diagnosis and therapy assessment. Fluorine-18 is the predominant radionuclide used for PET tracer synthesis. An impressive variety of new ‘late-stage’ radiolabeling methodologies for the preparation of 18F-labeled tracers has appeared in order to improve the efficiency of the labeling reaction.

Main body

Despite these developments, one outstanding challenge into the early key steps of the process remains: the preparation of reactive [18F]fluoride from oxygen-18 enriched water ([18O]H2O). In the last decade, significant changes into the trapping, elution and drying stages have been introduced. This review provides an overview of the strategies and recent developments in the production of reactive [18F]fluoride and its use for radiolabeling.

Conclusion

Improved, modified or even completely new fluorine-18 work-up procedures have been developed in the last decade with widespread use in base-sensitive nucleophilic 18F-fluorination reactions. The many promising developments may lead to a few standardized drying methodologies for the routine production of a broad scale of PET tracers.

背景:正电子发射断层扫描(PET)是一种强大的、非侵入性的临床前和临床核成像技术,用于疾病诊断和治疗评估。氟-18是用于PET示踪剂合成的主要放射性核素。为了提高标记反应的效率,出现了各种令人印象深刻的用于制备18F标记示踪剂的新的“晚期”放射性标记方法。主体:尽管有这些进展,但该工艺早期关键步骤的一个突出挑战仍然存在:从富含氧-18的水([18O]H2O)中制备反应性[18F]氟化物。在过去的十年里,捕获、洗脱和干燥阶段发生了重大变化。这篇综述概述了反应性[18F]氟化物的生产及其在放射性标记中的应用的策略和最新进展。结论:在过去的十年里,人们开发了改进、改进甚至全新的氟-18后处理程序,并广泛用于碱敏感的亲核18F氟化反应。许多有前景的发展可能会导致一些标准化的干燥方法,用于大规模PET示踪剂的常规生产。
{"title":"State of the art procedures towards reactive [18F]fluoride in PET tracer synthesis","authors":"Lizeth Y. F. Haveman,&nbsp;Danielle J. Vugts,&nbsp;Albert D. Windhorst","doi":"10.1186/s41181-023-00203-5","DOIUrl":"10.1186/s41181-023-00203-5","url":null,"abstract":"<div><h3>Background</h3><p>Positron emission tomography (PET) is a powerful, non-invasive preclinical and clinical nuclear imaging technique used in disease diagnosis and therapy assessment. Fluorine-18 is the predominant radionuclide used for PET tracer synthesis. An impressive variety of new ‘late-stage’ radiolabeling methodologies for the preparation of <sup>18</sup>F-labeled tracers has appeared in order to improve the efficiency of the labeling reaction.</p><h3>Main body</h3><p>Despite these developments, one outstanding challenge into the early key steps of the process remains: the preparation of reactive [<sup>18</sup>F]fluoride from oxygen-18 enriched water ([<sup>18</sup>O]H<sub>2</sub>O). In the last decade, significant changes into the trapping, elution and drying stages have been introduced. This review provides an overview of the strategies and recent developments in the production of reactive [<sup>18</sup>F]fluoride and its use for radiolabeling.</p><h3>Conclusion</h3><p>Improved, modified or even completely new fluorine-18 work-up procedures have been developed in the last decade with widespread use in base-sensitive nucleophilic <sup>18</sup>F-fluorination reactions. The many promising developments may lead to a few standardized drying methodologies for the routine production of a broad scale of PET tracers.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570257/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41187530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel radionuclides for use in Nuclear Medicine in Europe: where do we stand and where do we go? 欧洲核医学中使用的新型放射性核素:我们的立场和方向?
IF 4.6 Q1 Medicine Pub Date : 2023-10-12 DOI: 10.1186/s41181-023-00211-5
Maija Radzina, Laura Saule, Edgars Mamis, Ulli Koester, Thomas Elias Cocolios, Elina Pajuste, Marika Kalnina, Kristaps Palskis, Zoe Sawitzki, Zeynep Talip, Mikael Jensen, Charlotte Duchemin, Kirsten Leufgen, Thierry Stora

Background

In order to support the ongoing research across Europe to facilitate access to novel radionuclides, the PRISMAP consortium (European medical radionuclides programme) was established to offer the broadest catalog of non-conventional radionuclides for medical and translational research. The aim of this article is to introduce readers with current status of novel radionuclides in Europe.

Main body

A consortium questionnaire was disseminated through the PRISMAP consortium and user community, professional associations and preclinical/clinical end users in Europe and the current status of clinical end-users in nuclear medicine were identified. A total of 40 preclinical/clinical users institutions took part in the survey. Clinical end users currently use the following radionuclides in their studies: 177Lu, 68 Ga, 111In, 90Y, other alpha emitters, 225Ac, 64Cu and Terbium isotopes. Radionuclides that would be of interest for users within the next 2–5 years are 64Cu, Terbium radionuclide “family” and alpha emitters, such as 225Ac.

Conclusions

Thanks to a questionnaire distributed by the PRISMAP consortium, the current status and needs of clinical end-users in nuclear medicine were identified.

背景:为了支持欧洲各地正在进行的研究,以促进获得新型放射性核素,成立了PRISMAP联盟(欧洲医用放射性核素计划),为医学和转化研究提供最广泛的非常规放射性核素目录。本文旨在向读者介绍欧洲新型放射性核素的现状。正文:通过PRISMAP联盟和欧洲的用户社区、专业协会和临床前/临床最终用户分发了一份联盟问卷,并确定了核医学临床最终用户的现状。共有40家临床前/临床用户机构参与了调查。临床最终用户目前在研究中使用以下放射性核素:177Lu、68Ga、111In、90Y、其他α发射体、225Ac、64Cu和铽同位素。用户在未来2-5年内感兴趣的放射性核素是64Cu、铽放射性核素“家族”和α发射器,如225Ac。结论:由于PRISMAP联盟分发的问卷,确定了核医学临床最终用户的现状和需求。
{"title":"Novel radionuclides for use in Nuclear Medicine in Europe: where do we stand and where do we go?","authors":"Maija Radzina,&nbsp;Laura Saule,&nbsp;Edgars Mamis,&nbsp;Ulli Koester,&nbsp;Thomas Elias Cocolios,&nbsp;Elina Pajuste,&nbsp;Marika Kalnina,&nbsp;Kristaps Palskis,&nbsp;Zoe Sawitzki,&nbsp;Zeynep Talip,&nbsp;Mikael Jensen,&nbsp;Charlotte Duchemin,&nbsp;Kirsten Leufgen,&nbsp;Thierry Stora","doi":"10.1186/s41181-023-00211-5","DOIUrl":"10.1186/s41181-023-00211-5","url":null,"abstract":"<div><h3>Background</h3><p>In order to support the ongoing research across Europe to facilitate access to novel radionuclides, the PRISMAP consortium (European medical radionuclides programme) was established to offer the broadest catalog of non-conventional radionuclides for medical and translational research. The aim of this article is to introduce readers with current status of novel radionuclides in Europe.</p><h3>Main body</h3><p>A consortium questionnaire was disseminated through the PRISMAP consortium and user community, professional associations and preclinical/clinical end users in Europe and the current status of clinical end-users in nuclear medicine were identified. A total of 40 preclinical/clinical users institutions took part in the survey. Clinical end users currently use the following radionuclides in their studies: <sup>177</sup>Lu, <sup>68</sup> Ga, <sup>111</sup>In, <sup>90</sup>Y, other alpha emitters, <sup>225</sup>Ac, <sup>64</sup>Cu and Terbium isotopes. Radionuclides that would be of interest for users within the next 2–5 years are <sup>64</sup>Cu, Terbium radionuclide “family” and alpha emitters, such as <sup>225</sup>Ac.</p><h3>Conclusions</h3><p>Thanks to a questionnaire distributed by the PRISMAP consortium, the current status and needs of clinical end-users in nuclear medicine were identified.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41187529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Au@109Pd core–shell nanoparticle conjugated to trastuzumab for the therapy of HER2+ cancers: studies on the applicability of 109Pd/109mAg in vivo generator in combined β− auger electron therapy Au@109Pd与曲妥珠单抗偶联的核壳纳米粒子治疗HER2+ 癌症:109Pd/109mAg体内发生器在联合β-俄歇电子治疗中的适用性研究。
IF 4.6 Q1 Medicine Pub Date : 2023-10-11 DOI: 10.1186/s41181-023-00212-4
Nasrin Abbasi Gharibkandi, Kamil Wawrowicz, Agnieszka Majkowska-Pilip, Kinga Żelechowska-Matysiak, Mateusz Wierzbicki, Aleksander Bilewicz

Background

In radionuclide therapy, to enhance therapeutic efficacy, an intriguing alternative is to ensure the simultaneous implementation of low- and high-LET radiation emitted from a one radionuclide. In the present study, we introduce the concept of utilizing 109Pd (T1/2 = 13.7 h) in the form of a 109Pd/109mAg in vivo generator. In this system, 109Pd emits beta particles of medium energy, while 109mAg releases a cascade of conversion and Auger electrons. 109Pd was utilized in the form of 15 nm gold nanoparticles, which were coated with a monolayer of 109Pd. In this system, the 109Pd atoms are on the surface of the nanoparticle, while the 109mAg atoms generated in the decay reaction possess the capability for unhindered emission of Auger electrons.

Results

109Pd, obtained through neutron irradiation of natural palladium, was deposited onto 15-nm gold nanoparticles, exceeding a efficiency rate of 95%. In contrast to previously published data on in vivo generators based on chelators, where the daughter radionuclide diffuses away from the molecules, daughter radionuclide 109mAg remains on the surface of gold nanoparticles after the decay of 109Pd. To obtain a radiobioconjugate with an affinity for HER2 receptors, polyethylene glycol chains and the monoclonal antibody trastuzumab were attached to the Au@Pd nanoparticles. The synthesized bioconjugate contained an average of 9.5 trastuzumab molecules per one nanoparticle. In vitro cell studies indicated specific binding of the Au@109Pd-PEG-trastuzumab radiobioconjugate to the HER2 receptor on SKOV-3 cells, resulting in 90% internalization. Confocal images illustrated the accumulation of Au@109Pd-PEG-trastuzumab in the perinuclear area surrounding the cell nucleus. Despite the lack of nuclear localization, which is necessary to achieve an effective cytotoxic effect of Auger electrons, a substantial cytotoxic effect, significantly greater than that of pure β and pure Auger electron emitters was observed. We hypothesize that in the studied system, the cytotoxic effect of the Auger electrons could have also occurred through the damage to the cell’s nuclear membrane by Auger electrons emitted from nanoparticles accumulated in the perinuclear area.

Conclusion

The obtained results show that trastuzumab-functionalized 109Pd-labeled nanoparticles can be suitable for the application in combined βAuger electron targeted radionuclide therapy. Due to both components decay (β and conversion/Auger electrons), the 109Pd/109mAg in vivo generator presents unique potential in this field. Despite the lack of nuclear localization, which is highly required for efficient Auger electron therapy, an adequate cytotoxic effect was attained.

<
背景:在放射性核素治疗中,为了提高治疗效果,一个有趣的替代方案是确保同时实施一种放射性核素发射的低LET辐射和高LET辐射。在本研究中,我们引入了利用109Pd(T1/2 = 13.7小时),其为109Pd/109mAg体内发生器的形式。在这个系统中,109Pd发射中等能量的β粒子,而109mAg释放级联的转换和俄歇电子。109Pd以15nm金纳米颗粒的形式使用,其用109Pd的单层涂覆。在该系统中,109Pd原子在纳米颗粒的表面,而在衰变反应中产生的109mAg原子具有不受阻碍地发射俄歇电子的能力。结果:天然钯经中子辐照得到的109Pd沉积在15nm的金纳米粒子上,效率超过95%。与之前发表的基于螯合剂的体内发生器的数据相反,在螯合剂中,子放射性核素从分子中扩散出去,子放射性同位素109mAg在109Pd衰变后保留在金纳米颗粒的表面上。为了获得对HER2受体具有亲和力的放射性生物偶联物,将聚乙二醇链和单克隆抗体曲妥珠单抗连接到Au@Pd纳米颗粒。合成的生物偶联物每一个纳米颗粒平均含有9.5个曲妥珠单抗分子。体外细胞研究表明Au@109Pd-PEG-trastuzumab与SKOV-3细胞上的HER2受体进行放射生物偶联,导致90%的内化。共焦图像显示了Au@109Pd-PEG-trastuzumab在细胞核周围的核周区域。尽管缺乏实现俄歇电子的有效细胞毒性作用所必需的核定位,但观察到显著大于纯β和纯俄歇电子发射器的细胞毒性作用。我们假设,在所研究的系统中,俄歇电子的细胞毒性作用也可能是通过聚集在核周区域的纳米颗粒发射的俄歇电子对细胞核膜的损伤而发生的。结论:曲妥珠单抗功能化的109Pd标记纳米颗粒适用于β-俄歇电子靶向放射性核素联合治疗。由于这两种成分都会衰变(β电子和转化/俄歇电子),109Pd/109mAg体内发生器在该领域具有独特的潜力。尽管缺乏高效俄歇电子治疗所需的核定位,但仍获得了足够的细胞毒性效果。
{"title":"Au@109Pd core–shell nanoparticle conjugated to trastuzumab for the therapy of HER2+ cancers: studies on the applicability of 109Pd/109mAg in vivo generator in combined β− auger electron therapy","authors":"Nasrin Abbasi Gharibkandi,&nbsp;Kamil Wawrowicz,&nbsp;Agnieszka Majkowska-Pilip,&nbsp;Kinga Żelechowska-Matysiak,&nbsp;Mateusz Wierzbicki,&nbsp;Aleksander Bilewicz","doi":"10.1186/s41181-023-00212-4","DOIUrl":"10.1186/s41181-023-00212-4","url":null,"abstract":"<div><h3>Background</h3><p>In radionuclide therapy, to enhance therapeutic efficacy, an intriguing alternative is to ensure the simultaneous implementation of low- and high-LET radiation emitted from a one radionuclide. In the present study, we introduce the concept of utilizing <sup>109</sup>Pd (T<sub>1/2</sub> = 13.7 h) in the form of a <sup>109</sup>Pd/<sup>109m</sup>Ag in vivo generator. In this system, <sup>109</sup>Pd emits beta particles of medium energy, while <sup>109m</sup>Ag releases a cascade of conversion and Auger electrons. <sup>109</sup>Pd was utilized in the form of 15 nm gold nanoparticles, which were coated with a monolayer of <sup>109</sup>Pd. In this system, the <sup>109</sup>Pd atoms are on the surface of the nanoparticle, while the <sup>109m</sup>Ag atoms generated in the decay reaction possess the capability for unhindered emission of Auger electrons.</p><h3>Results</h3><p><sup>109</sup>Pd, obtained through neutron irradiation of natural palladium, was deposited onto 15-nm gold nanoparticles, exceeding a efficiency rate of 95%. In contrast to previously published data on in vivo generators based on chelators, where the daughter radionuclide diffuses away from the molecules, daughter radionuclide <sup>109m</sup>Ag remains on the surface of gold nanoparticles after the decay of <sup>109</sup>Pd. To obtain a radiobioconjugate with an affinity for HER2 receptors, polyethylene glycol chains and the monoclonal antibody trastuzumab were attached to the Au@Pd nanoparticles. The synthesized bioconjugate contained an average of 9.5 trastuzumab molecules per one nanoparticle. In vitro cell studies indicated specific binding of the Au@<sup>109</sup>Pd-PEG-trastuzumab radiobioconjugate to the HER2 receptor on SKOV-3 cells, resulting in 90% internalization. Confocal images illustrated the accumulation of Au@<sup>109</sup>Pd-PEG-trastuzumab in the perinuclear area surrounding the cell nucleus. Despite the lack of nuclear localization, which is necessary to achieve an effective cytotoxic effect of Auger electrons, a substantial cytotoxic effect, significantly greater than that of pure β<sup>−</sup> and pure Auger electron emitters was observed. We hypothesize that in the studied system, the cytotoxic effect of the Auger electrons could have also occurred through the damage to the cell’s nuclear membrane by Auger electrons emitted from nanoparticles accumulated in the perinuclear area.</p><h3>Conclusion</h3><p>The obtained results show that trastuzumab-functionalized <sup>109</sup>Pd-labeled nanoparticles can be suitable for the application in combined β<sup>−</sup><b>—</b>Auger electron targeted radionuclide therapy. Due to both components decay (β<sup>−</sup> and conversion/Auger electrons), the <sup>109</sup>Pd/<sup>109m</sup>Ag in vivo generator presents unique potential in this field. Despite the lack of nuclear localization, which is highly required for efficient Auger electron therapy, an adequate cytotoxic effect was attained.</p><","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567614/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41187527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Good practices for the automated production of 18F-SiFA radiopharmaceuticals 18F-SiFA放射性药物自动化生产的良好实践。
IF 4.6 Q1 Medicine Pub Date : 2023-10-11 DOI: 10.1186/s41181-023-00215-1
Simon Blok, Carmen Wängler, Peter Bartenstein, Klaus Jurkschat, Ralf Schirrmacher, Simon Lindner

Background

The positron emitting isotope fluorine-18 (18F) possesses almost ideal physicochemical properties for the development of radiotracers for diagnostic molecular imaging employing positron emission tomography (PET). 18F in its nucleophilic anionic 18F form is usually prepared by bombarding an enriched 18O water target with protons of various energies between 5 and 20 MeV depending on the technical specifications of the cyclotron. Large thick-target yields between 5 and 14 GBq/µA can be obtained, enough to prepare large batches of radiotracers capable to serve a considerable contingent of patients (50 + per clinical batch). The overall yield of the radiotracer however depends on the efficiency of the 18F labeling chemistry. The Silicon Fluoride Acceptor chemistry (SiFA) has introduced a convenient and highly efficient way to provide clinical peptide-based 18F-radiotracers in a kit-like procedure matching the convenience of 99mTc radiopharmaceuticals.

Main body

A radiotracer’s clinical success primarily hinges on whether its synthesis can be automated. Due to its simplicity, the SiFA chemistry, which is based on isotopic exchange (18F for 19F), does not only work in a manual setup but has been proven to be automatable, yielding large batches of 18F-radiotracers of high molar activity (Am). The production of SiFA radiotracer can be centralized and the radiopharmaceutical be distributed via the “satellite” principle, where one production facility economically serves multiple clinical application sites. Clinically validated tracers such as [18F]SiTATE and [18F]Ga-rhPSMA-7/-7.3 have been synthesized in an automated synthesis unit under good manufacturing practice conditions and used in large patient cohorts. Communication of common guidelines and practices is warranted to further the dissemination of SiFA radiopharmaceuticals and to give easy access to this technology.

Conclusion

This current review highlights the most recent achievements in SiFA radiopharmaceutical automation geared towards large batch production for clinical application. Best practice advice and guidance towards a facilitated implementation of the SiFA technology into new and already operating PET tracer production facilities is provided. A brief outlook spotlights the future potential of SiFA radiochemistry within the landscape of non-canonical labeling chemistries.

背景:正电子发射同位素氟-18(18F)具有几乎理想的物理化学性质,可用于开发正电子发射断层扫描(PET)诊断分子成像的放射性示踪剂。根据回旋加速器的技术规格,其亲核阴离子18F-形式的18F通常通过用5到20MeV之间的各种能量的质子轰击富集的18O水靶来制备。可以获得5至14GBq/µA的大的厚靶产量,足以制备大批量的放射性示踪剂,能够为相当多的患者提供服务(50 + 每个临床批次)。然而,放射性示踪剂的总产量取决于18F标记化学的效率。氟化硅受体化学(SiFA)已经引入了一种方便且高效的方法,以在与99mTc放射性药物的便利性相匹配的试剂盒状程序中提供临床肽基18F放射性示踪剂。主体:放射性示踪剂的临床成功主要取决于其合成是否可以自动化。由于其简单性,基于同位素交换(18F对19F)的SiFA化学不仅在手动设置中工作,而且已被证明是自动化的,产生了大批量的高摩尔活性的18F放射性示踪剂(Am)。SiFA放射性示踪剂的生产可以集中进行,放射性药物可以通过“卫星”原理进行分配,一个生产设施经济地服务于多个临床应用场所。临床验证的示踪剂,如[18F]SiTATE和[18F]Ga-rhPSMA-7/-7.3,已在良好的生产实践条件下在自动化合成装置中合成,并用于大型患者队列。有必要交流共同的指导方针和做法,以进一步传播SiFA放射性药物,并方便使用这项技术。结论:本综述重点介绍了SiFA放射性药物自动化的最新成就,该自动化旨在实现临床应用的大批量生产。提供了最佳实践建议和指导,以促进在新的和已经运行的PET示踪剂生产设施中实施SiFA技术。简要展望了SiFA放射化学在非规范标记化学领域的未来潜力。
{"title":"Good practices for the automated production of 18F-SiFA radiopharmaceuticals","authors":"Simon Blok,&nbsp;Carmen Wängler,&nbsp;Peter Bartenstein,&nbsp;Klaus Jurkschat,&nbsp;Ralf Schirrmacher,&nbsp;Simon Lindner","doi":"10.1186/s41181-023-00215-1","DOIUrl":"10.1186/s41181-023-00215-1","url":null,"abstract":"<div><h3>Background</h3><p>The positron emitting isotope fluorine-18 (<sup>18</sup>F) possesses almost ideal physicochemical properties for the development of radiotracers for diagnostic molecular imaging employing positron emission tomography (PET). <sup>18</sup>F in its nucleophilic anionic <sup>18</sup>F<sup>−</sup> form is usually prepared by bombarding an enriched <sup>18</sup>O water target with protons of various energies between 5 and 20 MeV depending on the technical specifications of the cyclotron. Large thick-target yields between 5 and 14 GBq/µA can be obtained, enough to prepare large batches of radiotracers capable to serve a considerable contingent of patients (50 + per clinical batch). The overall yield of the radiotracer however depends on the efficiency of the <sup>18</sup>F labeling chemistry. The Silicon Fluoride Acceptor chemistry (SiFA) has introduced a convenient and highly efficient way to provide clinical peptide-based <sup>18</sup>F-radiotracers in a kit-like procedure matching the convenience of <sup>99m</sup>Tc radiopharmaceuticals.</p><h3>Main body</h3><p>A radiotracer’s clinical success primarily hinges on whether its synthesis can be automated. Due to its simplicity, the SiFA chemistry, which is based on isotopic exchange (<sup>18</sup>F for <sup>19</sup>F), does not only work in a manual setup but has been proven to be automatable, yielding large batches of <sup>18</sup>F-radiotracers of high molar activity (A<sub>m</sub>). The production of SiFA radiotracer can be centralized and the radiopharmaceutical be distributed via the “satellite” principle, where one production facility economically serves multiple clinical application sites. Clinically validated tracers such as [<sup>18</sup>F]SiTATE and [<sup>18</sup>F]Ga-rhPSMA-7/-7.3 have been synthesized in an automated synthesis unit under good manufacturing practice conditions and used in large patient cohorts. Communication of common guidelines and practices is warranted to further the dissemination of SiFA radiopharmaceuticals and to give easy access to this technology.</p><h3>Conclusion</h3><p>This current review highlights the most recent achievements in SiFA radiopharmaceutical automation geared towards large batch production for clinical application. Best practice advice and guidance towards a facilitated implementation of the SiFA technology into new and already operating PET tracer production facilities is provided. A brief outlook spotlights the future potential of SiFA radiochemistry within the landscape of non-canonical labeling chemistries.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41187528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
EJNMMI Radiopharmacy and Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1