Pub Date : 2024-03-12DOI: 10.1016/j.omtm.2024.101232
Lara E. Graves, Eva B. van Dijk, Erhua Zhu, Sundar Koyyalamudi, Tiffany Wotton, Dinah Sung, Shubha Srinivasan, Samantha L. Ginn, Ian E. Alexander
Despite the availability of life-saving corticosteroids for 70 years, treatment for adrenal insufficiency is not able to recapitulate physiological diurnal cortisol secretion and results in numerous complications. Gene therapy is an attractive possibility for monogenic adrenocortical disorders such as congenital adrenal hyperplasia, however, requires further development of gene transfer/editing technologies and knowledge of the target progenitor cell populations. Vectors based on adeno-associated virus are the leading system for direct gene delivery but have limitations in targeting replicating cell populations such as in the adrenal cortex. One strategy to overcome this technological limitation is to deliver the relevant adrenocortical gene to a currently targetable organ outside of the adrenal cortex. To explore this possibility, we developed a vector encoding human 21-hydroxylase and directed expression to the liver in a mouse model of congenital adrenal hyperplasia. This extra-adrenal expression resulted in reconstitution of the steroidogenic pathway. Aldosterone and renin levels normalised, and corticosterone levels improved sufficiently to reduce adrenal hyperplasia. This strategy could provide an alternative treatment option for monogenic adrenal disorders, particularly for mineralocorticoid defects. These findings also demonstrate, when targeting the adrenal gland, that inadvertent liver transduction should be precluded as it may confound data interpretation.
{"title":"AAV-delivered hepato-adrenal cooperativity in steroidogenesis: implications for gene therapy for congenital adrenal hyperplasia","authors":"Lara E. Graves, Eva B. van Dijk, Erhua Zhu, Sundar Koyyalamudi, Tiffany Wotton, Dinah Sung, Shubha Srinivasan, Samantha L. Ginn, Ian E. Alexander","doi":"10.1016/j.omtm.2024.101232","DOIUrl":"https://doi.org/10.1016/j.omtm.2024.101232","url":null,"abstract":"Despite the availability of life-saving corticosteroids for 70 years, treatment for adrenal insufficiency is not able to recapitulate physiological diurnal cortisol secretion and results in numerous complications. Gene therapy is an attractive possibility for monogenic adrenocortical disorders such as congenital adrenal hyperplasia, however, requires further development of gene transfer/editing technologies and knowledge of the target progenitor cell populations. Vectors based on adeno-associated virus are the leading system for direct gene delivery but have limitations in targeting replicating cell populations such as in the adrenal cortex. One strategy to overcome this technological limitation is to deliver the relevant adrenocortical gene to a currently targetable organ outside of the adrenal cortex. To explore this possibility, we developed a vector encoding human 21-hydroxylase and directed expression to the liver in a mouse model of congenital adrenal hyperplasia. This extra-adrenal expression resulted in reconstitution of the steroidogenic pathway. Aldosterone and renin levels normalised, and corticosterone levels improved sufficiently to reduce adrenal hyperplasia. This strategy could provide an alternative treatment option for monogenic adrenal disorders, particularly for mineralocorticoid defects. These findings also demonstrate, when targeting the adrenal gland, that inadvertent liver transduction should be precluded as it may confound data interpretation.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"49 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140156554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-12DOI: 10.1016/j.omtm.2024.101230
Hao Liu, Yue Zhang, Mitchell Yip, Lingzhi Ren, Jialing Liang, Xiupeng Chen, Nan Liu, Ailing Du, Jiaming Wang, Hao Chang, Hyejin Oh, Chen Zhou, Ruxiao Xing, Mengyao Xu, Peiyi Guo, Dominic Gessler, Jun Xie, Phillip WL. Tai, Guangping Gao, Dan Wang
Recombinant adeno-associated virus (rAAV)-based gene therapy is entering clinical and commercial stages at an unprecedented pace. Triple transfection of HEK293 cells is currently the most widely used platform for rAAV manufacturing. Here, we develop low-cis triple transfection that reduces the transgene plasmid usage by 10- to 100-fold, and overcomes several major limitations associated with standard triple transfection. This new method improves packaging of yield-inhibiting transgenes by up to 10-fold, and generates rAAV batches with reduced plasmid backbone contamination that otherwise cannot be eliminated in downstream processing. When tested in mice and compared with rAAV produced by standard triple transfection, low-cis rAAV shows comparable or superior potency, and results in diminished plasmid backbone DNA and RNA persistence in tissue. Mechanistically, low-cis triple transfection relies on the extensive replication of transgene cassette (i.e., ITR-flanked vector DNA) in HEK293 cells during production phase. This cost-effective method can be easily implemented and widely applicable to producing rAAV of high quantity, purity, and potency.
{"title":"Producing high-quantity and high-quality recombinant adeno-associated virus by low-cis triple transfection","authors":"Hao Liu, Yue Zhang, Mitchell Yip, Lingzhi Ren, Jialing Liang, Xiupeng Chen, Nan Liu, Ailing Du, Jiaming Wang, Hao Chang, Hyejin Oh, Chen Zhou, Ruxiao Xing, Mengyao Xu, Peiyi Guo, Dominic Gessler, Jun Xie, Phillip WL. Tai, Guangping Gao, Dan Wang","doi":"10.1016/j.omtm.2024.101230","DOIUrl":"https://doi.org/10.1016/j.omtm.2024.101230","url":null,"abstract":"Recombinant adeno-associated virus (rAAV)-based gene therapy is entering clinical and commercial stages at an unprecedented pace. Triple transfection of HEK293 cells is currently the most widely used platform for rAAV manufacturing. Here, we develop low-cis triple transfection that reduces the transgene plasmid usage by 10- to 100-fold, and overcomes several major limitations associated with standard triple transfection. This new method improves packaging of yield-inhibiting transgenes by up to 10-fold, and generates rAAV batches with reduced plasmid backbone contamination that otherwise cannot be eliminated in downstream processing. When tested in mice and compared with rAAV produced by standard triple transfection, low-cis rAAV shows comparable or superior potency, and results in diminished plasmid backbone DNA and RNA persistence in tissue. Mechanistically, low-cis triple transfection relies on the extensive replication of transgene cassette (i.e., ITR-flanked vector DNA) in HEK293 cells during production phase. This cost-effective method can be easily implemented and widely applicable to producing rAAV of high quantity, purity, and potency.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"8 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140150514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-11DOI: 10.1016/j.omtm.2024.101234
Matthieu Drouyer, Tak-Ho Chu, Elodie Labit, Florencia Haase, Renina Gale Navarro, Deborah Nazareth, Nicole Rosin, Jessica Merjane, Suzanne Scott, Marti Cabanes-Creus, Adrian Westhaus, Erhua Zhu, Rajiv Midha, Ian E. Alexander, Jeff Biernaskie, Samantha L. Ginn, Leszek Lisowski
Gene therapies and associated technologies are transforming biomedical research and enabling novel therapeutic options for patients living with debilitating and incurable genetic disorders. The vector system based on recombinant adeno-associated viral vectors (AAVs) has shown great promise in recent clinical trials for genetic diseases of multiple organs, such as the liver and the nervous system. Despite recent successes toward the development of novel bioengineered AAV variants for improved transduction of primary human tissues and cells, vectors that can efficiently transduce human Schwann cells (hSCs) have yet to be identified. Here, we report the application of the functional transduction-RNA selection method in primary hSCs for the development of bespoke AAV variants for specific and efficient transgene delivery to hSCs. The two identified capsid variants, Pep2hSC1 and Pep2hSC2, show conserved potency for delivery across various , , and models of hSCs. These novel AAV capsids will serve as valuable research tools, forming the basis for therapeutic solutions for both SC-related disorders or peripheral nervous system injury.
{"title":"Novel AAV variants with improved tropism for human Schwann cells","authors":"Matthieu Drouyer, Tak-Ho Chu, Elodie Labit, Florencia Haase, Renina Gale Navarro, Deborah Nazareth, Nicole Rosin, Jessica Merjane, Suzanne Scott, Marti Cabanes-Creus, Adrian Westhaus, Erhua Zhu, Rajiv Midha, Ian E. Alexander, Jeff Biernaskie, Samantha L. Ginn, Leszek Lisowski","doi":"10.1016/j.omtm.2024.101234","DOIUrl":"https://doi.org/10.1016/j.omtm.2024.101234","url":null,"abstract":"Gene therapies and associated technologies are transforming biomedical research and enabling novel therapeutic options for patients living with debilitating and incurable genetic disorders. The vector system based on recombinant adeno-associated viral vectors (AAVs) has shown great promise in recent clinical trials for genetic diseases of multiple organs, such as the liver and the nervous system. Despite recent successes toward the development of novel bioengineered AAV variants for improved transduction of primary human tissues and cells, vectors that can efficiently transduce human Schwann cells (hSCs) have yet to be identified. Here, we report the application of the functional transduction-RNA selection method in primary hSCs for the development of bespoke AAV variants for specific and efficient transgene delivery to hSCs. The two identified capsid variants, Pep2hSC1 and Pep2hSC2, show conserved potency for delivery across various , , and models of hSCs. These novel AAV capsids will serve as valuable research tools, forming the basis for therapeutic solutions for both SC-related disorders or peripheral nervous system injury.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"6 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140150289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-06DOI: 10.1016/j.omtm.2024.101221
Zehan Zhang, John R. Counsell
{"title":"Non-canonical capsid engineering highlights new possibilities for AAV vectorology","authors":"Zehan Zhang, John R. Counsell","doi":"10.1016/j.omtm.2024.101221","DOIUrl":"https://doi.org/10.1016/j.omtm.2024.101221","url":null,"abstract":"","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"96 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140097779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-04DOI: 10.1016/j.omtm.2024.101228
Yoko Marwidi, Hoang-Oanh B. Nguyen, David Santos, Tenzin Wangzor, Sumita Bhardwaj, Gabriel Ernie, Gregg Prawdzik, Garrett Lew, David Shivak, Michael Trias, Jada Padilla, Hung Tran, Kathleen Meyer, Richard Surosky, Alex Michael Ward
Manufacturing of adeno-associated viruses (AAV) for gene and cell therapy applications has increased significantly and spurred development of improved mammalian and insect cell-based production systems. We developed a baculovirus-based insect cell production system—the SGMO Helper—with a novel gene architecture and greater flexibility to modulate the expression level and content of individual Rep and Cap proteins. In addition, we incorporated modifications to the AAV6 capsid sequence that improves yield, capsid integrity, and potency. Production of recombinant AAV 6 (rAAV6) using the SGMO Helper had improved yields compared to the Bac-RepCap helper from the Kotin lab. SGMO Helper-derived rAAV6 is resistant to a previously described proteolytic cleavage unique to baculovirus-insect cell production systems and has improved capsid ratios and potency, and , compared with rAAV6 produced using Bac-RepCap. Next-generation sequencing sequence analysis demonstrated that the SGMO Helper is stable over six serial passages and rAAV6 capsids contain comparable amounts of non-vector genome DNA as rAAV6 produced using Bac-RepCap. AAV production using the SGMO Helper is scalable using bioreactors and has improved yield, capsid ratio, and potency. Our studies demonstrate that the SGMO Helper is an improved platform for AAV manufacturing to enable delivery of cutting-edge gene and cell therapies.
{"title":"A robust and flexible baculovirus-insect cell system for AAV vector production with improved yield, capsid ratios and potency","authors":"Yoko Marwidi, Hoang-Oanh B. Nguyen, David Santos, Tenzin Wangzor, Sumita Bhardwaj, Gabriel Ernie, Gregg Prawdzik, Garrett Lew, David Shivak, Michael Trias, Jada Padilla, Hung Tran, Kathleen Meyer, Richard Surosky, Alex Michael Ward","doi":"10.1016/j.omtm.2024.101228","DOIUrl":"https://doi.org/10.1016/j.omtm.2024.101228","url":null,"abstract":"Manufacturing of adeno-associated viruses (AAV) for gene and cell therapy applications has increased significantly and spurred development of improved mammalian and insect cell-based production systems. We developed a baculovirus-based insect cell production system—the SGMO Helper—with a novel gene architecture and greater flexibility to modulate the expression level and content of individual Rep and Cap proteins. In addition, we incorporated modifications to the AAV6 capsid sequence that improves yield, capsid integrity, and potency. Production of recombinant AAV 6 (rAAV6) using the SGMO Helper had improved yields compared to the Bac-RepCap helper from the Kotin lab. SGMO Helper-derived rAAV6 is resistant to a previously described proteolytic cleavage unique to baculovirus-insect cell production systems and has improved capsid ratios and potency, and , compared with rAAV6 produced using Bac-RepCap. Next-generation sequencing sequence analysis demonstrated that the SGMO Helper is stable over six serial passages and rAAV6 capsids contain comparable amounts of non-vector genome DNA as rAAV6 produced using Bac-RepCap. AAV production using the SGMO Helper is scalable using bioreactors and has improved yield, capsid ratio, and potency. Our studies demonstrate that the SGMO Helper is an improved platform for AAV manufacturing to enable delivery of cutting-edge gene and cell therapies.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"87 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140097681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-04DOI: 10.1016/j.omtm.2024.101229
Citra N.Z. Mattar, Wei Leong Chew, Poh San Lai
Gene modification therapies (GMTs) are slowly but steadily making progress toward clinical application. As the majority of rare diseases have an identified genetic cause, and as rare diseases collectively affect 5% of the global population, it is increasingly important to devise gene correction strategies to address the root causes of the most devastating of these diseases and to provide access to these novel therapies to the most affected populations. The main barriers to providing greater access to GMTs continue to be the prohibitive cost of developing these novel drugs at clinically relevant doses, subtherapeutic effects, and toxicity related to the specific agents or high doses required. strategy and treating younger patients at an earlier course of their disease could lower these barriers. Although currently regarded as niche specialties, prenatal and preconception GMTs offer a robust solution to some of these barriers. Indeed, treating either the fetus or embryo benefits from economy of scale, targeting pre-pathological tissues in the fetus prior to full pathogenesis, or increasing the likelihood of complete tissue targeting by correcting pluripotent embryonic cells. Here, we review advances in embryo and fetal GMTs and discuss requirements for clinical application.
{"title":"Embryo and fetal gene editing: Technical challenges and progress toward clinical applications","authors":"Citra N.Z. Mattar, Wei Leong Chew, Poh San Lai","doi":"10.1016/j.omtm.2024.101229","DOIUrl":"https://doi.org/10.1016/j.omtm.2024.101229","url":null,"abstract":"Gene modification therapies (GMTs) are slowly but steadily making progress toward clinical application. As the majority of rare diseases have an identified genetic cause, and as rare diseases collectively affect 5% of the global population, it is increasingly important to devise gene correction strategies to address the root causes of the most devastating of these diseases and to provide access to these novel therapies to the most affected populations. The main barriers to providing greater access to GMTs continue to be the prohibitive cost of developing these novel drugs at clinically relevant doses, subtherapeutic effects, and toxicity related to the specific agents or high doses required. strategy and treating younger patients at an earlier course of their disease could lower these barriers. Although currently regarded as niche specialties, prenatal and preconception GMTs offer a robust solution to some of these barriers. Indeed, treating either the fetus or embryo benefits from economy of scale, targeting pre-pathological tissues in the fetus prior to full pathogenesis, or increasing the likelihood of complete tissue targeting by correcting pluripotent embryonic cells. Here, we review advances in embryo and fetal GMTs and discuss requirements for clinical application.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"21 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140156561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peptide drug discovery has great potential, but the cell membrane is a major obstacle when the target is an intracellular protein‒protein interaction (PPI). It is difficult to target PPIs with small molecules; indeed, there are no intervention tools that can target any intracellular PPI. In this study, we developed a platform that enables the introduction of peptides into cells via mRNA-based gene delivery. Peptide-length nucleic acids do not enable stable ribosome binding and exhibit little to no translation into protein. In this study, a construct was created in which the sequence encoding dihydrofolate reductase (DHFR) was placed in front of the sequence encoding the target peptide, together with a translation skipping sequence, as a sequence that meets the requirements of promoting ribosome binding and rapid decay of the translated protein. This enabled efficient translation from the mRNA encoding the target protein while preventing unnecessary protein residues. Using this construct, we showed that it can inhibit Drp1/Fis1 binding, one of the intracellular PPIs, which governs mitochondrial fission, an important aspect of mitochondrial dynamics. In addition, it was shown to inhibit pathological hyperfission, normalize mitochondrial dynamics and metabolism, and inhibit apoptosis of the mitochondrial pathway.
{"title":"Peptide-encoding gene transfer to modulate intracellular protein‒protein interactions","authors":"Toshihiko Taya, Daisuke Kami, Fumiya Teruyama, Satoaki Matoba, Satoshi gojo","doi":"10.1016/j.omtm.2024.101226","DOIUrl":"https://doi.org/10.1016/j.omtm.2024.101226","url":null,"abstract":"Peptide drug discovery has great potential, but the cell membrane is a major obstacle when the target is an intracellular protein‒protein interaction (PPI). It is difficult to target PPIs with small molecules; indeed, there are no intervention tools that can target any intracellular PPI. In this study, we developed a platform that enables the introduction of peptides into cells via mRNA-based gene delivery. Peptide-length nucleic acids do not enable stable ribosome binding and exhibit little to no translation into protein. In this study, a construct was created in which the sequence encoding dihydrofolate reductase (DHFR) was placed in front of the sequence encoding the target peptide, together with a translation skipping sequence, as a sequence that meets the requirements of promoting ribosome binding and rapid decay of the translated protein. This enabled efficient translation from the mRNA encoding the target protein while preventing unnecessary protein residues. Using this construct, we showed that it can inhibit Drp1/Fis1 binding, one of the intracellular PPIs, which governs mitochondrial fission, an important aspect of mitochondrial dynamics. In addition, it was shown to inhibit pathological hyperfission, normalize mitochondrial dynamics and metabolism, and inhibit apoptosis of the mitochondrial pathway.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"50 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140037415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-28DOI: 10.1016/j.omtm.2024.101227
Steven J. Hersch, Siddarth Chandrasekaran, Jamie Lam, Nafiseh Nafissi, Roderick A. Slavcev
Biotechnologies such as gene therapy have brought DNA vectors to the forefront of pharmaceuticals. The quality of starting material plays a pivotal role in determining final product quality. Here we examined the fidelity of DNA replication using enzymatic methods () compared to plasmid DNA produced in . Next-generation sequencing approaches rely on polymerases, which have inherent limitations in sensitivity. To address this challenge, we introduce a novel assay based on loss-of-function (LOF) mutations in the conditionally toxic gene. Our findings show that DNA production in results in significantly fewer LOF mutations (80- to 3000-fold less) compared to enzymatic DNA replication methods such as PCR and rolling circle amplification (RCA). These results suggest that using DNA produced by PCR or RCA may introduce a substantial number of mutation impurities, potentially affecting the quality and yield of final pharmaceutical products. Our study underscores that DNA synthesized has a significantly higher mutation rate than DNA produced traditionally in . Therefore, utilizing enzymatically-produced DNA in biotechnology and biomanufacturing may entail considerable fidelity-related risks, while using DNA starting material derived from substantially mitigates this risk.
基因治疗等生物技术将 DNA 载体推向了制药业的前沿。起始材料的质量在决定最终产品质量方面起着至关重要的作用。在这里,我们研究了使用酶法()复制 DNA 的保真度,并与......中生产的质粒 DNA 进行了比较。下一代测序方法依赖于聚合酶,而聚合酶在灵敏度方面存在固有的局限性。为了应对这一挑战,我们引入了一种基于条件毒性基因功能缺失(LOF)突变的新型检测方法。我们的研究结果表明,与聚合酶链式反应(PCR)和滚动圈扩增(RCA)等酶DNA复制方法相比,DNA生产过程中产生的LOF突变明显较少(少80-3000倍)。这些结果表明,使用 PCR 或 RCA 生产的 DNA 可能会引入大量突变杂质,从而可能影响最终药品的质量和产量。我们的研究强调,合成 DNA 的突变率明显高于传统方法生产的 DNA。因此,在生物技术和生物制造中使用酶法生产的 DNA 可能会带来相当大的与保真度相关的风险,而使用来自的 DNA 起始材料则大大降低了这种风险。
{"title":"Manufacturing DNA in E. coli yields higher fidelity DNA than in vitro enzymatic synthesis","authors":"Steven J. Hersch, Siddarth Chandrasekaran, Jamie Lam, Nafiseh Nafissi, Roderick A. Slavcev","doi":"10.1016/j.omtm.2024.101227","DOIUrl":"https://doi.org/10.1016/j.omtm.2024.101227","url":null,"abstract":"Biotechnologies such as gene therapy have brought DNA vectors to the forefront of pharmaceuticals. The quality of starting material plays a pivotal role in determining final product quality. Here we examined the fidelity of DNA replication using enzymatic methods () compared to plasmid DNA produced in . Next-generation sequencing approaches rely on polymerases, which have inherent limitations in sensitivity. To address this challenge, we introduce a novel assay based on loss-of-function (LOF) mutations in the conditionally toxic gene. Our findings show that DNA production in results in significantly fewer LOF mutations (80- to 3000-fold less) compared to enzymatic DNA replication methods such as PCR and rolling circle amplification (RCA). These results suggest that using DNA produced by PCR or RCA may introduce a substantial number of mutation impurities, potentially affecting the quality and yield of final pharmaceutical products. Our study underscores that DNA synthesized has a significantly higher mutation rate than DNA produced traditionally in . Therefore, utilizing enzymatically-produced DNA in biotechnology and biomanufacturing may entail considerable fidelity-related risks, while using DNA starting material derived from substantially mitigates this risk.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"53 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140036798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-27DOI: 10.1016/j.omtm.2024.101225
Jonathan Al-Saadi, Mathias Waldén, Mikael Sandell, Jesper Solmér, Rikard Grankvist, Ida Friberger, Agneta Andersson, Mattias Carlsten, Kenneth Chien, Johan Lundberg, Nevin Witman, Staffan Holmin
Heart failure has a poor prognosis and no curative treatment exists. Clinical trials are investigating gene- and cell-based therapies to improve cardiac function. The safe and efficient delivery of these therapies to solid organs is challenging. Herein, we demonstrate the feasibility of using an endovascular intramyocardial delivery approach to safely administer mRNA drug products and perform cell transplantation procedures in swine. Using a -vessel wall (TW) device, we delivered chemically modified mRNAs (modRNA) and mRNA-enhanced mesenchymal stromal cells expressing vascular endothelial growth factor A (VEGF-A) directly to the heart. We monitored and mapped the cellular distribution, protein expression, and safety tolerability of such an approach. The delivery of modRNA-enhanced cells via the TW device with different flow rates and cell concentrations marginally affect cell viability and protein expression . Implanted cells were found within the myocardium for at least 3 days following administration, without the use of immunomodulation and minimal impact on tissue integrity. Finally, we could increase the protein expression of VEGF-A over 500-fold in the heart using a cell-mediated modRNA delivery system compared with modRNA delivered in saline solution. Ultimately, this method paves the way for future research to pioneer new treatments for cardiac disease.
{"title":"Endovascular transplantation of mRNA-enhanced mesenchymal stromal cells results in superior therapeutic protein expression in swine heart","authors":"Jonathan Al-Saadi, Mathias Waldén, Mikael Sandell, Jesper Solmér, Rikard Grankvist, Ida Friberger, Agneta Andersson, Mattias Carlsten, Kenneth Chien, Johan Lundberg, Nevin Witman, Staffan Holmin","doi":"10.1016/j.omtm.2024.101225","DOIUrl":"https://doi.org/10.1016/j.omtm.2024.101225","url":null,"abstract":"Heart failure has a poor prognosis and no curative treatment exists. Clinical trials are investigating gene- and cell-based therapies to improve cardiac function. The safe and efficient delivery of these therapies to solid organs is challenging. Herein, we demonstrate the feasibility of using an endovascular intramyocardial delivery approach to safely administer mRNA drug products and perform cell transplantation procedures in swine. Using a -vessel wall (TW) device, we delivered chemically modified mRNAs (modRNA) and mRNA-enhanced mesenchymal stromal cells expressing vascular endothelial growth factor A (VEGF-A) directly to the heart. We monitored and mapped the cellular distribution, protein expression, and safety tolerability of such an approach. The delivery of modRNA-enhanced cells via the TW device with different flow rates and cell concentrations marginally affect cell viability and protein expression . Implanted cells were found within the myocardium for at least 3 days following administration, without the use of immunomodulation and minimal impact on tissue integrity. Finally, we could increase the protein expression of VEGF-A over 500-fold in the heart using a cell-mediated modRNA delivery system compared with modRNA delivered in saline solution. Ultimately, this method paves the way for future research to pioneer new treatments for cardiac disease.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"90 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140097485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-27DOI: 10.1016/j.omtm.2024.101224
Isabella Elias Yonezawa Ogusuku, Vera Herbel, Simon Lennartz, Caroline Brandes, Eva Argiro, Caroline Fabian, Carola Hauck, Conny Hoogstraten, Sabrina Veld, Lois Hageman, Karin Teppert, Georgia Koutsoumpli, Marieke Griffioen, Nadine Mockel-Tenbrinck, Thomas Schaser, Rosa de Groot, Ian C.D. Johnston, Dominik Lock
Acute myeloid leukemia (AML) is a heterogeneous malignancy that requires further therapeutic improvement, especially for the elderly and for subgroups with poor prognosis. A recently discovered T cell receptor (TCR) targeting mutant nucleophosmin 1 (ΔNPM1) presents an attractive option for the development of a cancer antigen-targeted cellular therapy. Manufacturing of TCR-modified T cells, however, is still limited by a complex, time-consuming, and laborious procedure. Therefore, this study specifically addressed the requirements for a scaled manufacture of ΔNPM1-specific T cells in an automated, closed, and good manufacturing practice-compliant process. Starting from cryopreserved leukapheresis, 2E8 CD8-positive T cells were enriched, activated, lentivirally transduced, expanded, and finally formulated. By adjusting and optimizing culture conditions, we additionally reduced the manufacturing time from 12 to 8 days while still achieving a clinically relevant yield of up to 5.5E9 ΔNPM1 TCR-engineered T cells. The cellular product mainly consisted of highly viable CD8-positive T cells with an early memory phenotype. ΔNPM1-TCR CD8 T cells manufactured with the optimized process showed specific killing of AML and . The process has been implemented in an upcoming phase 1/2 clinical trial for the treatment of NPM1-mutated AML.
急性髓性白血病(AML)是一种异质性恶性肿瘤,需要进一步改进治疗方法,尤其是针对老年人和预后不良的亚群。最近发现的一种靶向突变型核嗜磷蛋白 1(ΔNPM1)的 T 细胞受体(TCR)为开发癌症抗原靶向细胞疗法提供了一种极具吸引力的选择。然而,TCR修饰T细胞的制造仍然受到复杂、耗时和费力的程序的限制。因此,本研究特别针对ΔNPM1特异性T细胞的规模化生产要求,采用了自动化、封闭式和符合良好生产规范的流程。从低温保存的白细胞开始,对 2E8 CD8 阳性 T 细胞进行富集、激活、慢病毒转导、扩增,最后进行配制。通过调整和优化培养条件,我们还将制造时间从 12 天缩短到了 8 天,同时还获得了高达 5.5E9 ΔNPM1 TCR 工程 T 细胞的临床相关产量。细胞产品主要由具有早期记忆表型的高活性 CD8 阳性 T 细胞组成。用优化工艺制造的ΔNPM1-TCR CD8 T细胞对急性髓细胞白血病和白血病有特异性杀伤作用。该工艺已用于即将开展的治疗 NPM1 突变 AML 的 1/2 期临床试验。
{"title":"Automated manufacture of ΔNPM1 TCR-engineered T cells for AML therapy","authors":"Isabella Elias Yonezawa Ogusuku, Vera Herbel, Simon Lennartz, Caroline Brandes, Eva Argiro, Caroline Fabian, Carola Hauck, Conny Hoogstraten, Sabrina Veld, Lois Hageman, Karin Teppert, Georgia Koutsoumpli, Marieke Griffioen, Nadine Mockel-Tenbrinck, Thomas Schaser, Rosa de Groot, Ian C.D. Johnston, Dominik Lock","doi":"10.1016/j.omtm.2024.101224","DOIUrl":"https://doi.org/10.1016/j.omtm.2024.101224","url":null,"abstract":"Acute myeloid leukemia (AML) is a heterogeneous malignancy that requires further therapeutic improvement, especially for the elderly and for subgroups with poor prognosis. A recently discovered T cell receptor (TCR) targeting mutant nucleophosmin 1 (ΔNPM1) presents an attractive option for the development of a cancer antigen-targeted cellular therapy. Manufacturing of TCR-modified T cells, however, is still limited by a complex, time-consuming, and laborious procedure. Therefore, this study specifically addressed the requirements for a scaled manufacture of ΔNPM1-specific T cells in an automated, closed, and good manufacturing practice-compliant process. Starting from cryopreserved leukapheresis, 2E8 CD8-positive T cells were enriched, activated, lentivirally transduced, expanded, and finally formulated. By adjusting and optimizing culture conditions, we additionally reduced the manufacturing time from 12 to 8 days while still achieving a clinically relevant yield of up to 5.5E9 ΔNPM1 TCR-engineered T cells. The cellular product mainly consisted of highly viable CD8-positive T cells with an early memory phenotype. ΔNPM1-TCR CD8 T cells manufactured with the optimized process showed specific killing of AML and . The process has been implemented in an upcoming phase 1/2 clinical trial for the treatment of NPM1-mutated AML.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"127 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140097488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}