Pub Date : 2024-04-16DOI: 10.1186/s41181-024-00261-3
Maryam Oroujeni, Matilda Carlqvist, Eva Ryer, Anna Orlova, Vladimir Tolmachev, Fredrik Y. Frejd
Background
Radionuclide molecular imaging can be used to visualize the expression levels of molecular targets. Affibody molecules, small and high affinity non-immunoglobulin scaffold-based proteins, have demonstrated promising properties as targeting vectors for radionuclide tumour imaging of different molecular targets. B7-H3 (CD276), an immune checkpoint protein belonging to the B7 family, is overexpressed in different types of human malignancies. Visualization of overexpression of B7-H3 in malignancies enables stratification of patients for personalized therapies. Affinity maturation of anti-B7-H3 Affibody molecules as an approach to improve the binding affinity and targeting properties was recently investigated. In this study, we tested the hypothesis that a dimeric format may be an alternative option to increase the apparent affinity of Affibody molecules to B7-H3 and accordingly improve imaging contrast.
Results
Two dimeric variants of anti-B7-H3 Affibody molecules were produced (designated ZAC12*-ZAC12*-GGGC and ZAC12*-ZTaq_3-GGGC). Both variants were labelled with Tc-99m (99mTc) and demonstrated specific binding to B7-H3-expressing cells in vitro. [99mTc]Tc-ZAC12*-ZAC12*-GGGC showed subnanomolar affinity (KD1=0.28 ± 0.10 nM, weight = 68%), which was 7.6-fold higher than for [99mTc]Tc-ZAC12*-ZTaq_3-GGGC (KD=2.1 ± 0.9 nM). Head-to-head biodistribution of both dimeric variants of Affibody molecules compared with monomeric affinity matured SYNT-179 (all labelled with 99mTc) in mice bearing B7-H3-expressing SKOV-3 xenografts demonstrates that both dimers have lower tumour uptake and lower tumour-to-organ ratios compared to the SYNT-179 Affibody molecule.
Conclusion
The improved functional affinity by dimerization does not compensate the disadvantage of increased molecular size for imaging purposes.
{"title":"Comparison of approaches for increasing affinity of affibody molecules for imaging of B7-H3: dimerization and affinity maturation","authors":"Maryam Oroujeni, Matilda Carlqvist, Eva Ryer, Anna Orlova, Vladimir Tolmachev, Fredrik Y. Frejd","doi":"10.1186/s41181-024-00261-3","DOIUrl":"10.1186/s41181-024-00261-3","url":null,"abstract":"<div><h3>Background</h3><p>Radionuclide molecular imaging can be used to visualize the expression levels of molecular targets. Affibody molecules, small and high affinity non-immunoglobulin scaffold-based proteins, have demonstrated promising properties as targeting vectors for radionuclide tumour imaging of different molecular targets. B7-H3 (CD276), an immune checkpoint protein belonging to the B7 family, is overexpressed in different types of human malignancies. Visualization of overexpression of B7-H3 in malignancies enables stratification of patients for personalized therapies. Affinity maturation of anti-B7-H3 Affibody molecules as an approach to improve the binding affinity and targeting properties was recently investigated. In this study, we tested the hypothesis that a dimeric format may be an alternative option to increase the apparent affinity of Affibody molecules to B7-H3 and accordingly improve imaging contrast.</p><h3>Results</h3><p>Two dimeric variants of anti-B7-H3 Affibody molecules were produced (designated Z<sub>AC12*</sub>-Z<sub>AC12*</sub>-GGGC and Z<sub>AC12*</sub>-Z<sub>Taq_3</sub>-GGGC). Both variants were labelled with Tc-99m (<sup>99m</sup>Tc) and demonstrated specific binding to B7-H3-expressing cells in vitro. [<sup>99m</sup>Tc]Tc-Z<sub>AC12*</sub>-Z<sub>AC12*</sub>-GGGC showed subnanomolar affinity (K<sub>D1</sub>=0.28 ± 0.10 nM, weight = 68%), which was 7.6-fold higher than for [<sup>99m</sup>Tc]Tc-Z<sub>AC12*</sub>-Z<sub>Taq_3</sub>-GGGC (K<sub>D</sub>=2.1 ± 0.9 nM). Head-to-head biodistribution of both dimeric variants of Affibody molecules compared with monomeric affinity matured SYNT-179 (all labelled with <sup>99m</sup>Tc) in mice bearing B7-H3-expressing SKOV-3 xenografts demonstrates that both dimers have lower tumour uptake and lower tumour-to-organ ratios compared to the SYNT-179 Affibody molecule.</p><h3>Conclusion</h3><p>The improved functional affinity by dimerization does not compensate the disadvantage of increased molecular size for imaging purposes.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":"9 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ejnmmipharmchem.springeropen.com/counter/pdf/10.1186/s41181-024-00261-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140559482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The alpha emitter astatine-211 (211At) is garnering attention as a novel targeted alpha therapy for patients with refractory thyroid cancer resistant to conventional therapy using beta emitter radioiodine (131I). Herein, we aimed to establish a robust method for the manufacturing and quality control of [211At]NaAt solution for intravenous administration under the good manufacturing practice guidelines for investigational products to conduct an investigator-initiated clinical trial.
Results
211At was separated and purified via dry distillation using irradiated Bi plates containing 211At obtained by the nuclear reaction of 209Bi(4He, 2n)211At. After purification, the 211At trapped in the cold trap was collected in a reaction vessel using 15 mL recovery solution (1% ascorbic acid and 2.3% sodium hydrogen carbonate). After stirring the 211At solution for 1 h inside a closed system, the reaction solution was passed through a sterile 0.22 μm filter placed in a Grade A controlled area and collected in a product vial to prepare the [211At]NaAt solution. According to the 3-lot tests, decay collected radioactivity and radiochemical yield of [211At]NaAt were 78.8 ± 6.0 MBq and 40 ± 3%, respectively. The radiochemical purity of [211At]At− obtained via ion-pair chromatography at the end of synthesis (EOS) was 97 ± 1%, and remained > 96% 6 h after EOS; it was detected at a retention time (RT) 3.2–3.3 min + RT of I−. LC-MS analysis indicated that this principal peak corresponded with an astatide ion (m/z = 210.988046). In gamma-ray spectrometry, the 211At-related peaks were identified (X-ray: 76.9, 79.3, 89.3, 89.8, and 92.3 keV; γ-ray: 569.7 and 687.0 keV), whereas the peak at 245.31 keV derived from 210At was not detected during the 22 h continuous measurement. The target material, Bi, was below the 9 ng/mL detection limit in all lots of the finished product. The pH of the [211At]NaAt solution was 7.9–8.6; the concentration of ascorbic acid was 9–10 mg/mL. Other quality control tests, including endotoxin and sterility tests, confirmed that the [211At]NaAt solution met all quality standards.
Conclusions
We successfully established a stable method of [211At]NaAt solution that can be administered to humans intravenously as an investigational product.
{"title":"Production of [211At]NaAt solution under GMP compliance for investigator-initiated clinical trial","authors":"Sadahiro Naka, Kazuhiro Ooe, Yoshifumi Shirakami, Kenta Kurimoto, Toshihiro Sakai, Kazuhiro Takahashi, Atsushi Toyoshima, Yang Wang, Hiromitsu Haba, Hiroki Kato, Noriyuki Tomiyama, Tadashi Watabe","doi":"10.1186/s41181-024-00257-z","DOIUrl":"10.1186/s41181-024-00257-z","url":null,"abstract":"<div><h3>Background</h3><p>The alpha emitter astatine-211 (<sup>211</sup>At) is garnering attention as a novel targeted alpha therapy for patients with refractory thyroid cancer resistant to conventional therapy using beta emitter radioiodine (<sup>131</sup>I). Herein, we aimed to establish a robust method for the manufacturing and quality control of [<sup>211</sup>At]NaAt solution for intravenous administration under the good manufacturing practice guidelines for investigational products to conduct an investigator-initiated clinical trial.</p><h3>Results</h3><p><sup>211</sup>At was separated and purified via dry distillation using irradiated Bi plates containing <sup>211</sup>At obtained by the nuclear reaction of <sup>209</sup>Bi(<sup>4</sup>He, 2n)<sup>211</sup>At. After purification, the <sup>211</sup>At trapped in the cold trap was collected in a reaction vessel using 15 mL recovery solution (1% ascorbic acid and 2.3% sodium hydrogen carbonate). After stirring the <sup>211</sup>At solution for 1 h inside a closed system, the reaction solution was passed through a sterile 0.22 μm filter placed in a Grade A controlled area and collected in a product vial to prepare the [<sup>211</sup>At]NaAt solution. According to the 3-lot tests, decay collected radioactivity and radiochemical yield of [<sup>211</sup>At]NaAt were 78.8 ± 6.0 MBq and 40 ± 3%, respectively. The radiochemical purity of [<sup>211</sup>At]At<sup>−</sup> obtained via ion-pair chromatography at the end of synthesis (EOS) was 97 ± 1%, and remained > 96% 6 h after EOS; it was detected at a retention time (RT) 3.2–3.3 min + RT of I<sup>−</sup>. LC-MS analysis indicated that this principal peak corresponded with an astatide ion (m/z = 210.988046). In gamma-ray spectrometry, the <sup>211</sup>At-related peaks were identified (X-ray: 76.9, 79.3, 89.3, 89.8, and 92.3 keV; γ-ray: 569.7 and 687.0 keV), whereas the peak at 245.31 keV derived from <sup>210</sup>At was not detected during the 22 h continuous measurement. The target material, Bi, was below the 9 ng/mL detection limit in all lots of the finished product. The pH of the [<sup>211</sup>At]NaAt solution was 7.9–8.6; the concentration of ascorbic acid was 9–10 mg/mL. Other quality control tests, including endotoxin and sterility tests, confirmed that the [<sup>211</sup>At]NaAt solution met all quality standards.</p><h3>Conclusions</h3><p>We successfully established a stable method of [<sup>211</sup>At]NaAt solution that can be administered to humans intravenously as an investigational product.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":"9 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ejnmmipharmchem.springeropen.com/counter/pdf/10.1186/s41181-024-00257-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140556096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-02DOI: 10.1186/s41181-024-00256-0
Aurélie Maisonial-Besset, David Kryza, Klaus Kopka, Sophie Levesque, Emmanuel Moreau, Barbara Wenzel, Jean-Michel Chezal
Background
(S)-[18F]FETrp is a promising PET radiotracer for imaging IDO1 activity, one of the main enzymes involved in the tryptophan metabolism that plays a key role in several diseases including cancers. To date, the radiosynthesis of this tryptophan analogue remains highly challenging due to partial racemization occurring during the nucleophilic radiofluorination step. This work aims to develop a short, epimerization-free and efficient automated procedure of (S)-[18F]FETrp from a corresponding enantiopure tosylate precursor.
Results
Enantiomerically pure (S)- and (R)-FETrp references as well as tosylate precursors (S)- and (R)-3 were obtained from corresponding Na-Boc-(L and D)-tryptophan in 2 and 4 steps, respectively. Manual optimisation of the radiolabelling conditions resulted in > 90% radiochemical conversion with more than 99% enantiomeric purity. Based on these results, the (S)-[18F]FETrp radiosynthesis was fully automated on a SynChrom R&D EVOI module to produce the radiotracer in 55.2 ± 7.5% radiochemical yield, 99.9% radiochemical purity, 99.1 ± 0.5% enantiomeric excess, and molar activity of 53.2 ± 9.3 GBq/µmol (n = 3).
Conclusions
To avoid racemisation and complicated purification processes, currently encountered for the radiosynthesis of (S)-[18F]FETrp, we report herein significant improvements, including a versatile synthesis of enantiomerically pure tosylate precursor and reference compound and a convenient one-pot two-step automated procedure for the radiosynthesis of (S)-[18F]FETrp. This optimised and robust production method could facilitate further investigations of this relevant PET radiotracer for imaging IDO1 activity.
{"title":"Improved automated one-pot two-step radiosynthesis of (S)-[18F]FETrp, a radiotracer for PET imaging of indoleamine 2,3-dioxygenase 1 (IDO1)","authors":"Aurélie Maisonial-Besset, David Kryza, Klaus Kopka, Sophie Levesque, Emmanuel Moreau, Barbara Wenzel, Jean-Michel Chezal","doi":"10.1186/s41181-024-00256-0","DOIUrl":"10.1186/s41181-024-00256-0","url":null,"abstract":"<div><h3>Background</h3><p>(<i>S</i>)-[<sup>18</sup>F]FETrp is a promising PET radiotracer for imaging IDO1 activity, one of the main enzymes involved in the tryptophan metabolism that plays a key role in several diseases including cancers. To date, the radiosynthesis of this tryptophan analogue remains highly challenging due to partial racemization occurring during the nucleophilic radiofluorination step. This work aims to develop a short, epimerization-free and efficient automated procedure of (<i>S</i>)-[<sup>18</sup>F]FETrp from a corresponding enantiopure tosylate precursor.</p><h3>Results</h3><p>Enantiomerically pure (<i>S</i>)<i>-</i> and (<i>R</i>)-FETrp references as well as tosylate precursors (<i>S</i>)- and (<i>R</i>)-3 were obtained from corresponding <i>N</i><sup><i>a</i></sup>-Boc-(L and D)-tryptophan in 2 and 4 steps, respectively. Manual optimisation of the radiolabelling conditions resulted in > 90% radiochemical conversion with more than 99% enantiomeric purity. Based on these results, the (<i>S</i>)-[<sup>18</sup>F]FETrp radiosynthesis was fully automated on a SynChrom R&D EVOI module to produce the radiotracer in 55.2 ± 7.5% radiochemical yield, 99.9% radiochemical purity, 99.1 ± 0.5% enantiomeric excess, and molar activity of 53.2 ± 9.3 GBq/µmol (<i>n</i> = 3).</p><h3>Conclusions</h3><p>To avoid racemisation and complicated purification processes, currently encountered for the radiosynthesis of (<i>S</i>)-[<sup>18</sup>F]FETrp, we report herein significant improvements, including a versatile synthesis of enantiomerically pure tosylate precursor and reference compound and a convenient one-pot two-step automated procedure for the radiosynthesis of (<i>S</i>)-[<sup>18</sup>F]FETrp. This optimised and robust production method could facilitate further investigations of this relevant PET radiotracer for imaging IDO1 activity.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":"9 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ejnmmipharmchem.springeropen.com/counter/pdf/10.1186/s41181-024-00256-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140334165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tau pathology plays a crucial role in neurodegeneration diseases including Alzheimer’s disease (AD) and non-AD diseases such as progressive supranuclear palsy. Tau positron emission tomography (PET) is an in-vivo and non-invasive medical imaging technique for detecting and visualizing tau deposition within a human brain. In this work, we aim to investigate the biodistribution of the dosimetry in the whole body and various organs for the [18F]Florzolotau tau-PET tracer. A total of 12 healthy controls (HCs) were enrolled at Chang Gung Memorial Hospital. All subjects were injected with approximately 379.03 ± 7.03 MBq of [18F]Florzolotau intravenously, and a whole-body PET/CT scan was performed for each subject. For image processing, the VOI for each organ was delineated manually by using the PMOD 3.7 software. Then, the time-activity curve of each organ was acquired by optimally fitting an exponential uptake and clearance model using the least squares method implemented in OLINDA/EXM 2.1 software. The absorbed dose for each target organ and the effective dose were finally calculated.
Results
From the biodistribution results, the elimination of [18F]Florzolotau is observed mainly from the liver to the intestine and partially through the kidneys. The highest organ-absorbed dose occurred in the right colon wall (255.83 μSv/MBq), and then in the small intestine (218.67 μSv/MBq), gallbladder wall (151.42 μSv/MBq), left colon wall (93.31 μSv/MBq), and liver (84.15 μSv/MBq). Based on the ICRP103, the final computed effective dose was 34.9 μSv/MBq with CV of 10.07%.
Conclusions
The biodistribution study of [18F]Florzolotau demonstrated that the excretion of [18F]Florzolotau are mainly through the hepatobiliary and gastrointestinal pathways. Therefore, a routine injection of 370 MBq or 185 MBq of [18F]Florzolotau leads to an estimated effective dose of 12.92 or 6.46 mSv, and as a result, the radiation exposure to the whole-body and each organ remains within acceptable limits and adheres to established constraints.