首页 > 最新文献

npj Regenerative Medicine最新文献

英文 中文
Opposing roles for TGFβ- and BMP-signaling during nascent alveolar differentiation in the developing human lung. tgf - β-和bmp -信号在人肺发育初期肺泡分化中的对立作用
IF 7.2 1区 医学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-09-09 DOI: 10.1038/s41536-023-00325-z
Tristan Frum, Peggy P Hsu, Renee F C Hein, Ansley S Conchola, Charles J Zhang, Olivia R Utter, Abhinav Anand, Yi Zhang, Sydney G Clark, Ian Glass, Jonathan Z Sexton, Jason R Spence

Alveolar type 2 (AT2) cells function as stem cells in the adult lung and aid in repair after injury. The current study aimed to understand the signaling events that control differentiation of this therapeutically relevant cell type during human development. Using lung explant and organoid models, we identified opposing effects of TGFβ- and BMP-signaling, where inhibition of TGFβ- and activation of BMP-signaling in the context of high WNT- and FGF-signaling efficiently differentiated early lung progenitors into AT2-like cells in vitro. AT2-like cells differentiated in this manner exhibit surfactant processing and secretion capabilities, and long-term commitment to a mature AT2 phenotype when expanded in media optimized for primary AT2 culture. Comparing AT2-like cells differentiated with TGFβ-inhibition and BMP-activation to alternative differentiation approaches revealed improved specificity to the AT2 lineage and reduced off-target cell types. These findings reveal opposing roles for TGFβ- and BMP-signaling in AT2 differentiation and provide a new strategy to generate a therapeutically relevant cell type in vitro.

肺泡2型(Alveolar type 2, AT2)细胞在成人肺中具有干细胞的功能,并有助于损伤后的修复。目前的研究旨在了解在人类发育过程中控制这种治疗相关细胞类型分化的信号事件。利用肺外植体和类器官模型,我们发现了tgf - β-和bmp -信号的相反作用,在高WNT-和fgf -信号的背景下,tgf - β-的抑制和bmp -信号的激活在体外有效地将早期肺祖细胞分化为at2样细胞。以这种方式分化的AT2样细胞表现出表面活性剂加工和分泌能力,并且在优化的AT2原代培养培养基中扩增时,长期致力于成熟的AT2表型。将tgf β抑制和bmp活化的AT2样细胞与其他分化方法进行比较,发现对AT2谱系的特异性提高,脱靶细胞类型减少。这些发现揭示了tgf - β-和bmp -信号在AT2分化中的相反作用,并提供了在体外产生治疗相关细胞类型的新策略。
{"title":"Opposing roles for TGFβ- and BMP-signaling during nascent alveolar differentiation in the developing human lung.","authors":"Tristan Frum, Peggy P Hsu, Renee F C Hein, Ansley S Conchola, Charles J Zhang, Olivia R Utter, Abhinav Anand, Yi Zhang, Sydney G Clark, Ian Glass, Jonathan Z Sexton, Jason R Spence","doi":"10.1038/s41536-023-00325-z","DOIUrl":"10.1038/s41536-023-00325-z","url":null,"abstract":"<p><p>Alveolar type 2 (AT2) cells function as stem cells in the adult lung and aid in repair after injury. The current study aimed to understand the signaling events that control differentiation of this therapeutically relevant cell type during human development. Using lung explant and organoid models, we identified opposing effects of TGFβ- and BMP-signaling, where inhibition of TGFβ- and activation of BMP-signaling in the context of high WNT- and FGF-signaling efficiently differentiated early lung progenitors into AT2-like cells in vitro. AT2-like cells differentiated in this manner exhibit surfactant processing and secretion capabilities, and long-term commitment to a mature AT2 phenotype when expanded in media optimized for primary AT2 culture. Comparing AT2-like cells differentiated with TGFβ-inhibition and BMP-activation to alternative differentiation approaches revealed improved specificity to the AT2 lineage and reduced off-target cell types. These findings reveal opposing roles for TGFβ- and BMP-signaling in AT2 differentiation and provide a new strategy to generate a therapeutically relevant cell type in vitro.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10492838/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10596316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publisher Correction: A postnatal network of co-hepato/pancreatic stem/progenitors in the biliary trees of pigs and humans. 出版商更正:猪和人类胆道树中共肝/胰腺干/祖细胞的出生后网络。
IF 7.2 1区 医学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-09-06 DOI: 10.1038/s41536-023-00323-1
Wencheng Zhang, Xicheng Wang, Giacomo Lanzoni, Eliane Wauthier, Sean Simpson, Jennifer Ashley Ezzell, Amanda Allen, Carolyn Suitt, Jonah Krolik, Alexander Jhirad, Juan Dominguez-Bendala, Vincenzo Cardinale, Domenico Alvaro, Diletta Overi, Eugenio Gaudio, Praveen Sethupathy, Guido Carpino, Christopher Adin, Jorge A Piedrahita, Kyle Mathews, Zhiying He, Lola McAdams Reid
{"title":"Publisher Correction: A postnatal network of co-hepato/pancreatic stem/progenitors in the biliary trees of pigs and humans.","authors":"Wencheng Zhang,&nbsp;Xicheng Wang,&nbsp;Giacomo Lanzoni,&nbsp;Eliane Wauthier,&nbsp;Sean Simpson,&nbsp;Jennifer Ashley Ezzell,&nbsp;Amanda Allen,&nbsp;Carolyn Suitt,&nbsp;Jonah Krolik,&nbsp;Alexander Jhirad,&nbsp;Juan Dominguez-Bendala,&nbsp;Vincenzo Cardinale,&nbsp;Domenico Alvaro,&nbsp;Diletta Overi,&nbsp;Eugenio Gaudio,&nbsp;Praveen Sethupathy,&nbsp;Guido Carpino,&nbsp;Christopher Adin,&nbsp;Jorge A Piedrahita,&nbsp;Kyle Mathews,&nbsp;Zhiying He,&nbsp;Lola McAdams Reid","doi":"10.1038/s41536-023-00323-1","DOIUrl":"10.1038/s41536-023-00323-1","url":null,"abstract":"","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482821/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10177194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combination human umbilical cord perivascular and endothelial colony forming cell therapy for ischemic cardiac injury. 脐带血管周围细胞与内皮细胞集落形成细胞联合治疗缺血性心脏损伤。
IF 7.2 1区 医学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-08-25 DOI: 10.1038/s41536-023-00321-3
Farwah Iqbal, Alexander Johnston, Brandon Wyse, Razieh Rabani, Poonam Mander, Banafshe Hoseini, Jun Wu, Ren-Ke Li, Andrée Gauthier-Fisher, Peter Szaraz, Clifford Librach

Cell-based therapeutics are promising interventions to repair ischemic cardiac tissue. However, no single cell type has yet been found to be both specialized and versatile enough to heal the heart. The synergistic effects of two regenerative cell types including endothelial colony forming cells (ECFC) and first-trimester human umbilical cord perivascular cells (FTM HUCPVC) with endothelial cell and pericyte properties respectively, on angiogenic and regenerative properties were tested in a rat model of myocardial infarction (MI), in vitro tube formation and Matrigel plug assay. The combination of FTM HUCPVCs and ECFCs synergistically reduced fibrosis and cardiomyocyte apoptosis, while promoting favorable cardiac remodeling and contractility. These effects were in part mediated by ANGPT2, PDGF-β, and VEGF-C. PDGF-β signaling-dependent synergistic effects on angiogenesis were also observed in vitro and in vivo. FTM HUCPVCs and ECFCs represent a cell combination therapy for promoting and sustaining vascularization following ischemic cardiac injury.

基于细胞的治疗方法是修复缺血心脏组织的有希望的干预措施。然而,目前还没有发现一种细胞类型既特化又万能,足以治愈心脏。采用大鼠心肌梗死(MI)模型、体外成管实验和Matrigel塞实验,研究了内皮集落形成细胞(ECFC)和孕早期脐带血管周围细胞(FTM HUCPVC)对血管生成和再生特性的协同作用。FTM HUCPVCs和ecfc联合使用可协同减少纤维化和心肌细胞凋亡,同时促进有利的心脏重塑和收缩。这些作用部分是由ANGPT2、PDGF-β和VEGF-C介导的。体外和体内也观察到PDGF-β信号依赖性对血管生成的协同作用。FTM HUCPVCs和ecfc代表了一种促进和维持缺血性心脏损伤后血管化的细胞联合疗法。
{"title":"Combination human umbilical cord perivascular and endothelial colony forming cell therapy for ischemic cardiac injury.","authors":"Farwah Iqbal, Alexander Johnston, Brandon Wyse, Razieh Rabani, Poonam Mander, Banafshe Hoseini, Jun Wu, Ren-Ke Li, Andrée Gauthier-Fisher, Peter Szaraz, Clifford Librach","doi":"10.1038/s41536-023-00321-3","DOIUrl":"10.1038/s41536-023-00321-3","url":null,"abstract":"<p><p>Cell-based therapeutics are promising interventions to repair ischemic cardiac tissue. However, no single cell type has yet been found to be both specialized and versatile enough to heal the heart. The synergistic effects of two regenerative cell types including endothelial colony forming cells (ECFC) and first-trimester human umbilical cord perivascular cells (FTM HUCPVC) with endothelial cell and pericyte properties respectively, on angiogenic and regenerative properties were tested in a rat model of myocardial infarction (MI), in vitro tube formation and Matrigel plug assay. The combination of FTM HUCPVCs and ECFCs synergistically reduced fibrosis and cardiomyocyte apoptosis, while promoting favorable cardiac remodeling and contractility. These effects were in part mediated by ANGPT2, PDGF-β, and VEGF-C. PDGF-β signaling-dependent synergistic effects on angiogenesis were also observed in vitro and in vivo. FTM HUCPVCs and ECFCs represent a cell combination therapy for promoting and sustaining vascularization following ischemic cardiac injury.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457300/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10096139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Ferric citrate and apo-transferrin enable erythroblast maturation with β-globin from hemogenic endothelium. 柠檬酸铁和载铁转铁蛋白通过造血内皮中的β-珠蛋白促进红母细胞成熟。
IF 7.2 1区 医学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-08-25 DOI: 10.1038/s41536-023-00320-4
Soo-Been Jeon, Hyebin Koh, A-Reum Han, Jieun Kim, Sunghun Lee, Jae-Ho Lee, Seung-Soon Im, Young-Sup Yoon, Jong-Hee Lee, Ji Yoon Lee

Red blood cell (RBC) generation from human pluripotent stem cells (PSCs) offers potential for innovative cell therapy in regenerative medicine as well as developmental studies. Ex vivo erythropoiesis from PSCs is currently limited by the low efficiency of functional RBCs with β-globin expression in culture systems. During induction of β-globin expression, the absence of a physiological microenvironment, such as a bone marrow niche, may impair cell maturation and lineage specification. Here, we describe a simple and reproducible culture system that can be used to generate erythroblasts with β-globin expression. We prepared a two-dimensional defined culture with ferric citrate treatment based on definitive hemogenic endothelium (HE). Floating erythroblasts derived from HE cells were primarily CD45+CD71+CD235a+ cells, and their number increased remarkably upon Fe treatment. Upon maturation, the erythroblasts cultured in the presence of ferric citrate showed high transcriptional levels of β-globin and enrichment of genes associated with heme synthesis and cell cycle regulation, indicating functionality. The rapid maturation of these erythroblasts into RBCs was observed when injected in vivo, suggesting the development of RBCs that were ready to grow. Hence, induction of β-globin expression may be explained by the effects of ferric citrate that promote cell maturation by binding with soluble transferrin and entering the cells.Taken together, upon treatment with Fe, erythroblasts showed advanced maturity with a high transcription of β-globin. These findings can help devise a stable protocol for the generation of clinically applicable RBCs.

人类多能干细胞(PSCs)生成红细胞(RBC)为再生医学和发育研究的创新细胞治疗提供了潜力。目前,由于培养系统中表达β-珠蛋白的功能性红细胞效率低,PSCs的体外红细胞生成受到限制。在诱导β-珠蛋白表达的过程中,缺乏生理微环境,如骨髓生态位,可能会损害细胞成熟和谱系规范。在这里,我们描述了一个简单的和可重复的培养系统,可用于产生红母细胞与β-珠蛋白表达。我们制备了一种基于最终血流生成内皮(HE)的二维定义培养物,柠檬酸铁处理。来源于HE细胞的漂浮红细胞主要为CD45+CD71+CD235a+细胞,铁处理后其数量显著增加。成熟后,在柠檬酸铁环境下培养的红母细胞显示出高水平的β-珠蛋白转录和与血红素合成和细胞周期调节相关的基因富集,表明功能性。在体内注射时,观察到这些红母细胞迅速成熟为红细胞,这表明红细胞的发育已经准备好生长。因此,柠檬酸铁通过与可溶性转铁蛋白结合并进入细胞促进细胞成熟的作用可以解释β-珠蛋白表达的诱导。综上所述,经铁处理后,红母细胞表现出成熟程度较高的β-珠蛋白转录水平。这些发现可以帮助设计一个稳定的方案来产生临床适用的红细胞。
{"title":"Ferric citrate and apo-transferrin enable erythroblast maturation with β-globin from hemogenic endothelium.","authors":"Soo-Been Jeon, Hyebin Koh, A-Reum Han, Jieun Kim, Sunghun Lee, Jae-Ho Lee, Seung-Soon Im, Young-Sup Yoon, Jong-Hee Lee, Ji Yoon Lee","doi":"10.1038/s41536-023-00320-4","DOIUrl":"10.1038/s41536-023-00320-4","url":null,"abstract":"<p><p>Red blood cell (RBC) generation from human pluripotent stem cells (PSCs) offers potential for innovative cell therapy in regenerative medicine as well as developmental studies. Ex vivo erythropoiesis from PSCs is currently limited by the low efficiency of functional RBCs with β-globin expression in culture systems. During induction of β-globin expression, the absence of a physiological microenvironment, such as a bone marrow niche, may impair cell maturation and lineage specification. Here, we describe a simple and reproducible culture system that can be used to generate erythroblasts with β-globin expression. We prepared a two-dimensional defined culture with ferric citrate treatment based on definitive hemogenic endothelium (HE). Floating erythroblasts derived from HE cells were primarily CD45<sup>+</sup>CD71<sup>+</sup>CD235a<sup>+</sup> cells, and their number increased remarkably upon Fe treatment. Upon maturation, the erythroblasts cultured in the presence of ferric citrate showed high transcriptional levels of β-globin and enrichment of genes associated with heme synthesis and cell cycle regulation, indicating functionality. The rapid maturation of these erythroblasts into RBCs was observed when injected in vivo, suggesting the development of RBCs that were ready to grow. Hence, induction of β-globin expression may be explained by the effects of ferric citrate that promote cell maturation by binding with soluble transferrin and entering the cells.Taken together, upon treatment with Fe, erythroblasts showed advanced maturity with a high transcription of β-globin. These findings can help devise a stable protocol for the generation of clinically applicable RBCs.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457393/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10305990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered inhaled nanocatalytic therapy for ischemic cerebrovascular disease by inducing autophagy of abnormal mitochondria. 诱导异常线粒体自噬的工程化吸入纳米催化治疗缺血性脑血管病。
IF 7.2 1区 医学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-08-11 DOI: 10.1038/s41536-023-00315-1
Deping Wang, Bowen Li, Shuchao Wang, Yingjian Hao, Hua Wang, Wei Sun, Jimin Cao, Xin Zhou, Bin Zheng

Mitochondrial dysfunction and subsequent accumulation of reactive oxygen species (ROS) are key contributors to the pathology of ischemic cerebrovascular disease. Therefore, elimination of ROS and damaged mitochondria is crucial for the effective treatment of this disease. For this purpose, we designed an inhalation nanotherapeutic agent, P/D@Mn/Co3O4, to treat ischemic cerebrovascular disease. Mn/Co3O4 effectively removed excess ROS from cells, reduced acute cellular oxidative stress, and protected neural cells from apoptosis. Furthermore, it depleted the H+ surrounding mitochondria and depolarized the mitochondrial membrane potential, inducing mitophagy and eliminating abnormal mitochondria, thereby avoiding the continuous overproduction of ROS by eliminating the source of ROS regeneration. On intranasal administration, Mn/Co3O4 encapsulated by platelet membranes and 2,3-(dioxy propyl)-trimethylammonium chloride can bypass the blood-brain barrier, enter the brain through the trigeminal and olfactory pathways, and target inflammatory regions to remove ROS and damaged mitochondria from the lesion area. In rat models of stroke and vascular dementia, P/D@Mn/Co3O4 effectively inhibited the symptoms of acute and chronic cerebral ischemia by scavenging ROS and damaged mitochondria in the affected area. Our findings indicate that the nanotherapeutic agent developed in this study can be used for the effective treatment of ischemic cerebrovascular disease.

线粒体功能障碍和随后活性氧(ROS)的积累是缺血性脑血管病病理的关键因素。因此,清除活性氧和受损线粒体对于有效治疗该疾病至关重要。为此,我们设计了一种吸入性纳米治疗剂P/D@Mn/Co3O4,用于治疗缺血性脑血管病。Mn/Co3O4能有效去除细胞中过量的ROS,降低细胞急性氧化应激,保护神经细胞免于凋亡。此外,它耗尽线粒体周围的H+,使线粒体膜电位去极化,诱导线粒体自噬,消除异常线粒体,从而通过消除ROS再生的来源,避免了ROS的持续过量产生。经鼻给药,经血小板膜和2,3-(二氧基丙基)-三甲基氯化铵包被的Mn/Co3O4可以绕过血脑屏障,通过三叉神经和嗅觉途径进入大脑,靶向炎症区域,清除病变区域的ROS和受损线粒体。在脑卒中和血管性痴呆大鼠模型中,P/D@Mn/Co3O4通过清除患处ROS和受损线粒体,有效抑制急慢性脑缺血症状。我们的研究结果表明,本研究开发的纳米治疗剂可用于缺血性脑血管病的有效治疗。
{"title":"Engineered inhaled nanocatalytic therapy for ischemic cerebrovascular disease by inducing autophagy of abnormal mitochondria.","authors":"Deping Wang, Bowen Li, Shuchao Wang, Yingjian Hao, Hua Wang, Wei Sun, Jimin Cao, Xin Zhou, Bin Zheng","doi":"10.1038/s41536-023-00315-1","DOIUrl":"10.1038/s41536-023-00315-1","url":null,"abstract":"<p><p>Mitochondrial dysfunction and subsequent accumulation of reactive oxygen species (ROS) are key contributors to the pathology of ischemic cerebrovascular disease. Therefore, elimination of ROS and damaged mitochondria is crucial for the effective treatment of this disease. For this purpose, we designed an inhalation nanotherapeutic agent, P/D@Mn/Co<sub>3</sub>O<sub>4</sub>, to treat ischemic cerebrovascular disease. Mn/Co<sub>3</sub>O<sub>4</sub> effectively removed excess ROS from cells, reduced acute cellular oxidative stress, and protected neural cells from apoptosis. Furthermore, it depleted the H<sup>+</sup> surrounding mitochondria and depolarized the mitochondrial membrane potential, inducing mitophagy and eliminating abnormal mitochondria, thereby avoiding the continuous overproduction of ROS by eliminating the source of ROS regeneration. On intranasal administration, Mn/Co<sub>3</sub>O<sub>4</sub> encapsulated by platelet membranes and 2,3-(dioxy propyl)-trimethylammonium chloride can bypass the blood-brain barrier, enter the brain through the trigeminal and olfactory pathways, and target inflammatory regions to remove ROS and damaged mitochondria from the lesion area. In rat models of stroke and vascular dementia, P/D@Mn/Co<sub>3</sub>O<sub>4</sub> effectively inhibited the symptoms of acute and chronic cerebral ischemia by scavenging ROS and damaged mitochondria in the affected area. Our findings indicate that the nanotherapeutic agent developed in this study can be used for the effective treatment of ischemic cerebrovascular disease.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421937/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10349894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transgene-free direct conversion of murine fibroblasts into functional muscle stem cells. 无转基因小鼠成纤维细胞直接转化为功能性肌肉干细胞。
IF 7.2 1区 医学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-08-08 DOI: 10.1038/s41536-023-00317-z
Xhem Qabrati, Inseon Kim, Adhideb Ghosh, Nicola Bundschuh, Falko Noé, Andrew S Palmer, Ori Bar-Nur

Transcription factor-based cellular reprogramming provides an attractive approach to produce desired cell types for regenerative medicine purposes. Such cellular conversions are widely dependent on viral vectors to efficiently deliver and express defined factors in target cells. However, use of viral vectors is associated with unfavorable genomic integrations that can trigger deleterious molecular consequences, rendering this method a potential impediment to clinical applications. Here, we report on a highly efficient transgene-free approach to directly convert mouse fibroblasts into induced myogenic progenitor cells (iMPCs) by overexpression of synthetic MyoD-mRNA in concert with an enhanced small molecule cocktail. First, we performed a candidate compound screen and identified two molecules that enhance fibroblast reprogramming into iMPCs by suppression of the JNK and JAK/STAT pathways. Simultaneously, we developed an optimal transfection protocol to transiently overexpress synthetic MyoD-mRNA in fibroblasts. Combining these two techniques enabled robust and rapid reprogramming of fibroblasts into Pax7 positive iMPCs in as little as 10 days. Nascent transgene-free iMPCs proliferated extensively in vitro, expressed a suite of myogenic stem cell markers, and could differentiate into highly multinucleated and contractile myotubes. Furthermore, using global and single-cell transcriptome assays, we delineated gene expression changes associated with JNK and JAK/STAT pathway inhibition during reprogramming, and identified in iMPCs a Pax7+ stem cell subpopulation resembling satellite cells. Last, transgene-free iMPCs robustly engrafted skeletal muscles of a Duchenne muscular dystrophy mouse model, restoring dystrophin expression in hundreds of myofibers. In summary, this study reports on an improved and clinically safer approach to convert fibroblasts into myogenic stem cells that can efficiently contribute to muscle regeneration in vivo.

基于转录因子的细胞重编程为再生医学目的提供了一种有吸引力的方法来产生所需的细胞类型。这种细胞转化广泛依赖于病毒载体在靶细胞中有效地传递和表达确定的因子。然而,病毒载体的使用与不利的基因组整合相关,可能引发有害的分子后果,使该方法成为临床应用的潜在障碍。在这里,我们报道了一种高效的无转基因方法,通过过度表达合成MyoD-mRNA和增强的小分子鸡尾酒,直接将小鼠成纤维细胞转化为诱导的肌源性祖细胞(iMPCs)。首先,我们进行了候选化合物筛选,并确定了两种通过抑制JNK和JAK/STAT途径增强成纤维细胞重编程为iMPCs的分子。同时,我们开发了一种最佳转染方案,在成纤维细胞中短暂过表达合成MyoD-mRNA。结合这两种技术,可以在短短10天内将成纤维细胞强大而快速地重编程为Pax7阳性iMPCs。新生的无转基因iMPCs在体外广泛增殖,表达一套肌源性干细胞标记物,并能分化成高度多核和可收缩的肌管。此外,利用全局和单细胞转录组分析,我们描述了重编程过程中与JNK和JAK/STAT通路抑制相关的基因表达变化,并在iMPCs中鉴定了一个类似卫星细胞的Pax7+干细胞亚群。最后,无转基因的iMPCs稳健地植入杜氏肌营养不良小鼠模型的骨骼肌,在数百条肌纤维中恢复了肌营养不良蛋白的表达。总之,本研究报告了一种改进的、临床上更安全的将成纤维细胞转化为肌源性干细胞的方法,这种方法可以有效地促进体内肌肉再生。
{"title":"Transgene-free direct conversion of murine fibroblasts into functional muscle stem cells.","authors":"Xhem Qabrati, Inseon Kim, Adhideb Ghosh, Nicola Bundschuh, Falko Noé, Andrew S Palmer, Ori Bar-Nur","doi":"10.1038/s41536-023-00317-z","DOIUrl":"10.1038/s41536-023-00317-z","url":null,"abstract":"<p><p>Transcription factor-based cellular reprogramming provides an attractive approach to produce desired cell types for regenerative medicine purposes. Such cellular conversions are widely dependent on viral vectors to efficiently deliver and express defined factors in target cells. However, use of viral vectors is associated with unfavorable genomic integrations that can trigger deleterious molecular consequences, rendering this method a potential impediment to clinical applications. Here, we report on a highly efficient transgene-free approach to directly convert mouse fibroblasts into induced myogenic progenitor cells (iMPCs) by overexpression of synthetic MyoD-mRNA in concert with an enhanced small molecule cocktail. First, we performed a candidate compound screen and identified two molecules that enhance fibroblast reprogramming into iMPCs by suppression of the JNK and JAK/STAT pathways. Simultaneously, we developed an optimal transfection protocol to transiently overexpress synthetic MyoD-mRNA in fibroblasts. Combining these two techniques enabled robust and rapid reprogramming of fibroblasts into Pax7 positive iMPCs in as little as 10 days. Nascent transgene-free iMPCs proliferated extensively in vitro, expressed a suite of myogenic stem cell markers, and could differentiate into highly multinucleated and contractile myotubes. Furthermore, using global and single-cell transcriptome assays, we delineated gene expression changes associated with JNK and JAK/STAT pathway inhibition during reprogramming, and identified in iMPCs a Pax7<sup>+</sup> stem cell subpopulation resembling satellite cells. Last, transgene-free iMPCs robustly engrafted skeletal muscles of a Duchenne muscular dystrophy mouse model, restoring dystrophin expression in hundreds of myofibers. In summary, this study reports on an improved and clinically safer approach to convert fibroblasts into myogenic stem cells that can efficiently contribute to muscle regeneration in vivo.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10409758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10325352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Author Correction: The bright side of fibroblasts: molecular signature and regenerative cues in major organs. 作者更正:成纤维细胞的光明面:主要器官的分子特征和再生线索。
IF 7.2 1区 医学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-08-07 DOI: 10.1038/s41536-023-00319-x
Rita N Gomes, Filipa Manuel, Diana S Nascimento
{"title":"Author Correction: The bright side of fibroblasts: molecular signature and regenerative cues in major organs.","authors":"Rita N Gomes, Filipa Manuel, Diana S Nascimento","doi":"10.1038/s41536-023-00319-x","DOIUrl":"10.1038/s41536-023-00319-x","url":null,"abstract":"","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406803/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9965414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Functional ProTracer identifies patterns of cell proliferation in tissues and underlying regulatory mechanisms. 功能ProTracer识别组织中细胞增殖的模式和潜在的调节机制。
IF 7.2 1区 医学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-08-03 DOI: 10.1038/s41536-023-00318-y
Xiuxiu Liu, Maoying Han, Wendong Weng, Yan Li, Wenjuan Pu, Kuo Liu, Xufeng Li, Lingjuan He, Ruilin Sun, Ruling Shen, Yulong He, Dandan Liang, Yi-Han Chen, Qing-Dong Wang, Jan S Tchorz, Bin Zhou

A genetic system, ProTracer, has been recently developed to record cell proliferation in vivo. However, the ProTracer is initiated by an infrequently used recombinase Dre, which limits its broad application for functional studies employing floxed gene alleles. Here we generated Cre-activated functional ProTracer (fProTracer) mice, which enable simultaneous recording of cell proliferation and tissue-specific gene deletion, facilitating broad functional analysis of cell proliferation by any Cre driver.

一种名为ProTracer的遗传系统最近被开发出来用于记录细胞在体内的增殖。然而,ProTracer是由一种不常用的重组酶Dre启动的,这限制了它在使用固定基因等位基因的功能研究中的广泛应用。在这里,我们生成了Cre激活的功能性ProTracer (fProTracer)小鼠,它可以同时记录细胞增殖和组织特异性基因缺失,从而促进了通过任何Cre驱动程序对细胞增殖进行广泛的功能分析。
{"title":"Functional ProTracer identifies patterns of cell proliferation in tissues and underlying regulatory mechanisms.","authors":"Xiuxiu Liu, Maoying Han, Wendong Weng, Yan Li, Wenjuan Pu, Kuo Liu, Xufeng Li, Lingjuan He, Ruilin Sun, Ruling Shen, Yulong He, Dandan Liang, Yi-Han Chen, Qing-Dong Wang, Jan S Tchorz, Bin Zhou","doi":"10.1038/s41536-023-00318-y","DOIUrl":"10.1038/s41536-023-00318-y","url":null,"abstract":"<p><p>A genetic system, ProTracer, has been recently developed to record cell proliferation in vivo. However, the ProTracer is initiated by an infrequently used recombinase Dre, which limits its broad application for functional studies employing floxed gene alleles. Here we generated Cre-activated functional ProTracer (fProTracer) mice, which enable simultaneous recording of cell proliferation and tissue-specific gene deletion, facilitating broad functional analysis of cell proliferation by any Cre driver.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400583/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9946025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A postnatal network of co-hepato/pancreatic stem/progenitors in the biliary trees of pigs and humans. 猪和人类胆道树中肝/胰腺干细胞/祖细胞的产后网络。
IF 7.2 1区 医学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-08-01 DOI: 10.1038/s41536-023-00303-5
Wencheng Zhang, Xicheng Wang, Giacomo Lanzoni, Eliane Wauthier, Sean Simpson, Jennifer Ashley Ezzell, Amanda Allen, Carolyn Suitt, Jonah Krolik, Alexander Jhirad, Juan Dominguez-Bendala, Vincenzo Cardinale, Domenico Alvaro, Diletta Overi, Eugenio Gaudio, Praveen Sethupathy, Guido Carpino, Christopher Adin, Jorge A Piedrahita, Kyle Mathews, Zhiying He, Lola McAdams Reid

A network of co-hepato/pancreatic stem/progenitors exists in pigs and humans in Brunner's Glands in the submucosa of the duodenum, in peribiliary glands (PBGs) of intrahepatic and extrahepatic biliary trees, and in pancreatic duct glands (PDGs) of intrapancreatic biliary trees, collectively supporting hepatic and pancreatic regeneration postnatally. The network is found in humans postnatally throughout life and, so far, has been demonstrated in pigs postnatally at least through to young adulthood. These stem/progenitors in vivo in pigs are in highest numbers in Brunner's Glands and in PDGs nearest the duodenum, and in humans are in Brunner's Glands and in PBGs in the hepato/pancreatic common duct, a duct missing postnatally in pigs. Elsewhere in PDGs in pigs and in all PDGs in humans are only committed unipotent or bipotent progenitors. Stem/progenitors have genetic signatures in liver/pancreas-related RNA-seq data based on correlation, hierarchical clustering, differential gene expression and principal component analyses (PCA). Gene expression includes representative traits of pluripotency genes (SOX2, OCT4), endodermal transcription factors (e.g. SOX9, SOX17, PDX1), other stem cell traits (e.g. NCAM, CD44, sodium iodide symporter or NIS), and proliferation biomarkers (Ki67). Hepato/pancreatic multipotentiality was demonstrated by the stem/progenitors' responses under distinct ex vivo conditions or in vivo when patch grafted as organoids onto the liver versus the pancreas. Therefore, pigs are logical hosts for translational/preclinical studies for cell therapies with these stem/progenitors for hepatic and pancreatic dysfunctions.

猪和人十二指肠粘膜下的布鲁纳氏腺、肝内和肝外胆道的周围腺(PBGs)、胰内胆道的胰管腺(PDGs)中都存在肝/胰干/祖细胞网络,共同支持肝脏和胰腺的再生。这个网络在人类出生后的整个生命中都有发现,到目前为止,在猪出生后至少到成年早期也有发现。在猪体内,这些干细胞/祖细胞在布伦纳腺和靠近十二指肠的PDGs中数量最多,在人类中,在布伦纳腺和肝/胰总管中的PBGs中数量最多,这是猪出生后缺失的管道。在猪和所有人的PDGs中,其他地方只有单能或双能祖细胞。基于相关性、分层聚类、差异基因表达和主成分分析(PCA),干细胞/祖细胞在肝脏/胰腺相关RNA-seq数据中具有遗传特征。基因表达包括多能基因(SOX2, OCT4)、内胚层转录因子(如SOX9, SOX17, PDX1)、其他干细胞性状(如NCAM, CD44,碘化钠同转运体或NIS)和增殖生物标志物(Ki67)的代表性性状。肝/胰腺的多潜能性是通过干细胞/祖细胞在不同的离体条件下或在体内作为类器官贴片移植到肝脏和胰腺时的反应来证明的。因此,猪是利用这些干细胞/祖细胞治疗肝脏和胰腺功能障碍的转化/临床前研究的合理宿主。
{"title":"A postnatal network of co-hepato/pancreatic stem/progenitors in the biliary trees of pigs and humans.","authors":"Wencheng Zhang, Xicheng Wang, Giacomo Lanzoni, Eliane Wauthier, Sean Simpson, Jennifer Ashley Ezzell, Amanda Allen, Carolyn Suitt, Jonah Krolik, Alexander Jhirad, Juan Dominguez-Bendala, Vincenzo Cardinale, Domenico Alvaro, Diletta Overi, Eugenio Gaudio, Praveen Sethupathy, Guido Carpino, Christopher Adin, Jorge A Piedrahita, Kyle Mathews, Zhiying He, Lola McAdams Reid","doi":"10.1038/s41536-023-00303-5","DOIUrl":"10.1038/s41536-023-00303-5","url":null,"abstract":"<p><p>A network of co-hepato/pancreatic stem/progenitors exists in pigs and humans in Brunner's Glands in the submucosa of the duodenum, in peribiliary glands (PBGs) of intrahepatic and extrahepatic biliary trees, and in pancreatic duct glands (PDGs) of intrapancreatic biliary trees, collectively supporting hepatic and pancreatic regeneration postnatally. The network is found in humans postnatally throughout life and, so far, has been demonstrated in pigs postnatally at least through to young adulthood. These stem/progenitors in vivo in pigs are in highest numbers in Brunner's Glands and in PDGs nearest the duodenum, and in humans are in Brunner's Glands and in PBGs in the hepato/pancreatic common duct, a duct missing postnatally in pigs. Elsewhere in PDGs in pigs and in all PDGs in humans are only committed unipotent or bipotent progenitors. Stem/progenitors have genetic signatures in liver/pancreas-related RNA-seq data based on correlation, hierarchical clustering, differential gene expression and principal component analyses (PCA). Gene expression includes representative traits of pluripotency genes (SOX2, OCT4), endodermal transcription factors (e.g. SOX9, SOX17, PDX1), other stem cell traits (e.g. NCAM, CD44, sodium iodide symporter or NIS), and proliferation biomarkers (Ki67). Hepato/pancreatic multipotentiality was demonstrated by the stem/progenitors' responses under distinct ex vivo conditions or in vivo when patch grafted as organoids onto the liver versus the pancreas. Therefore, pigs are logical hosts for translational/preclinical studies for cell therapies with these stem/progenitors for hepatic and pancreatic dysfunctions.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10394089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10158115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
LRRC10 regulates mammalian cardiomyocyte cell cycle during heart regeneration. LRRC10在心脏再生过程中调控哺乳动物心肌细胞周期。
IF 7.2 1区 医学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-07-28 DOI: 10.1038/s41536-023-00316-0
Rebecca J Salamon, Megan C McKeon, Jiyoung Bae, Xiaoya Zhang, Wyatt G Paltzer, Kayla N Wanless, Alyssa R Schuett, Dakota J Nuttall, Stephen A Nemr, Rupa Sridharan, Youngsook Lee, Timothy J Kamp, Ahmed I Mahmoud

Leucine-rich repeat containing 10 (LRRC10) is a cardiomyocyte-specific protein, but its role in cardiac biology is little understood. Recently Lrrc10 was identified as required for endogenous cardiac regeneration in zebrafish; however, whether LRRC10 plays a role in mammalian heart regeneration remains unclear. In this study, we demonstrate that Lrrc10-/- knockout mice exhibit a loss of the neonatal mouse regenerative response, marked by reduced cardiomyocyte cytokinesis and increased cardiomyocyte binucleation. Interestingly, LRRC10 deletion disrupts the regenerative transcriptional landscape of the regenerating neonatal mouse heart. Remarkably, cardiac overexpression of LRRC10 restores cardiomyocyte cytokinesis, increases cardiomyocyte mononucleation, and the cardiac regenerative capacity of Lrrc10-/- mice. Our results are consistent with a model in which LRRC10 is required for cardiomyocyte cytokinesis as well as regulation of the transcriptional landscape during mammalian heart regeneration.

Leucine-rich repeat containing 10 (LRRC10)是一种心肌细胞特异性蛋白,但其在心脏生物学中的作用尚不清楚。最近发现Lrrc10是斑马鱼内源性心脏再生所必需的;然而,LRRC10是否在哺乳动物心脏再生中发挥作用尚不清楚。在这项研究中,我们证明Lrrc10-/-敲除小鼠表现出新生小鼠再生反应的丧失,其标志是心肌细胞胞质分裂减少和心肌细胞双核增加。有趣的是,LRRC10缺失破坏了新生小鼠心脏再生的再生转录景观。值得注意的是,心脏过表达LRRC10可以恢复心肌细胞的细胞分裂,增加心肌细胞的单核细胞,并提高LRRC10 -/-小鼠的心脏再生能力。我们的结果与LRRC10在哺乳动物心脏再生过程中是心肌细胞胞质分裂和转录调控所必需的模型一致。
{"title":"LRRC10 regulates mammalian cardiomyocyte cell cycle during heart regeneration.","authors":"Rebecca J Salamon,&nbsp;Megan C McKeon,&nbsp;Jiyoung Bae,&nbsp;Xiaoya Zhang,&nbsp;Wyatt G Paltzer,&nbsp;Kayla N Wanless,&nbsp;Alyssa R Schuett,&nbsp;Dakota J Nuttall,&nbsp;Stephen A Nemr,&nbsp;Rupa Sridharan,&nbsp;Youngsook Lee,&nbsp;Timothy J Kamp,&nbsp;Ahmed I Mahmoud","doi":"10.1038/s41536-023-00316-0","DOIUrl":"https://doi.org/10.1038/s41536-023-00316-0","url":null,"abstract":"<p><p>Leucine-rich repeat containing 10 (LRRC10) is a cardiomyocyte-specific protein, but its role in cardiac biology is little understood. Recently Lrrc10 was identified as required for endogenous cardiac regeneration in zebrafish; however, whether LRRC10 plays a role in mammalian heart regeneration remains unclear. In this study, we demonstrate that Lrrc10<sup>-/-</sup> knockout mice exhibit a loss of the neonatal mouse regenerative response, marked by reduced cardiomyocyte cytokinesis and increased cardiomyocyte binucleation. Interestingly, LRRC10 deletion disrupts the regenerative transcriptional landscape of the regenerating neonatal mouse heart. Remarkably, cardiac overexpression of LRRC10 restores cardiomyocyte cytokinesis, increases cardiomyocyte mononucleation, and the cardiac regenerative capacity of Lrrc10<sup>-/-</sup> mice. Our results are consistent with a model in which LRRC10 is required for cardiomyocyte cytokinesis as well as regulation of the transcriptional landscape during mammalian heart regeneration.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10002431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
npj Regenerative Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1