Zobia Irshad, Muhammad Adnan, Ho-Joong Kim, Jae Kwan Lee
A novel all-sequential-dip-coated (SDC) deposited FA1MA1−yPbI3−xBrx perovskite films have been synthesized from an aqueous non-halide lead precursor towards an environmentally benign, cost-effective, and efficient approach for high-performance perovskite solar cells (PrSCs). The mixed-cationic FA1MA1−yPbI3−xBrx perovskite layers ensure the fractional incorporation of Br into the perovskite crystal lattice. The insertion of Br contents was regulated by modulating the FABr concentration into the FABr/MAI mixed-cationic precursor solution. The incorporation of minor FABr into MAI helps to improve the surface coverage and crystallinity of the synthesized per-ovskite layer in contrast to the other perovskite films prepared with higher FABr content under the same environment. The PrSCs with these FA1MA1−yPbI3−xBrx perovskite layers displayed good de-vice performances and stability with a PCE of 11.1%. These outcomes reveal that the synthesis of FA1MA1−yPbI3−xBrx perovskite films with the SDC approach is more efficient because of the use of environmentally benign solvents for synthesizing lead and perovskite layers.
{"title":"Sequential-dip-coating processed mixed organic and inorganic perovskite film from halide-free lead precursor for efficient perovskite solar cells","authors":"Zobia Irshad, Muhammad Adnan, Ho-Joong Kim, Jae Kwan Lee","doi":"10.1002/bkcs.12882","DOIUrl":"10.1002/bkcs.12882","url":null,"abstract":"<p>A novel all-sequential-dip-coated (SDC) deposited FA<sub>1</sub>MA<sub>1−y</sub>PbI<sub>3−x</sub>Br<sub>x</sub> perovskite films have been synthesized from an aqueous non-halide lead precursor towards an environmentally benign, cost-effective, and efficient approach for high-performance perovskite solar cells (PrSCs). The mixed-cationic FA<sub>1</sub>MA<sub>1−y</sub>PbI<sub>3−x</sub>Br<sub>x</sub> perovskite layers ensure the fractional incorporation of Br into the perovskite crystal lattice. The insertion of Br contents was regulated by modulating the FABr concentration into the FABr/MAI mixed-cationic precursor solution. The incorporation of minor FABr into MAI helps to improve the surface coverage and crystallinity of the synthesized per-ovskite layer in contrast to the other perovskite films prepared with higher FABr content under the same environment. The PrSCs with these FA<sub>1</sub>MA<sub>1−y</sub>PbI<sub>3−x</sub>Br<sub>x</sub> perovskite layers displayed good de-vice performances and stability with a PCE of 11.1%. These outcomes reveal that the synthesis of FA<sub>1</sub>MA<sub>1−y</sub>PbI<sub>3−x</sub>Br<sub>x</sub> perovskite films with the SDC approach is more efficient because of the use of environmentally benign solvents for synthesizing lead and perovskite layers.</p>","PeriodicalId":54252,"journal":{"name":"Bulletin of the Korean Chemical Society","volume":"45 7","pages":"631-638"},"PeriodicalIF":1.7,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141387558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Precious metal complexes, which act as excellent photoredox catalysts, have now being replaced by earth-abundant metal complexes. This review focused on redox reactivity of ligand-to-metal charge transfer (LMCT) and metal-to-ligand charge transfer (MLCT) excited states of earth-abundant metal complexes. Iron complexes with strongly σ-donating NHC-ligands (NHC = N-heterocyclic carbene) has emerged, featuring long lived LMCT excited states due to a significantly increased barrier for deactivation via metal centered states. A Fe(III)-NHC complex acts as an effective photoredox catalyst for various photocatalytic redox reactions. Although manganese(IV)-oxo complexes have no long-lived excited states (τ < < 1 ns). Once acids such as Sc(OTf)3 and HOTf are bound to the oxo moiety of Mn(IV)-oxo complexes, the photoexcitation of acid-bound Mn(IV)-oxo complexes resulted in formation of the excited states with microseconds lifetimes, which are capable of oxidation of substrates including benzene to phenol. Photoexcited states of Mn(III), Mn(II) and Mn(I) complexes act as photoreductants to reduce substrates including O2. On the other hand, photoexcited states of Co(IV) and Co(III) complexes act as photooxidants, whereas those of Co(II) and Co(I) complexes act as photoreductants. With regard to the excited state lifetime, [Cr(tpe)2]3+ (tpe = 1,1,1-tris(pyrid-2-yl)ethane) exhibited the longest luminescence lifetime (τ = 4500 μs), acting as an effective photoredox catalyst for photocatalytic redox reactions. The LMCT state of a Cr(0) complex acts as a super photoreductant. Thus, LMCT and MLCT excited states of earth-abundant metal complexes are utilized as strong photooxidants and photoreductants, respectively.
{"title":"Redox reactivity of LMCT and MLCT excited states of Earth-abundant metal complexes","authors":"Wonwoo Nam, Yong-Min Lee, Shunichi Fukuzumi","doi":"10.1002/bkcs.12850","DOIUrl":"https://doi.org/10.1002/bkcs.12850","url":null,"abstract":"<p>Precious metal complexes, which act as excellent photoredox catalysts, have now being replaced by earth-abundant metal complexes. This review focused on redox reactivity of ligand-to-metal charge transfer (LMCT) and metal-to-ligand charge transfer (MLCT) excited states of earth-abundant metal complexes. Iron complexes with strongly σ-donating NHC-ligands (NHC = <i>N</i>-heterocyclic carbene) has emerged, featuring long lived LMCT excited states due to a significantly increased barrier for deactivation via metal centered states. A Fe(III)-NHC complex acts as an effective photoredox catalyst for various photocatalytic redox reactions. Although manganese(IV)-oxo complexes have no long-lived excited states (<i>τ</i> < < 1 ns). Once acids such as Sc(OTf)<sub>3</sub> and HOTf are bound to the oxo moiety of Mn(IV)-oxo complexes, the photoexcitation of acid-bound Mn(IV)-oxo complexes resulted in formation of the excited states with microseconds lifetimes, which are capable of oxidation of substrates including benzene to phenol. Photoexcited states of Mn(III), Mn(II) and Mn(I) complexes act as photoreductants to reduce substrates including O<sub>2</sub>. On the other hand, photoexcited states of Co(IV) and Co(III) complexes act as photooxidants, whereas those of Co(II) and Co(I) complexes act as photoreductants. With regard to the excited state lifetime, [Cr(tpe)<sub>2</sub>]<sup>3+</sup> (tpe = 1,1,1-tris(pyrid-2-yl)ethane) exhibited the longest luminescence lifetime (<i>τ</i> = 4500 μs), acting as an effective photoredox catalyst for photocatalytic redox reactions. The LMCT state of a Cr(0) complex acts as a super photoreductant. Thus, LMCT and MLCT excited states of earth-abundant metal complexes are utilized as strong photooxidants and photoreductants, respectively.</p>","PeriodicalId":54252,"journal":{"name":"Bulletin of the Korean Chemical Society","volume":"45 6","pages":"503-519"},"PeriodicalIF":1.7,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141430178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The field of coordination chemistry has evolved to intersect with organic chemistry and biochemistry, giving rise to the disciplines of organometallic and bioinorganic chemistry. Nuclear magnetic resonance (NMR) spectroscopy can be applied for characterizing transition metal complexes, spanning both diamagnetic and paramagnetic complexes prevalent in organometallic compounds and metalloproteins. This review offers a comprehensive overview of a wide variety of characterization techniques, ranging from basic 1H and 13C NMR spectroscopy to advanced methods such as heteronuclear experiments, polarization transfer techniques, relaxometry, and multidimensional NMR spectroscopy. The diverse array of NMR spectroscopic methods outlined here promises to enhance our comprehension of transition metal complexes, facilitating the development of innovative catalysts and therapeutics.
{"title":"NMR spectroscopic investigations of transition metal complexes in organometallic and bioinorganic chemistry","authors":"Jeongcheol Shin, Mi Hee Lim, Jiyeon Han","doi":"10.1002/bkcs.12853","DOIUrl":"https://doi.org/10.1002/bkcs.12853","url":null,"abstract":"<p>The field of coordination chemistry has evolved to intersect with organic chemistry and biochemistry, giving rise to the disciplines of organometallic and bioinorganic chemistry. Nuclear magnetic resonance (NMR) spectroscopy can be applied for characterizing transition metal complexes, spanning both diamagnetic and paramagnetic complexes prevalent in organometallic compounds and metalloproteins. This review offers a comprehensive overview of a wide variety of characterization techniques, ranging from basic <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy to advanced methods such as heteronuclear experiments, polarization transfer techniques, relaxometry, and multidimensional NMR spectroscopy. The diverse array of NMR spectroscopic methods outlined here promises to enhance our comprehension of transition metal complexes, facilitating the development of innovative catalysts and therapeutics.</p>","PeriodicalId":54252,"journal":{"name":"Bulletin of the Korean Chemical Society","volume":"45 7","pages":"593-613"},"PeriodicalIF":1.7,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bkcs.12853","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amino-single benzene-based fluorophores are representative small-size dyes with an electron push-pull structure on the benzene core. This paper provides a new library of amino-single benzene-based fluorophores with trifluoroacetyl moiety at the electron-pushing amine group.