Pub Date : 2023-11-07DOI: 10.1038/s41536-023-00337-9
Viktoriia Iakovleva, Anna Wuestefeld, Agnes Bee Leng Ong, Rong Gao, Neslihan Arife Kaya, May Yin Lee, Weiwei Zhai, Wai Leong Tam, Yock Young Dan, Torsten Wuestefeld
The liver has a remarkable regenerative capacity. Nevertheless, under chronic liver-damaging conditions, this capacity becomes exhausted, allowing the accumulation of fibrotic tissue and leading to end-stage liver disease. Enhancing the endogenous regenerative capacity by targeting regeneration breaks is an innovative therapeutic approach. We set up an in vivo functional genetic screen to identify such regeneration breaks. As the top hit, we identified Microfibril associated protein 4 (Mfap4). Knockdown of Mfap4 in hepatocytes enhances cell proliferation, accelerates liver regeneration, and attenuates chronic liver disease by reducing liver fibrosis. Targeting Mfap4 modulates several liver regeneration-related pathways including mTOR. Our research opens the way to siRNA-based therapeutics to enhance hepatocyte-based liver regeneration.
{"title":"Mfap4: a promising target for enhanced liver regeneration and chronic liver disease treatment.","authors":"Viktoriia Iakovleva, Anna Wuestefeld, Agnes Bee Leng Ong, Rong Gao, Neslihan Arife Kaya, May Yin Lee, Weiwei Zhai, Wai Leong Tam, Yock Young Dan, Torsten Wuestefeld","doi":"10.1038/s41536-023-00337-9","DOIUrl":"10.1038/s41536-023-00337-9","url":null,"abstract":"<p><p>The liver has a remarkable regenerative capacity. Nevertheless, under chronic liver-damaging conditions, this capacity becomes exhausted, allowing the accumulation of fibrotic tissue and leading to end-stage liver disease. Enhancing the endogenous regenerative capacity by targeting regeneration breaks is an innovative therapeutic approach. We set up an in vivo functional genetic screen to identify such regeneration breaks. As the top hit, we identified Microfibril associated protein 4 (Mfap4). Knockdown of Mfap4 in hepatocytes enhances cell proliferation, accelerates liver regeneration, and attenuates chronic liver disease by reducing liver fibrosis. Targeting Mfap4 modulates several liver regeneration-related pathways including mTOR. Our research opens the way to siRNA-based therapeutics to enhance hepatocyte-based liver regeneration.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"8 1","pages":"63"},"PeriodicalIF":7.2,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630300/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71488903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-02DOI: 10.1038/s41536-023-00338-8
Abigail L Lauterbach, Rachel P Wallace, Aaron T Alpar, Kirsten C Refvik, Joseph W Reda, Ako Ishihara, Taryn N Beckman, Anna J Slezak, Yukari Mizukami, Aslan Mansurov, Suzana Gomes, Jun Ishihara, Jeffrey A Hubbell
{"title":"Author Correction: Topically-applied collagen-binding serum albumin-fused interleukin-4 modulates wound microenvironment in non-healing wounds.","authors":"Abigail L Lauterbach, Rachel P Wallace, Aaron T Alpar, Kirsten C Refvik, Joseph W Reda, Ako Ishihara, Taryn N Beckman, Anna J Slezak, Yukari Mizukami, Aslan Mansurov, Suzana Gomes, Jun Ishihara, Jeffrey A Hubbell","doi":"10.1038/s41536-023-00338-8","DOIUrl":"10.1038/s41536-023-00338-8","url":null,"abstract":"","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"8 1","pages":"62"},"PeriodicalIF":7.2,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622512/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71429160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-02DOI: 10.1038/s41536-023-00331-1
Dauren Biyashev, Zofia E Siwicka, Ummiye V Onay, Michael Demczuk, Dan Xu, Madison K Ernst, Spencer T Evans, Cuong V Nguyen, Florencia A Son, Navjit K Paul, Naneki C McCallum, Omar K Farha, Stephen D Miller, Nathan C Gianneschi, Kurt Q Lu
In acute skin injury, healing is impaired by the excessive release of reactive oxygen species (ROS). Melanin, an efficient scavenger of radical species in the skin, performs a key role in ROS scavenging in response to UV radiation and is upregulated in response to toxic insult. In a chemical injury model in mice, we demonstrate that the topical application of synthetic melanin particles (SMPs) significantly decreases edema, reduces eschar detachment time, and increases the rate of wound area reduction compared to vehicle controls. Furthermore, these results were replicated in a UV-injury model. Immune array analysis shows downregulated gene expression in apoptotic and inflammatory signaling pathways consistent with histological reduction in apoptosis. Mechanistically, synthetic melanin intervention increases superoxide dismutase (SOD) activity, decreases Mmp9 expression, and suppresses ERK1/2 phosphorylation. Furthermore, we observed that the application of SMPs caused increased populations of anti-inflammatory immune cells to accumulate in the skin, mirroring their decrease from splenic populations. To enhance antioxidant capacity, an engineered biomimetic High Surface Area SMP was deployed, exhibiting increased wound healing efficiency. Finally, in human skin explants, SMP intervention significantly decreased the damage caused by chemical injury. Therefore, SMPs are promising and effective candidates as topical therapies for accelerated wound healing, including via pathways validated in human skin.
{"title":"Topical application of synthetic melanin promotes tissue repair.","authors":"Dauren Biyashev, Zofia E Siwicka, Ummiye V Onay, Michael Demczuk, Dan Xu, Madison K Ernst, Spencer T Evans, Cuong V Nguyen, Florencia A Son, Navjit K Paul, Naneki C McCallum, Omar K Farha, Stephen D Miller, Nathan C Gianneschi, Kurt Q Lu","doi":"10.1038/s41536-023-00331-1","DOIUrl":"10.1038/s41536-023-00331-1","url":null,"abstract":"<p><p>In acute skin injury, healing is impaired by the excessive release of reactive oxygen species (ROS). Melanin, an efficient scavenger of radical species in the skin, performs a key role in ROS scavenging in response to UV radiation and is upregulated in response to toxic insult. In a chemical injury model in mice, we demonstrate that the topical application of synthetic melanin particles (SMPs) significantly decreases edema, reduces eschar detachment time, and increases the rate of wound area reduction compared to vehicle controls. Furthermore, these results were replicated in a UV-injury model. Immune array analysis shows downregulated gene expression in apoptotic and inflammatory signaling pathways consistent with histological reduction in apoptosis. Mechanistically, synthetic melanin intervention increases superoxide dismutase (SOD) activity, decreases Mmp9 expression, and suppresses ERK1/2 phosphorylation. Furthermore, we observed that the application of SMPs caused increased populations of anti-inflammatory immune cells to accumulate in the skin, mirroring their decrease from splenic populations. To enhance antioxidant capacity, an engineered biomimetic High Surface Area SMP was deployed, exhibiting increased wound healing efficiency. Finally, in human skin explants, SMP intervention significantly decreased the damage caused by chemical injury. Therefore, SMPs are promising and effective candidates as topical therapies for accelerated wound healing, including via pathways validated in human skin.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"8 1","pages":"61"},"PeriodicalIF":7.2,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622536/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71429161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-23DOI: 10.1038/s41536-023-00336-w
Priya Mohindra, Justin X Zhong, Qizhi Fang, Darnell L Cuylear, Cindy Huynh, Huiliang Qiu, Dongwei Gao, Bhushan N Kharbikar, Xiao Huang, Matthew L Springer, Randall J Lee, Tejal A Desai
Heart failure (HF) remains a global public health burden and often results following myocardial infarction (MI). Following injury, cardiac fibrosis forms in the myocardium which greatly hinders cellular function, survival, and recruitment, thus severely limits tissue regeneration. Here, we leverage biophysical microstructural cues made of hyaluronic acid (HA) loaded with the anti-fibrotic proteoglycan decorin to more robustly attenuate cardiac fibrosis after acute myocardial injury. Microrods showed decorin incorporation throughout the entirety of the hydrogel structures and exhibited first-order release kinetics in vitro. Intramyocardial injections of saline (n = 5), microrods (n = 7), decorin microrods (n = 10), and free decorin (n = 4) were performed in male rat models of ischemia-reperfusion MI to evaluate therapeutic effects on cardiac remodeling and function. Echocardiographic analysis demonstrated that rats treated with decorin microrods (5.21% ± 4.29%) exhibited significantly increased change in ejection fraction (EF) at 8 weeks post-MI compared to rats treated with saline (-4.18% ± 2.78%, p < 0.001) and free decorin (-3.42% ± 1.86%, p < 0.01). Trends in reduced end diastolic volume were also identified in decorin microrod-treated groups compared to those treated with saline, microrods, and free decorin, indicating favorable ventricular remodeling. Quantitative analysis of histology and immunofluorescence staining showed that treatment with decorin microrods reduced cardiac fibrosis (p < 0.05) and cardiomyocyte hypertrophy (p < 0.05) at 8 weeks post-MI compared to saline control. Together, this work aims to contribute important knowledge to guide rationally designed biomaterial development that may be used to successfully treat cardiovascular diseases.
{"title":"Local decorin delivery via hyaluronic acid microrods improves cardiac performance, ventricular remodeling after myocardial infarction.","authors":"Priya Mohindra, Justin X Zhong, Qizhi Fang, Darnell L Cuylear, Cindy Huynh, Huiliang Qiu, Dongwei Gao, Bhushan N Kharbikar, Xiao Huang, Matthew L Springer, Randall J Lee, Tejal A Desai","doi":"10.1038/s41536-023-00336-w","DOIUrl":"10.1038/s41536-023-00336-w","url":null,"abstract":"<p><p>Heart failure (HF) remains a global public health burden and often results following myocardial infarction (MI). Following injury, cardiac fibrosis forms in the myocardium which greatly hinders cellular function, survival, and recruitment, thus severely limits tissue regeneration. Here, we leverage biophysical microstructural cues made of hyaluronic acid (HA) loaded with the anti-fibrotic proteoglycan decorin to more robustly attenuate cardiac fibrosis after acute myocardial injury. Microrods showed decorin incorporation throughout the entirety of the hydrogel structures and exhibited first-order release kinetics in vitro. Intramyocardial injections of saline (n = 5), microrods (n = 7), decorin microrods (n = 10), and free decorin (n = 4) were performed in male rat models of ischemia-reperfusion MI to evaluate therapeutic effects on cardiac remodeling and function. Echocardiographic analysis demonstrated that rats treated with decorin microrods (5.21% ± 4.29%) exhibited significantly increased change in ejection fraction (EF) at 8 weeks post-MI compared to rats treated with saline (-4.18% ± 2.78%, p < 0.001) and free decorin (-3.42% ± 1.86%, p < 0.01). Trends in reduced end diastolic volume were also identified in decorin microrod-treated groups compared to those treated with saline, microrods, and free decorin, indicating favorable ventricular remodeling. Quantitative analysis of histology and immunofluorescence staining showed that treatment with decorin microrods reduced cardiac fibrosis (p < 0.05) and cardiomyocyte hypertrophy (p < 0.05) at 8 weeks post-MI compared to saline control. Together, this work aims to contribute important knowledge to guide rationally designed biomaterial development that may be used to successfully treat cardiovascular diseases.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"8 1","pages":"60"},"PeriodicalIF":7.2,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593781/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49693874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-19DOI: 10.1038/s41536-023-00335-x
Shinichi Nakagawa, Wataru Ando, Kazunori Shimomura, David A Hart, Hiroto Hanai, George Jacob, Ryota Chijimatsu, Seido Yarimitu, Hiromichi Fujie, Seiji Okada, Noriyuki Tsumaki, Norimasa Nakamura
Both mesenchymal stromal cells (MSC) and induced pluripotent stem cells (iPSC) offer the potential for repair of damaged connective tissues. The use of hybrid implants containing both human MSC and iPSC was investigated to assess their combined potential to yield enhanced repair of osteochondral defects. Human iPSC-CP wrapped with tissue engineered constructs (TEC) containing human MSC attained secure defect filling with good integration to adjacent tissue in a rat osteochondral injury model. The presence of living MSC in the hybrid implants was required for effective biphasic osteochondral repair. Thus, the TEC component of such hybrid implants serves several critical functions including, adhesion to the defect site via the matrix and facilitation of the repair via live MSC, as well as enhanced angiogenesis and neovascularization. Based on these encouraging studies, such hybrid implants may offer an effective future intervention for repair of complex osteochondral defects.
{"title":"Repair of osteochondral defects: efficacy of a tissue-engineered hybrid implant containing both human MSC and human iPSC-cartilaginous particles.","authors":"Shinichi Nakagawa, Wataru Ando, Kazunori Shimomura, David A Hart, Hiroto Hanai, George Jacob, Ryota Chijimatsu, Seido Yarimitu, Hiromichi Fujie, Seiji Okada, Noriyuki Tsumaki, Norimasa Nakamura","doi":"10.1038/s41536-023-00335-x","DOIUrl":"10.1038/s41536-023-00335-x","url":null,"abstract":"<p><p>Both mesenchymal stromal cells (MSC) and induced pluripotent stem cells (iPSC) offer the potential for repair of damaged connective tissues. The use of hybrid implants containing both human MSC and iPSC was investigated to assess their combined potential to yield enhanced repair of osteochondral defects. Human iPSC-CP wrapped with tissue engineered constructs (TEC) containing human MSC attained secure defect filling with good integration to adjacent tissue in a rat osteochondral injury model. The presence of living MSC in the hybrid implants was required for effective biphasic osteochondral repair. Thus, the TEC component of such hybrid implants serves several critical functions including, adhesion to the defect site via the matrix and facilitation of the repair via live MSC, as well as enhanced angiogenesis and neovascularization. Based on these encouraging studies, such hybrid implants may offer an effective future intervention for repair of complex osteochondral defects.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"8 1","pages":"59"},"PeriodicalIF":7.2,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587071/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49684963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-18DOI: 10.1038/s41536-023-00332-0
Sonia M Scaria, Stacey M Frumm, Ellee P Vikram, Sarah A Easow, Amar H Sheth, Eliah R Shamir, Shengyang Kevin Yu, Aaron D Tward
Adult mammals are generally believed to have limited ability to regenerate complex tissues and instead, repair wounds by forming scars. In humans and across mammalian species, the tympanic membrane (TM) rapidly repairs perforations without intervention. Using mouse models, we demonstrate that the TM repairs itself through a process that bears many hallmarks of epimorphic regeneration rather than typical wound healing. Following injury, the TM forms a wound epidermis characterized by EGFR ligand expression and signaling. After the expansion of the wound epidermis that emerges from known stem cell regions of the TM, a multi-lineage blastema-like cellular mass is recruited. After two weeks, the tissue architecture of the TM is largely restored, but with disorganized collagen. In the months that follow, the organized and patterned collagen framework of the TM is restored resulting in scar-free repair. Finally, we demonstrate that deletion of Egfr in the epidermis results in failure to expand the wound epidermis, recruit the blastema-like cells, and regenerate normal TM structure. This work establishes the TM as a model of mammalian complex tissue regeneration.
{"title":"Epimorphic regeneration in the mammalian tympanic membrane.","authors":"Sonia M Scaria, Stacey M Frumm, Ellee P Vikram, Sarah A Easow, Amar H Sheth, Eliah R Shamir, Shengyang Kevin Yu, Aaron D Tward","doi":"10.1038/s41536-023-00332-0","DOIUrl":"10.1038/s41536-023-00332-0","url":null,"abstract":"<p><p>Adult mammals are generally believed to have limited ability to regenerate complex tissues and instead, repair wounds by forming scars. In humans and across mammalian species, the tympanic membrane (TM) rapidly repairs perforations without intervention. Using mouse models, we demonstrate that the TM repairs itself through a process that bears many hallmarks of epimorphic regeneration rather than typical wound healing. Following injury, the TM forms a wound epidermis characterized by EGFR ligand expression and signaling. After the expansion of the wound epidermis that emerges from known stem cell regions of the TM, a multi-lineage blastema-like cellular mass is recruited. After two weeks, the tissue architecture of the TM is largely restored, but with disorganized collagen. In the months that follow, the organized and patterned collagen framework of the TM is restored resulting in scar-free repair. Finally, we demonstrate that deletion of Egfr in the epidermis results in failure to expand the wound epidermis, recruit the blastema-like cells, and regenerate normal TM structure. This work establishes the TM as a model of mammalian complex tissue regeneration.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"8 1","pages":"58"},"PeriodicalIF":7.2,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584978/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49684962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-17DOI: 10.1038/s41536-023-00334-y
Youyi Tai, Thamidul Islam Tonmoy, Shwe Win, Natasha T Brinkley, B Hyle Park, Jin Nam
To address limitations in current approaches for treating large peripheral nerve defects, the presented study evaluated the feasibility of functional material-mediated physical stimuli on peripheral nerve regeneration. Electrospun piezoelectric poly(vinylidene fluoride-trifluoroethylene) nanofibers were utilized to deliver mechanical actuation-activated electrical stimulation to nerve cells/tissues in a non-invasive manner. Using morphologically and piezoelectrically optimized nanofibers for neurite extension and Schwann cell maturation based on in vitro experiments, piezoelectric nerve conduits were synthesized and implanted in a rat sciatic nerve transection model to bridge a critical-sized sciatic nerve defect (15 mm). A therapeutic shockwave system was utilized to periodically activate the piezoelectric effect of the implanted nerve conduit on demand. The piezoelectric nerve conduit-mediated mechano-electrical stimulation (MES) induced enhanced peripheral nerve regeneration, resulting in full axon reconnection with myelin regeneration from the proximal to the distal ends over the critical-sized nerve gap. In comparison, a control group, in which the implanted piezoelectric conduits were not activated in vivo, failed to exhibit such nerve regeneration. In addition, at both proximal and distal ends of the implanted conduits, a decreased number of damaged myelination (ovoids), an increased number of myelinated nerves, and a larger axonal diameter were observed under the MES condition as compared to the control condition. Furthermore, unlike the control group, the MES condition exhibited a superior functional nerve recovery, assessed by walking track analysis and polarization-sensitive optical coherence tomography, demonstrating the significant potential of the piezoelectric conduit-based physical stimulation approach for the treatment of peripheral nerve injury.
{"title":"Enhanced peripheral nerve regeneration by mechano-electrical stimulation.","authors":"Youyi Tai, Thamidul Islam Tonmoy, Shwe Win, Natasha T Brinkley, B Hyle Park, Jin Nam","doi":"10.1038/s41536-023-00334-y","DOIUrl":"10.1038/s41536-023-00334-y","url":null,"abstract":"<p><p>To address limitations in current approaches for treating large peripheral nerve defects, the presented study evaluated the feasibility of functional material-mediated physical stimuli on peripheral nerve regeneration. Electrospun piezoelectric poly(vinylidene fluoride-trifluoroethylene) nanofibers were utilized to deliver mechanical actuation-activated electrical stimulation to nerve cells/tissues in a non-invasive manner. Using morphologically and piezoelectrically optimized nanofibers for neurite extension and Schwann cell maturation based on in vitro experiments, piezoelectric nerve conduits were synthesized and implanted in a rat sciatic nerve transection model to bridge a critical-sized sciatic nerve defect (15 mm). A therapeutic shockwave system was utilized to periodically activate the piezoelectric effect of the implanted nerve conduit on demand. The piezoelectric nerve conduit-mediated mechano-electrical stimulation (MES) induced enhanced peripheral nerve regeneration, resulting in full axon reconnection with myelin regeneration from the proximal to the distal ends over the critical-sized nerve gap. In comparison, a control group, in which the implanted piezoelectric conduits were not activated in vivo, failed to exhibit such nerve regeneration. In addition, at both proximal and distal ends of the implanted conduits, a decreased number of damaged myelination (ovoids), an increased number of myelinated nerves, and a larger axonal diameter were observed under the MES condition as compared to the control condition. Furthermore, unlike the control group, the MES condition exhibited a superior functional nerve recovery, assessed by walking track analysis and polarization-sensitive optical coherence tomography, demonstrating the significant potential of the piezoelectric conduit-based physical stimulation approach for the treatment of peripheral nerve injury.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"8 1","pages":"57"},"PeriodicalIF":7.2,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582163/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41240876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-13DOI: 10.1038/s41536-023-00333-z
Yuting Niu, Zhen Yang, Yang Yang, Xu Wang, Ping Zhang, Longwei Lv, Sainan Wang, Yan Liu, Yunsong Liu, Yongsheng Zhou
Recruiting endogenous stem cells to bone defects without stem cell transplantation and exogenous factor delivery represents a promising strategy for bone regeneration. Herein, we develop an alkaline shear-thinning micro-nanocomposite hydrogel (10-MmN), aiming to alkaline-activate endogenous TGFβ1 and achieve in situ bone regeneration. It contains polyethyleneimine (PEI)-modified gelatin, laponite nanoplatelets (LAP), a bicarbonate buffer with a pH of 10, and gelatin microspheres (MSs). PEI-modified gelatin plays a pivotal role in hydrogel fabrication. It endows the system with sufficient positive charges, and forms a shear-thinning nanocomposite matrix in the pH 10 buffer (10-mN) with negatively charged LAP via electrostatic gelation. For biological functions, the pH 10 buffer dominates alkaline activation of endogenous serum TGFβ1 to recruit rat bone marrow stem cells through the Smad pathway, followed by improved osteogenic differentiation. In addition, MSs are incorporated into 10-mN to form 10-MmN, and function as substrates to provide good attachment sites for the recruited stem cells and facilitate further their osteogenic differentiation. In a rat critical-sized calvarial defect model, 10-MmN exhibits excellent biocompatibility, biodegradability, hydrogel infusion and retention in bone defects with flexible shapes and active bleeding. Importantly, it repairs ~95% of the defect areas in 3 months by recruiting TGFβR2+ and CD90+CD146+ stem cells, and promoting cell proliferation, osteogenic differentiation and bone formation. The present study provides a biomaterial-based strategy to regulate alkalinity in bone defects for the initiation of endogenous TGFβ signaling, which can be extended to treat other diseases.
{"title":"Alkaline shear-thinning micro-nanocomposite hydrogels initiate endogenous TGFβ signaling for in situ bone regeneration.","authors":"Yuting Niu, Zhen Yang, Yang Yang, Xu Wang, Ping Zhang, Longwei Lv, Sainan Wang, Yan Liu, Yunsong Liu, Yongsheng Zhou","doi":"10.1038/s41536-023-00333-z","DOIUrl":"10.1038/s41536-023-00333-z","url":null,"abstract":"<p><p>Recruiting endogenous stem cells to bone defects without stem cell transplantation and exogenous factor delivery represents a promising strategy for bone regeneration. Herein, we develop an alkaline shear-thinning micro-nanocomposite hydrogel (10-MmN), aiming to alkaline-activate endogenous TGFβ1 and achieve in situ bone regeneration. It contains polyethyleneimine (PEI)-modified gelatin, laponite nanoplatelets (LAP), a bicarbonate buffer with a pH of 10, and gelatin microspheres (MSs). PEI-modified gelatin plays a pivotal role in hydrogel fabrication. It endows the system with sufficient positive charges, and forms a shear-thinning nanocomposite matrix in the pH 10 buffer (10-mN) with negatively charged LAP via electrostatic gelation. For biological functions, the pH 10 buffer dominates alkaline activation of endogenous serum TGFβ1 to recruit rat bone marrow stem cells through the Smad pathway, followed by improved osteogenic differentiation. In addition, MSs are incorporated into 10-mN to form 10-MmN, and function as substrates to provide good attachment sites for the recruited stem cells and facilitate further their osteogenic differentiation. In a rat critical-sized calvarial defect model, 10-MmN exhibits excellent biocompatibility, biodegradability, hydrogel infusion and retention in bone defects with flexible shapes and active bleeding. Importantly, it repairs ~95% of the defect areas in 3 months by recruiting TGFβR2<sup>+</sup> and CD90<sup>+</sup>CD146<sup>+</sup> stem cells, and promoting cell proliferation, osteogenic differentiation and bone formation. The present study provides a biomaterial-based strategy to regulate alkalinity in bone defects for the initiation of endogenous TGFβ signaling, which can be extended to treat other diseases.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"8 1","pages":"56"},"PeriodicalIF":7.2,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575889/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-29DOI: 10.1038/s41536-023-00330-2
Juan Antonio Romero-Torrecilla, José María Lamo-Espinosa, Purificación Ripalda-Cemboráin, Tania López-Martínez, Gloria Abizanda, Luis Riera-Álvarez, Sergio Ruiz de Galarreta-Moriones, Asier López-Barberena, Naiara Rodríguez-Flórez, Reyes Elizalde, Vineetha Jayawarna, José Valdés-Fernández, Miguel Echanove-González de Anleo, Peter Childs, Elena de Juan-Pardo, Manuel Salmeron-Sanchez, Felipe Prósper, Emma Muiños-López, Froilán Granero-Moltó
During bone regeneration, the periosteum acts as a carrier for key regenerative cues, delivering osteochondroprogenitor cells and crucial growth factors to the injured bone. We developed a biocompatible, 3D polycaprolactone (PCL) melt electro-written membrane to act as a mimetic periosteum. Poly (ethyl acrylate) coating of the PCL membrane allowed functionalization, mediated by fibronectin and low dose recombinant human BMP-2 (rhBMP-2) (10-25 μg/ml), resulting in efficient, sustained osteoinduction in vitro. In vivo, rhBMP-2 functionalized mimetic periosteum demonstrated regenerative potential in the treatment of rat critical-size femoral defects with highly efficient healing and functional recovery (80%-93%). Mimetic periosteum has also proven to be efficient for cell delivery, as observed through the migration of transplanted periosteum-derived mesenchymal cells to the bone defect and their survival. Ultimately, mimetic periosteum demonstrated its ability to deliver key stem cells and morphogens to an injured site, exposing a therapeutic and translational potential in vivo when combined with unprecedentedly low rhBMP-2 doses.
{"title":"An engineered periosteum for efficient delivery of rhBMP-2 and mesenchymal progenitor cells during bone regeneration.","authors":"Juan Antonio Romero-Torrecilla, José María Lamo-Espinosa, Purificación Ripalda-Cemboráin, Tania López-Martínez, Gloria Abizanda, Luis Riera-Álvarez, Sergio Ruiz de Galarreta-Moriones, Asier López-Barberena, Naiara Rodríguez-Flórez, Reyes Elizalde, Vineetha Jayawarna, José Valdés-Fernández, Miguel Echanove-González de Anleo, Peter Childs, Elena de Juan-Pardo, Manuel Salmeron-Sanchez, Felipe Prósper, Emma Muiños-López, Froilán Granero-Moltó","doi":"10.1038/s41536-023-00330-2","DOIUrl":"10.1038/s41536-023-00330-2","url":null,"abstract":"<p><p>During bone regeneration, the periosteum acts as a carrier for key regenerative cues, delivering osteochondroprogenitor cells and crucial growth factors to the injured bone. We developed a biocompatible, 3D polycaprolactone (PCL) melt electro-written membrane to act as a mimetic periosteum. Poly (ethyl acrylate) coating of the PCL membrane allowed functionalization, mediated by fibronectin and low dose recombinant human BMP-2 (rhBMP-2) (10-25 μg/ml), resulting in efficient, sustained osteoinduction in vitro. In vivo, rhBMP-2 functionalized mimetic periosteum demonstrated regenerative potential in the treatment of rat critical-size femoral defects with highly efficient healing and functional recovery (80%-93%). Mimetic periosteum has also proven to be efficient for cell delivery, as observed through the migration of transplanted periosteum-derived mesenchymal cells to the bone defect and their survival. Ultimately, mimetic periosteum demonstrated its ability to deliver key stem cells and morphogens to an injured site, exposing a therapeutic and translational potential in vivo when combined with unprecedentedly low rhBMP-2 doses.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"8 1","pages":"54"},"PeriodicalIF":7.2,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541910/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41170399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-29DOI: 10.1038/s41536-023-00327-x
Devansh Agarwal, Nicholas Dash, Kevin W Mazo, Manan Chopra, Maria P Avila, Amit Patel, Ryan M Wong, Cairang Jia, Hope Do, Jie Cheng, Colette Chiang, Shawna L Jurlina, Mona Roshan, Michael W Perry, Jong M Rho, Risa Broyer, Cassidy D Lee, Robert N Weinreb, Cezar Gavrilovici, Nicholas W Oesch, Derek S Welsbie, Karl J Wahlin
In optic neuropathies, including glaucoma, retinal ganglion cells (RGCs) die. Cell transplantation and endogenous regeneration offer strategies for retinal repair, however, developmental programs required for this to succeed are incompletely understood. To address this, we explored cellular reprogramming with transcription factor (TF) regulators of RGC development which were integrated into human pluripotent stem cells (PSCs) as inducible gene cassettes. When the pioneer factor NEUROG2 was combined with RGC-expressed TFs (ATOH7, ISL1, and POU4F2) some conversion was observed and when pre-patterned by BMP inhibition, RGC-like induced neurons (RGC-iNs) were generated with high efficiency in just under a week. These exhibited transcriptional profiles that were reminiscent of RGCs and exhibited electrophysiological properties, including AMPA-mediated synaptic transmission. Additionally, we demonstrated that small molecule inhibitors of DLK/LZK and GCK-IV can block neuronal death in two pharmacological axon injury models. Combining developmental patterning with RGC-specific TFs thus provided valuable insight into strategies for cell replacement and neuroprotection.
{"title":"Human retinal ganglion cell neurons generated by synchronous BMP inhibition and transcription factor mediated reprogramming.","authors":"Devansh Agarwal, Nicholas Dash, Kevin W Mazo, Manan Chopra, Maria P Avila, Amit Patel, Ryan M Wong, Cairang Jia, Hope Do, Jie Cheng, Colette Chiang, Shawna L Jurlina, Mona Roshan, Michael W Perry, Jong M Rho, Risa Broyer, Cassidy D Lee, Robert N Weinreb, Cezar Gavrilovici, Nicholas W Oesch, Derek S Welsbie, Karl J Wahlin","doi":"10.1038/s41536-023-00327-x","DOIUrl":"10.1038/s41536-023-00327-x","url":null,"abstract":"<p><p>In optic neuropathies, including glaucoma, retinal ganglion cells (RGCs) die. Cell transplantation and endogenous regeneration offer strategies for retinal repair, however, developmental programs required for this to succeed are incompletely understood. To address this, we explored cellular reprogramming with transcription factor (TF) regulators of RGC development which were integrated into human pluripotent stem cells (PSCs) as inducible gene cassettes. When the pioneer factor NEUROG2 was combined with RGC-expressed TFs (ATOH7, ISL1, and POU4F2) some conversion was observed and when pre-patterned by BMP inhibition, RGC-like induced neurons (RGC-iNs) were generated with high efficiency in just under a week. These exhibited transcriptional profiles that were reminiscent of RGCs and exhibited electrophysiological properties, including AMPA-mediated synaptic transmission. Additionally, we demonstrated that small molecule inhibitors of DLK/LZK and GCK-IV can block neuronal death in two pharmacological axon injury models. Combining developmental patterning with RGC-specific TFs thus provided valuable insight into strategies for cell replacement and neuroprotection.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"8 1","pages":"55"},"PeriodicalIF":6.4,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541876/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41173689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}