首页 > 最新文献

International Journal of Information and Computer Security最新文献

英文 中文
HEMC: A Dynamic Behavior Analysis System for Malware based on Hardware Virtualization 基于硬件虚拟化的恶意软件动态行为分析系统
Q3 Engineering Pub Date : 2023-01-01 DOI: 10.1504/ijics.2023.10050989
Zhiyu Hao, Yongji Liu, Haiqiang Fei, Lei Cui, Zhenquan Ding, Huixuan Xu
{"title":"HEMC: A Dynamic Behavior Analysis System for Malware based on Hardware Virtualization","authors":"Zhiyu Hao, Yongji Liu, Haiqiang Fei, Lei Cui, Zhenquan Ding, Huixuan Xu","doi":"10.1504/ijics.2023.10050989","DOIUrl":"https://doi.org/10.1504/ijics.2023.10050989","url":null,"abstract":"","PeriodicalId":53652,"journal":{"name":"International Journal of Information and Computer Security","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67030663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CyberNFTs: conceptualising a decentralised and reward-driven intrusion detection system with ML 网络nft:用机器学习概念化分散和奖励驱动的入侵检测系统
Q3 Engineering Pub Date : 2023-01-01 DOI: 10.1504/ijics.2023.10055729
Synim Selimi, Blerim Rexha, Kamer Vishi
{"title":"CyberNFTs: conceptualising a decentralised and reward-driven intrusion detection system with ML","authors":"Synim Selimi, Blerim Rexha, Kamer Vishi","doi":"10.1504/ijics.2023.10055729","DOIUrl":"https://doi.org/10.1504/ijics.2023.10055729","url":null,"abstract":"","PeriodicalId":53652,"journal":{"name":"International Journal of Information and Computer Security","volume":"22 1","pages":"117-138"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67030795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secure Digital Academic Certificate Verification System using Blockchain 使用区块链的安全数字学术证书验证系统
Q3 Engineering Pub Date : 2023-01-01 DOI: 10.1504/ijics.2023.10058109
Purushottam Kumar, S. Chandran, S. Patel
{"title":"Secure Digital Academic Certificate Verification System using Blockchain","authors":"Purushottam Kumar, S. Chandran, S. Patel","doi":"10.1504/ijics.2023.10058109","DOIUrl":"https://doi.org/10.1504/ijics.2023.10058109","url":null,"abstract":"","PeriodicalId":53652,"journal":{"name":"International Journal of Information and Computer Security","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67039580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-level machine learning driven intrusion detection model for IoT environments 面向物联网环境的两级机器学习驱动入侵检测模型
Q3 Engineering Pub Date : 2023-01-01 DOI: 10.1504/ijics.2023.132708
Yuvraj Singh Malhi, Virendra Singh Shekhawat
As a consequence of the growing number of cyberattacks on IoT devices, the need for defences like intrusion detection systems (IDSs) has significantly risen. But current IDS implementations for IoT are complex to design, difficult to incorporate, platform-specific, and limited by IoT device's resource constraints. This paper proposes a deployment-ready network IDS for IoT that overcomes the shortcomings of the existing IDS solutions and can detect 22 types of attacks. The proposed IDS provide the flexibility to work in multiple modes as per IoT device computing power, made possible via development of three machine learning-based IDS modules. The intrusion detection task has been divided at two levels: at edge devices (using two light modules based on neural network and decision tree) and at centralised controller (using a random forest and XGBoost combination). To ensure the best working tandem of developed modules, different IDS deployment strategies are also given.
由于对物联网设备的网络攻击越来越多,对入侵检测系统(ids)等防御的需求显著增加。但目前针对物联网的IDS实现设计复杂,难以整合,平台特定,并且受到物联网设备资源限制的限制。本文提出了一种可部署的物联网网络入侵检测方案,克服了现有入侵检测方案的不足,可检测22种攻击。通过开发三个基于机器学习的IDS模块,拟议的IDS提供了根据物联网设备计算能力在多种模式下工作的灵活性。入侵检测任务分为两个层次:边缘设备(使用基于神经网络和决策树的两个轻模块)和中央控制器(使用随机森林和XGBoost组合)。为了保证所开发模块的最佳串联工作,还给出了不同的IDS部署策略。
{"title":"Two-level machine learning driven intrusion detection model for IoT environments","authors":"Yuvraj Singh Malhi, Virendra Singh Shekhawat","doi":"10.1504/ijics.2023.132708","DOIUrl":"https://doi.org/10.1504/ijics.2023.132708","url":null,"abstract":"As a consequence of the growing number of cyberattacks on IoT devices, the need for defences like intrusion detection systems (IDSs) has significantly risen. But current IDS implementations for IoT are complex to design, difficult to incorporate, platform-specific, and limited by IoT device's resource constraints. This paper proposes a deployment-ready network IDS for IoT that overcomes the shortcomings of the existing IDS solutions and can detect 22 types of attacks. The proposed IDS provide the flexibility to work in multiple modes as per IoT device computing power, made possible via development of three machine learning-based IDS modules. The intrusion detection task has been divided at two levels: at edge devices (using two light modules based on neural network and decision tree) and at centralised controller (using a random forest and XGBoost combination). To ensure the best working tandem of developed modules, different IDS deployment strategies are also given.","PeriodicalId":53652,"journal":{"name":"International Journal of Information and Computer Security","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136028401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Performance of AES Algorithm Variants AES算法变体的性能研究
Q3 Engineering Pub Date : 2023-01-01 DOI: 10.1504/ijics.2023.10054850
Hajed M. Alhatlani, H. Alabdulrazzaq, M. Alenezi, Faisal A. S. AlObaid
{"title":"On the Performance of AES Algorithm Variants","authors":"Hajed M. Alhatlani, H. Alabdulrazzaq, M. Alenezi, Faisal A. S. AlObaid","doi":"10.1504/ijics.2023.10054850","DOIUrl":"https://doi.org/10.1504/ijics.2023.10054850","url":null,"abstract":"","PeriodicalId":53652,"journal":{"name":"International Journal of Information and Computer Security","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67030783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SLAK: Secure Lightweight scheme for Authentication and Key-agreement in Internet of Things SLAK:物联网认证和密钥协议的安全轻量级方案
Q3 Engineering Pub Date : 2023-01-01 DOI: 10.1504/ijics.2023.10056330
Sarra Cherbal, Oussama Nahnah
{"title":"SLAK: Secure Lightweight scheme for Authentication and Key-agreement in Internet of Things","authors":"Sarra Cherbal, Oussama Nahnah","doi":"10.1504/ijics.2023.10056330","DOIUrl":"https://doi.org/10.1504/ijics.2023.10056330","url":null,"abstract":"","PeriodicalId":53652,"journal":{"name":"International Journal of Information and Computer Security","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67039695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Priority based security-aware virtual machine allocation policy 基于优先级的安全感知虚拟机分配策略
Q3 Engineering Pub Date : 2023-01-01 DOI: 10.1504/ijics.2023.10057700
S. Devane, Aparna Bhonde
{"title":"Priority based security-aware virtual machine allocation policy","authors":"S. Devane, Aparna Bhonde","doi":"10.1504/ijics.2023.10057700","DOIUrl":"https://doi.org/10.1504/ijics.2023.10057700","url":null,"abstract":"","PeriodicalId":53652,"journal":{"name":"International Journal of Information and Computer Security","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67039844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A message encryption scheme inspired by Sudoku puzzle 一个消息加密方案的灵感来自数独谜题
Q3 Engineering Pub Date : 2023-01-01 DOI: 10.1504/ijics.2023.132739
S. Masadeh, H. A. Al-Sewadi, M. A. F. Al-Husainy
{"title":"A message encryption scheme inspired by Sudoku puzzle","authors":"S. Masadeh, H. A. Al-Sewadi, M. A. F. Al-Husainy","doi":"10.1504/ijics.2023.132739","DOIUrl":"https://doi.org/10.1504/ijics.2023.132739","url":null,"abstract":"","PeriodicalId":53652,"journal":{"name":"International Journal of Information and Computer Security","volume":"21 1","pages":"399-413"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67040034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A bio-inspired algorithm for enhancing DNA cryptography 一种增强DNA密码的仿生算法
Q3 Engineering Pub Date : 2023-01-01 DOI: 10.1504/ijics.2023.132779
Kheira Lakel, Fatima Bendella
In this era, information security plays a crucial and sensitive task as this data is potentially vulnerable such that different types of attacks may happen and affects the data. This paper presents a new hybrid cryptosystem for DNA cryptography based on GA and a coding table. The encryption algorithm provides multi-layer security (jamming with spiral matrix, generating coding table, coding of DNA characters, XOR-crossover operation) for DNA sequence. The decryption algorithm follows these steps: binary and segment the ciphertext, applied XOR-crossover operation, Transform each block to ASCII code, decoding of characters, remove jamming and generate the plaintext. The performance evaluation of this algorithm is based on confusion and diffusion, avalanche effect, and encryption time. The experimental results show that these algorithms yield an average time 0.835 ms/0.78 ms for 1,000 bases. The result shows outperformance in security and a weak correlation coefficient between ciphertexts generated and plaintext.
在这个时代,信息安全是一项至关重要和敏感的任务,因为这些数据具有潜在的脆弱性,可能发生不同类型的攻击并影响数据。提出了一种基于遗传算法和编码表的DNA混合密码系统。该加密算法为DNA序列提供了多层安全性(螺旋矩阵干扰、编码表生成、DNA字符编码、异或交叉操作)。解密算法遵循以下步骤:对密文进行二进制和分段,应用异或交叉运算,将每个块转换为ASCII码,对字符进行解码,去除干扰,生成明文。该算法的性能评估基于混淆和扩散、雪崩效应和加密时间。实验结果表明,这些算法对1000个碱基的平均时间为0.835 ms/0.78 ms。结果表明,生成的密文与明文之间具有较弱的相关系数,并且具有较好的安全性。
{"title":"A bio-inspired algorithm for enhancing DNA cryptography","authors":"Kheira Lakel, Fatima Bendella","doi":"10.1504/ijics.2023.132779","DOIUrl":"https://doi.org/10.1504/ijics.2023.132779","url":null,"abstract":"In this era, information security plays a crucial and sensitive task as this data is potentially vulnerable such that different types of attacks may happen and affects the data. This paper presents a new hybrid cryptosystem for DNA cryptography based on GA and a coding table. The encryption algorithm provides multi-layer security (jamming with spiral matrix, generating coding table, coding of DNA characters, XOR-crossover operation) for DNA sequence. The decryption algorithm follows these steps: binary and segment the ciphertext, applied XOR-crossover operation, Transform each block to ASCII code, decoding of characters, remove jamming and generate the plaintext. The performance evaluation of this algorithm is based on confusion and diffusion, avalanche effect, and encryption time. The experimental results show that these algorithms yield an average time 0.835 ms/0.78 ms for 1,000 bases. The result shows outperformance in security and a weak correlation coefficient between ciphertexts generated and plaintext.","PeriodicalId":53652,"journal":{"name":"International Journal of Information and Computer Security","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136028382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparative study of deep transfer learning models for malware classification using image datasets 基于图像数据集的恶意软件分类深度迁移学习模型的比较研究
Q3 Engineering Pub Date : 2023-01-01 DOI: 10.1504/ijics.2023.132735
Ranjeet Kumar Ranjan, Amit Singh
This paper proposes deep convolution neural network-based malware classification approach. The proposed work is a transfer learning approach, where we have developed multiple deep learning classification models. The classification models are built by adapting multiple pre-trained convolutional neural networks, namely; Xception, VGG19, InceptionResNetV2, MobileNet, InceptionV3, DenseNet, and ResNet50. In the current work, weights of pre-trained models are embellished by adding three fully connected (FC) layers. The proposed models have been evaluated on two different malware datasets, Microsoft and MalImg, consisting of malware images. The focus of this paper is to analyse the performance of fine-tuned CNN models for malware classification. The results of our experiments show that InceptionResNetV2 and Xception models have performed considerably well for the Microsoft dataset with accuracy equal to 96% and 95%, respectively. In the case of the MalImg dataset, InceptionResNetV2, InceptionV3, and Xception models have achieved excellent performance with an accuracy of up to 96%.
提出了基于深度卷积神经网络的恶意软件分类方法。提出的工作是一种迁移学习方法,其中我们开发了多个深度学习分类模型。通过自适应多个预训练的卷积神经网络构建分类模型,即;exception、VGG19、InceptionResNetV2、MobileNet、InceptionV3、DenseNet、ResNet50。在目前的工作中,通过添加三个完全连接(FC)层来修饰预训练模型的权重。所提出的模型在两个不同的恶意软件数据集(Microsoft和MalImg)上进行了评估,这些数据集由恶意软件图像组成。本文的重点是分析微调后的CNN模型在恶意软件分类中的性能。我们的实验结果表明,InceptionResNetV2和Xception模型在Microsoft数据集上表现相当好,准确率分别为96%和95%。在MalImg数据集的情况下,InceptionResNetV2、InceptionV3和Xception模型取得了优异的性能,准确率高达96%。
{"title":"A comparative study of deep transfer learning models for malware classification using image datasets","authors":"Ranjeet Kumar Ranjan, Amit Singh","doi":"10.1504/ijics.2023.132735","DOIUrl":"https://doi.org/10.1504/ijics.2023.132735","url":null,"abstract":"This paper proposes deep convolution neural network-based malware classification approach. The proposed work is a transfer learning approach, where we have developed multiple deep learning classification models. The classification models are built by adapting multiple pre-trained convolutional neural networks, namely; Xception, VGG19, InceptionResNetV2, MobileNet, InceptionV3, DenseNet, and ResNet50. In the current work, weights of pre-trained models are embellished by adding three fully connected (FC) layers. The proposed models have been evaluated on two different malware datasets, Microsoft and MalImg, consisting of malware images. The focus of this paper is to analyse the performance of fine-tuned CNN models for malware classification. The results of our experiments show that InceptionResNetV2 and Xception models have performed considerably well for the Microsoft dataset with accuracy equal to 96% and 95%, respectively. In the case of the MalImg dataset, InceptionResNetV2, InceptionV3, and Xception models have achieved excellent performance with an accuracy of up to 96%.","PeriodicalId":53652,"journal":{"name":"International Journal of Information and Computer Security","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136028393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
International Journal of Information and Computer Security
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1