Sunghee Lee, Soyun Lee, Soojin Hwang, So-Jung Park
Plasmonic nanoparticles exhibit dramatic changes in optical properties depending on their spatial organization. Therefore, the ability to precisely control their assembly structure is important for both fundamental understanding and practical applications. In this personal account, we describe a templated surfactant-assisted seed-growth method to synthesize core–shell-type gold nanoparticle assemblies with controllable surface morphologies and optical properties. This approach provides a simple procedure for simultaneous growth and assembly of metal nanoparticles on polymer templates, producing well-defined nanostructures such as spiky nanoshells and raspberry-like metamolecules with useful and interesting optical properties, such as strong and uniform surface-enhanced Raman scattering and metamaterial properties. We discuss the factors that control the morphology and collective properties, describe the design rules acquired from the system, and suggest future directions of this research area.
{"title":"Gold nanoshells with varying morphologies through templated surfactant-assisted seed-growth method","authors":"Sunghee Lee, Soyun Lee, Soojin Hwang, So-Jung Park","doi":"10.1002/bkcs.12845","DOIUrl":"https://doi.org/10.1002/bkcs.12845","url":null,"abstract":"<p>Plasmonic nanoparticles exhibit dramatic changes in optical properties depending on their spatial organization. Therefore, the ability to precisely control their assembly structure is important for both fundamental understanding and practical applications. In this personal account, we describe a templated surfactant-assisted seed-growth method to synthesize core–shell-type gold nanoparticle assemblies with controllable surface morphologies and optical properties. This approach provides a simple procedure for simultaneous growth and assembly of metal nanoparticles on polymer templates, producing well-defined nanostructures such as spiky nanoshells and raspberry-like metamolecules with useful and interesting optical properties, such as strong and uniform surface-enhanced Raman scattering and metamaterial properties. We discuss the factors that control the morphology and collective properties, describe the design rules acquired from the system, and suggest future directions of this research area.</p>","PeriodicalId":54252,"journal":{"name":"Bulletin of the Korean Chemical Society","volume":"45 6","pages":"486-494"},"PeriodicalIF":1.7,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bkcs.12845","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141430324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The tumor-suppressing phosphorylation cascade is primarily regulated by transcriptional enhanced associate domain (TEAD) transcription factors, and the overexpression of these factors is associated with tumorigenesis and cancer progression. The central pocket of TEAD protein can be targeted by noncovalent inhibitors, and therefore, investigating the interaction patterns for TEAD and its available inhibitors seems essential. In this regard, molecular dynamics simulations were conducted to identify the most potent TEAD3 noncovalent inhibitors and to study TEAD3–inhibitor interaction patterns. We developed a 3D-quantitative structure–activity relationship model to investigate the structure–activity correlation for the available TEAD3 inhibitors. Our results indicated the role of Tyr230, Val317, Thr333, Met367, Cys368, Met371, Phe394, Ile396, Gln398, and Phe416 residues in TEAD3–inhibitor interactions. Dihydropyrazolo pyrimidines and compound 2 were identified as the most potent TEAD3 noncovalent inhibitors. The Comparative Molecular Field Analysis model analysis identified the hydrophobic-favored regions around the pyrazolo[1,5-a]pyrimidin-7(4H)-one ring and the unfavored steric regions around cyclohexane and phenyl groups of dihydropyrazolo pyrimidines.
{"title":"Computational basis of TEAD-3 protein noncovalent inhibition: 3D-QSAR modeling and molecular dynamics simulation","authors":"Bita Kaviani, Marzieh Ghani Dehkordi, Hamed Haghshenas","doi":"10.1002/bkcs.12843","DOIUrl":"10.1002/bkcs.12843","url":null,"abstract":"<p>The tumor-suppressing phosphorylation cascade is primarily regulated by transcriptional enhanced associate domain (TEAD) transcription factors, and the overexpression of these factors is associated with tumorigenesis and cancer progression. The central pocket of TEAD protein can be targeted by noncovalent inhibitors, and therefore, investigating the interaction patterns for TEAD and its available inhibitors seems essential. In this regard, molecular dynamics simulations were conducted to identify the most potent TEAD3 noncovalent inhibitors and to study TEAD3–inhibitor interaction patterns. We developed a 3D-quantitative structure–activity relationship model to investigate the structure–activity correlation for the available TEAD3 inhibitors. Our results indicated the role of Tyr230, Val317, Thr333, Met367, Cys368, Met371, Phe394, Ile396, Gln398, and Phe416 residues in TEAD3–inhibitor interactions. Dihydropyrazolo pyrimidines and compound 2 were identified as the most potent TEAD3 noncovalent inhibitors. The Comparative Molecular Field Analysis model analysis identified the hydrophobic-favored regions around the pyrazolo[1,5-a]pyrimidin-7(4H)-one ring and the unfavored steric regions around cyclohexane and phenyl groups of dihydropyrazolo pyrimidines.</p>","PeriodicalId":54252,"journal":{"name":"Bulletin of the Korean Chemical Society","volume":"45 6","pages":"535-550"},"PeriodicalIF":1.7,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140690420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The cover picture illustrates metal-organic frameworks (MOFs) being used as fluorescent probes to detect biomarkers in human urine. MOF-based fluorescent probes facilitate the diagnosis of diseases, including pheochromocytoma, toluene exposure, vitamin deficiencies, gout, hyperuricemia, cancers, various body disorders, and teratogenic effects, with low detection limits. Unlike conventional disease diagnosis methods such as biopsies or blood collection, detecting pathogenic biomarkers in human urine is non-invasive and carries less risk. More details are available in the article by Seyeon Jeong and Hoi Ri Moon.