首页 > 最新文献

Molecular Therapy-Methods & Clinical Development最新文献

英文 中文
Embryo and fetal gene editing: Technical challenges and progress toward clinical applications 胚胎和胎儿基因编辑:技术挑战与临床应用进展
IF 4.7 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-03-04 DOI: 10.1016/j.omtm.2024.101229
Citra N.Z. Mattar, Wei Leong Chew, Poh San Lai
Gene modification therapies (GMTs) are slowly but steadily making progress toward clinical application. As the majority of rare diseases have an identified genetic cause, and as rare diseases collectively affect 5% of the global population, it is increasingly important to devise gene correction strategies to address the root causes of the most devastating of these diseases and to provide access to these novel therapies to the most affected populations. The main barriers to providing greater access to GMTs continue to be the prohibitive cost of developing these novel drugs at clinically relevant doses, subtherapeutic effects, and toxicity related to the specific agents or high doses required. strategy and treating younger patients at an earlier course of their disease could lower these barriers. Although currently regarded as niche specialties, prenatal and preconception GMTs offer a robust solution to some of these barriers. Indeed, treating either the fetus or embryo benefits from economy of scale, targeting pre-pathological tissues in the fetus prior to full pathogenesis, or increasing the likelihood of complete tissue targeting by correcting pluripotent embryonic cells. Here, we review advances in embryo and fetal GMTs and discuss requirements for clinical application.
基因修饰疗法(GMT)正缓慢而稳步地走向临床应用。由于大多数罕见病都有已查明的遗传原因,而且罕见病总共影响全球 5% 的人口,因此制定基因矫正策略以解决最具破坏性的疾病的根本原因,并让受影响最严重的人群获得这些新型疗法就变得越来越重要。让更多人获得 GMTs 治疗的主要障碍仍然是开发临床相关剂量的新型药物的高昂成本、亚疗效以及与特定药物或所需大剂量有关的毒性。 在疾病的早期阶段对年轻患者进行治疗的策略可以降低这些障碍。尽管产前和孕前 GMT 目前被视为利基专科,但它为解决其中一些障碍提供了强有力的解决方案。事实上,对胎儿或胚胎进行治疗可从规模经济中获益,在完全发病之前靶向胎儿的病理前组织,或通过纠正多能胚胎细胞增加完全靶向组织的可能性。在此,我们回顾了胚胎和胎儿 GMTs 的进展,并讨论了临床应用的要求。
{"title":"Embryo and fetal gene editing: Technical challenges and progress toward clinical applications","authors":"Citra N.Z. Mattar, Wei Leong Chew, Poh San Lai","doi":"10.1016/j.omtm.2024.101229","DOIUrl":"https://doi.org/10.1016/j.omtm.2024.101229","url":null,"abstract":"Gene modification therapies (GMTs) are slowly but steadily making progress toward clinical application. As the majority of rare diseases have an identified genetic cause, and as rare diseases collectively affect 5% of the global population, it is increasingly important to devise gene correction strategies to address the root causes of the most devastating of these diseases and to provide access to these novel therapies to the most affected populations. The main barriers to providing greater access to GMTs continue to be the prohibitive cost of developing these novel drugs at clinically relevant doses, subtherapeutic effects, and toxicity related to the specific agents or high doses required. strategy and treating younger patients at an earlier course of their disease could lower these barriers. Although currently regarded as niche specialties, prenatal and preconception GMTs offer a robust solution to some of these barriers. Indeed, treating either the fetus or embryo benefits from economy of scale, targeting pre-pathological tissues in the fetus prior to full pathogenesis, or increasing the likelihood of complete tissue targeting by correcting pluripotent embryonic cells. Here, we review advances in embryo and fetal GMTs and discuss requirements for clinical application.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"21 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140156561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peptide-encoding gene transfer to modulate intracellular protein‒protein interactions 肽编码基因转移调节细胞内蛋白质与蛋白质之间的相互作用
IF 4.7 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-02-28 DOI: 10.1016/j.omtm.2024.101226
Toshihiko Taya, Daisuke Kami, Fumiya Teruyama, Satoaki Matoba, Satoshi gojo
Peptide drug discovery has great potential, but the cell membrane is a major obstacle when the target is an intracellular protein‒protein interaction (PPI). It is difficult to target PPIs with small molecules; indeed, there are no intervention tools that can target any intracellular PPI. In this study, we developed a platform that enables the introduction of peptides into cells via mRNA-based gene delivery. Peptide-length nucleic acids do not enable stable ribosome binding and exhibit little to no translation into protein. In this study, a construct was created in which the sequence encoding dihydrofolate reductase (DHFR) was placed in front of the sequence encoding the target peptide, together with a translation skipping sequence, as a sequence that meets the requirements of promoting ribosome binding and rapid decay of the translated protein. This enabled efficient translation from the mRNA encoding the target protein while preventing unnecessary protein residues. Using this construct, we showed that it can inhibit Drp1/Fis1 binding, one of the intracellular PPIs, which governs mitochondrial fission, an important aspect of mitochondrial dynamics. In addition, it was shown to inhibit pathological hyperfission, normalize mitochondrial dynamics and metabolism, and inhibit apoptosis of the mitochondrial pathway.
肽类药物的发现具有巨大潜力,但当目标是细胞内蛋白质-蛋白质相互作用(PPI)时,细胞膜是一个主要障碍。小分子药物很难靶向 PPI;事实上,目前还没有针对任何细胞内 PPI 的干预工具。在这项研究中,我们开发了一种平台,可以通过基于 mRNA 的基因递送将肽引入细胞。肽长的核酸不能与核糖体稳定结合,几乎不能翻译成蛋白质。在这项研究中,我们创建了一种构建体,将编码二氢叶酸还原酶(DHFR)的序列放在编码目标多肽的序列前面,并加上一个翻译跳转序列,以满足促进核糖体结合和翻译蛋白质快速衰减的要求。这样就能从编码目标蛋白质的 mRNA 开始高效翻译,同时避免不必要的蛋白质残基。通过使用这种构建体,我们发现它可以抑制 Drp1/Fis1 的结合,而 Drp1/Fis1 是细胞内的 PPIs 之一,它控制着线粒体的裂变,这是线粒体动力学的一个重要方面。此外,它还能抑制病理性过度裂变,使线粒体动力学和新陈代谢正常化,并抑制线粒体途径的细胞凋亡。
{"title":"Peptide-encoding gene transfer to modulate intracellular protein‒protein interactions","authors":"Toshihiko Taya, Daisuke Kami, Fumiya Teruyama, Satoaki Matoba, Satoshi gojo","doi":"10.1016/j.omtm.2024.101226","DOIUrl":"https://doi.org/10.1016/j.omtm.2024.101226","url":null,"abstract":"Peptide drug discovery has great potential, but the cell membrane is a major obstacle when the target is an intracellular protein‒protein interaction (PPI). It is difficult to target PPIs with small molecules; indeed, there are no intervention tools that can target any intracellular PPI. In this study, we developed a platform that enables the introduction of peptides into cells via mRNA-based gene delivery. Peptide-length nucleic acids do not enable stable ribosome binding and exhibit little to no translation into protein. In this study, a construct was created in which the sequence encoding dihydrofolate reductase (DHFR) was placed in front of the sequence encoding the target peptide, together with a translation skipping sequence, as a sequence that meets the requirements of promoting ribosome binding and rapid decay of the translated protein. This enabled efficient translation from the mRNA encoding the target protein while preventing unnecessary protein residues. Using this construct, we showed that it can inhibit Drp1/Fis1 binding, one of the intracellular PPIs, which governs mitochondrial fission, an important aspect of mitochondrial dynamics. In addition, it was shown to inhibit pathological hyperfission, normalize mitochondrial dynamics and metabolism, and inhibit apoptosis of the mitochondrial pathway.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"50 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140037415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manufacturing DNA in E. coli yields higher fidelity DNA than in vitro enzymatic synthesis 与体外酶法合成相比,在大肠杆菌中制造 DNA 可获得保真度更高的 DNA
IF 4.7 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-02-28 DOI: 10.1016/j.omtm.2024.101227
Steven J. Hersch, Siddarth Chandrasekaran, Jamie Lam, Nafiseh Nafissi, Roderick A. Slavcev
Biotechnologies such as gene therapy have brought DNA vectors to the forefront of pharmaceuticals. The quality of starting material plays a pivotal role in determining final product quality. Here we examined the fidelity of DNA replication using enzymatic methods () compared to plasmid DNA produced in . Next-generation sequencing approaches rely on polymerases, which have inherent limitations in sensitivity. To address this challenge, we introduce a novel assay based on loss-of-function (LOF) mutations in the conditionally toxic gene. Our findings show that DNA production in results in significantly fewer LOF mutations (80- to 3000-fold less) compared to enzymatic DNA replication methods such as PCR and rolling circle amplification (RCA). These results suggest that using DNA produced by PCR or RCA may introduce a substantial number of mutation impurities, potentially affecting the quality and yield of final pharmaceutical products. Our study underscores that DNA synthesized has a significantly higher mutation rate than DNA produced traditionally in . Therefore, utilizing enzymatically-produced DNA in biotechnology and biomanufacturing may entail considerable fidelity-related risks, while using DNA starting material derived from substantially mitigates this risk.
基因治疗等生物技术将 DNA 载体推向了制药业的前沿。起始材料的质量在决定最终产品质量方面起着至关重要的作用。在这里,我们研究了使用酶法()复制 DNA 的保真度,并与......中生产的质粒 DNA 进行了比较。下一代测序方法依赖于聚合酶,而聚合酶在灵敏度方面存在固有的局限性。为了应对这一挑战,我们引入了一种基于条件毒性基因功能缺失(LOF)突变的新型检测方法。我们的研究结果表明,与聚合酶链式反应(PCR)和滚动圈扩增(RCA)等酶DNA复制方法相比,DNA生产过程中产生的LOF突变明显较少(少80-3000倍)。这些结果表明,使用 PCR 或 RCA 生产的 DNA 可能会引入大量突变杂质,从而可能影响最终药品的质量和产量。我们的研究强调,合成 DNA 的突变率明显高于传统方法生产的 DNA。因此,在生物技术和生物制造中使用酶法生产的 DNA 可能会带来相当大的与保真度相关的风险,而使用来自的 DNA 起始材料则大大降低了这种风险。
{"title":"Manufacturing DNA in E. coli yields higher fidelity DNA than in vitro enzymatic synthesis","authors":"Steven J. Hersch, Siddarth Chandrasekaran, Jamie Lam, Nafiseh Nafissi, Roderick A. Slavcev","doi":"10.1016/j.omtm.2024.101227","DOIUrl":"https://doi.org/10.1016/j.omtm.2024.101227","url":null,"abstract":"Biotechnologies such as gene therapy have brought DNA vectors to the forefront of pharmaceuticals. The quality of starting material plays a pivotal role in determining final product quality. Here we examined the fidelity of DNA replication using enzymatic methods () compared to plasmid DNA produced in . Next-generation sequencing approaches rely on polymerases, which have inherent limitations in sensitivity. To address this challenge, we introduce a novel assay based on loss-of-function (LOF) mutations in the conditionally toxic gene. Our findings show that DNA production in results in significantly fewer LOF mutations (80- to 3000-fold less) compared to enzymatic DNA replication methods such as PCR and rolling circle amplification (RCA). These results suggest that using DNA produced by PCR or RCA may introduce a substantial number of mutation impurities, potentially affecting the quality and yield of final pharmaceutical products. Our study underscores that DNA synthesized has a significantly higher mutation rate than DNA produced traditionally in . Therefore, utilizing enzymatically-produced DNA in biotechnology and biomanufacturing may entail considerable fidelity-related risks, while using DNA starting material derived from substantially mitigates this risk.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"53 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140036798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endovascular transplantation of mRNA-enhanced mesenchymal stromal cells results in superior therapeutic protein expression in swine heart 通过血管内移植 mRNA 增强间充质基质细胞,猪心脏的治疗性蛋白表达效果更佳
IF 4.7 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-02-27 DOI: 10.1016/j.omtm.2024.101225
Jonathan Al-Saadi, Mathias Waldén, Mikael Sandell, Jesper Solmér, Rikard Grankvist, Ida Friberger, Agneta Andersson, Mattias Carlsten, Kenneth Chien, Johan Lundberg, Nevin Witman, Staffan Holmin
Heart failure has a poor prognosis and no curative treatment exists. Clinical trials are investigating gene- and cell-based therapies to improve cardiac function. The safe and efficient delivery of these therapies to solid organs is challenging. Herein, we demonstrate the feasibility of using an endovascular intramyocardial delivery approach to safely administer mRNA drug products and perform cell transplantation procedures in swine. Using a -vessel wall (TW) device, we delivered chemically modified mRNAs (modRNA) and mRNA-enhanced mesenchymal stromal cells expressing vascular endothelial growth factor A (VEGF-A) directly to the heart. We monitored and mapped the cellular distribution, protein expression, and safety tolerability of such an approach. The delivery of modRNA-enhanced cells via the TW device with different flow rates and cell concentrations marginally affect cell viability and protein expression . Implanted cells were found within the myocardium for at least 3 days following administration, without the use of immunomodulation and minimal impact on tissue integrity. Finally, we could increase the protein expression of VEGF-A over 500-fold in the heart using a cell-mediated modRNA delivery system compared with modRNA delivered in saline solution. Ultimately, this method paves the way for future research to pioneer new treatments for cardiac disease.
心力衰竭的预后很差,目前尚无根治的疗法。临床试验正在研究基于基因和细胞的疗法,以改善心脏功能。将这些疗法安全有效地输送到实体器官是一项挑战。在这里,我们展示了使用血管内心肌内给药方法在猪体内安全给药 mRNA 药物产品和进行细胞移植手术的可行性。我们使用血管壁(TW)装置将化学修饰的 mRNA(modRNA)和表达血管内皮生长因子 A(VEGF-A)的 mRNA 增强间充质基质细胞直接输送到心脏。我们对这种方法的细胞分布、蛋白表达和安全耐受性进行了监测和绘图。通过 TW 装置输送 modRNA 增强细胞,不同的流速和细胞浓度对细胞存活率和蛋白表达影响不大。植入的细胞在给药后至少 3 天内仍在心肌内,无需使用免疫调节,对组织完整性的影响极小。最后,与在生理盐水中递送 modRNA 相比,我们利用细胞介导的 modRNA 递送系统可使心脏中 VEGF-A 蛋白表达量增加 500 倍以上。最终,这种方法为未来研究开创心脏疾病的新疗法铺平了道路。
{"title":"Endovascular transplantation of mRNA-enhanced mesenchymal stromal cells results in superior therapeutic protein expression in swine heart","authors":"Jonathan Al-Saadi, Mathias Waldén, Mikael Sandell, Jesper Solmér, Rikard Grankvist, Ida Friberger, Agneta Andersson, Mattias Carlsten, Kenneth Chien, Johan Lundberg, Nevin Witman, Staffan Holmin","doi":"10.1016/j.omtm.2024.101225","DOIUrl":"https://doi.org/10.1016/j.omtm.2024.101225","url":null,"abstract":"Heart failure has a poor prognosis and no curative treatment exists. Clinical trials are investigating gene- and cell-based therapies to improve cardiac function. The safe and efficient delivery of these therapies to solid organs is challenging. Herein, we demonstrate the feasibility of using an endovascular intramyocardial delivery approach to safely administer mRNA drug products and perform cell transplantation procedures in swine. Using a -vessel wall (TW) device, we delivered chemically modified mRNAs (modRNA) and mRNA-enhanced mesenchymal stromal cells expressing vascular endothelial growth factor A (VEGF-A) directly to the heart. We monitored and mapped the cellular distribution, protein expression, and safety tolerability of such an approach. The delivery of modRNA-enhanced cells via the TW device with different flow rates and cell concentrations marginally affect cell viability and protein expression . Implanted cells were found within the myocardium for at least 3 days following administration, without the use of immunomodulation and minimal impact on tissue integrity. Finally, we could increase the protein expression of VEGF-A over 500-fold in the heart using a cell-mediated modRNA delivery system compared with modRNA delivered in saline solution. Ultimately, this method paves the way for future research to pioneer new treatments for cardiac disease.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"90 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140097485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated manufacture of ΔNPM1 TCR-engineered T cells for AML therapy 自动制造用于急性髓细胞性白血病治疗的 ΔNPM1 TCR 工程 T 细胞
IF 4.7 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-02-27 DOI: 10.1016/j.omtm.2024.101224
Isabella Elias Yonezawa Ogusuku, Vera Herbel, Simon Lennartz, Caroline Brandes, Eva Argiro, Caroline Fabian, Carola Hauck, Conny Hoogstraten, Sabrina Veld, Lois Hageman, Karin Teppert, Georgia Koutsoumpli, Marieke Griffioen, Nadine Mockel-Tenbrinck, Thomas Schaser, Rosa de Groot, Ian C.D. Johnston, Dominik Lock
Acute myeloid leukemia (AML) is a heterogeneous malignancy that requires further therapeutic improvement, especially for the elderly and for subgroups with poor prognosis. A recently discovered T cell receptor (TCR) targeting mutant nucleophosmin 1 (ΔNPM1) presents an attractive option for the development of a cancer antigen-targeted cellular therapy. Manufacturing of TCR-modified T cells, however, is still limited by a complex, time-consuming, and laborious procedure. Therefore, this study specifically addressed the requirements for a scaled manufacture of ΔNPM1-specific T cells in an automated, closed, and good manufacturing practice-compliant process. Starting from cryopreserved leukapheresis, 2E8 CD8-positive T cells were enriched, activated, lentivirally transduced, expanded, and finally formulated. By adjusting and optimizing culture conditions, we additionally reduced the manufacturing time from 12 to 8 days while still achieving a clinically relevant yield of up to 5.5E9 ΔNPM1 TCR-engineered T cells. The cellular product mainly consisted of highly viable CD8-positive T cells with an early memory phenotype. ΔNPM1-TCR CD8 T cells manufactured with the optimized process showed specific killing of AML and . The process has been implemented in an upcoming phase 1/2 clinical trial for the treatment of NPM1-mutated AML.
急性髓性白血病(AML)是一种异质性恶性肿瘤,需要进一步改进治疗方法,尤其是针对老年人和预后不良的亚群。最近发现的一种靶向突变型核嗜磷蛋白 1(ΔNPM1)的 T 细胞受体(TCR)为开发癌症抗原靶向细胞疗法提供了一种极具吸引力的选择。然而,TCR修饰T细胞的制造仍然受到复杂、耗时和费力的程序的限制。因此,本研究特别针对ΔNPM1特异性T细胞的规模化生产要求,采用了自动化、封闭式和符合良好生产规范的流程。从低温保存的白细胞开始,对 2E8 CD8 阳性 T 细胞进行富集、激活、慢病毒转导、扩增,最后进行配制。通过调整和优化培养条件,我们还将制造时间从 12 天缩短到了 8 天,同时还获得了高达 5.5E9 ΔNPM1 TCR 工程 T 细胞的临床相关产量。细胞产品主要由具有早期记忆表型的高活性 CD8 阳性 T 细胞组成。用优化工艺制造的ΔNPM1-TCR CD8 T细胞对急性髓细胞白血病和白血病有特异性杀伤作用。该工艺已用于即将开展的治疗 NPM1 突变 AML 的 1/2 期临床试验。
{"title":"Automated manufacture of ΔNPM1 TCR-engineered T cells for AML therapy","authors":"Isabella Elias Yonezawa Ogusuku, Vera Herbel, Simon Lennartz, Caroline Brandes, Eva Argiro, Caroline Fabian, Carola Hauck, Conny Hoogstraten, Sabrina Veld, Lois Hageman, Karin Teppert, Georgia Koutsoumpli, Marieke Griffioen, Nadine Mockel-Tenbrinck, Thomas Schaser, Rosa de Groot, Ian C.D. Johnston, Dominik Lock","doi":"10.1016/j.omtm.2024.101224","DOIUrl":"https://doi.org/10.1016/j.omtm.2024.101224","url":null,"abstract":"Acute myeloid leukemia (AML) is a heterogeneous malignancy that requires further therapeutic improvement, especially for the elderly and for subgroups with poor prognosis. A recently discovered T cell receptor (TCR) targeting mutant nucleophosmin 1 (ΔNPM1) presents an attractive option for the development of a cancer antigen-targeted cellular therapy. Manufacturing of TCR-modified T cells, however, is still limited by a complex, time-consuming, and laborious procedure. Therefore, this study specifically addressed the requirements for a scaled manufacture of ΔNPM1-specific T cells in an automated, closed, and good manufacturing practice-compliant process. Starting from cryopreserved leukapheresis, 2E8 CD8-positive T cells were enriched, activated, lentivirally transduced, expanded, and finally formulated. By adjusting and optimizing culture conditions, we additionally reduced the manufacturing time from 12 to 8 days while still achieving a clinically relevant yield of up to 5.5E9 ΔNPM1 TCR-engineered T cells. The cellular product mainly consisted of highly viable CD8-positive T cells with an early memory phenotype. ΔNPM1-TCR CD8 T cells manufactured with the optimized process showed specific killing of AML and . The process has been implemented in an upcoming phase 1/2 clinical trial for the treatment of NPM1-mutated AML.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"127 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140097488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
B Cell Focused Transient Immune Suppression Protocol for Efficient AAV Readministration to the Liver 聚焦 B 细胞的瞬时免疫抑制方案,实现高效的 AAV 肝脏再管理
IF 4.7 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-02-20 DOI: 10.1016/j.omtm.2024.101216
Jyoti Rana, Roland W. Herzog, Maite Muñoz-Melero, Kentaro Yamada, Sandeep RP. Kumar, Ahn K. Lam, David M. Markusic, Dongsheng Duan, Cox Terhorst, Barry J. Byrne, Manuela Corti, Moanaro Biswas
{"title":"B Cell Focused Transient Immune Suppression Protocol for Efficient AAV Readministration to the Liver","authors":"Jyoti Rana, Roland W. Herzog, Maite Muñoz-Melero, Kentaro Yamada, Sandeep RP. Kumar, Ahn K. Lam, David M. Markusic, Dongsheng Duan, Cox Terhorst, Barry J. Byrne, Manuela Corti, Moanaro Biswas","doi":"10.1016/j.omtm.2024.101216","DOIUrl":"https://doi.org/10.1016/j.omtm.2024.101216","url":null,"abstract":"","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"52 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139926264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preexisting antibody assays for gene therapy: Considerations on clinical cut-off for patient selection and companion diagnostic requirements 用于基因治疗的现有抗体检测:考虑患者选择的临床临界值和辅助诊断要求
IF 4.7 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-02-20 DOI: 10.1016/j.omtm.2024.101217
Manuela Braun, Claudia Lange, Philipp Schatz, Brian Long, Johannes Stanta, Boris Gorovits, Edit Tarcsa, Vibha Jawa, Tong-Yuan Yang, Wibke Lembke, Nicole Miller, Fraser McBlane, Louis Christodoulou, Daisy Yuill, Mark Milton
{"title":"Preexisting antibody assays for gene therapy: Considerations on clinical cut-off for patient selection and companion diagnostic requirements","authors":"Manuela Braun, Claudia Lange, Philipp Schatz, Brian Long, Johannes Stanta, Boris Gorovits, Edit Tarcsa, Vibha Jawa, Tong-Yuan Yang, Wibke Lembke, Nicole Miller, Fraser McBlane, Louis Christodoulou, Daisy Yuill, Mark Milton","doi":"10.1016/j.omtm.2024.101217","DOIUrl":"https://doi.org/10.1016/j.omtm.2024.101217","url":null,"abstract":"","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"261 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139926242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glutaredoxin-1 modulates the NF-κB signaling pathway to activate inducible nitric oxide synthase in experimental necrotizing enterocolitis 谷胱甘肽-1调节NF-κB信号通路,激活实验性坏死性小肠结肠炎中的诱导型一氧化氮合酶
IF 4.7 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-02-19 DOI: 10.1016/j.omtm.2024.101214
Yunfei Zhang, Mei Yan, Yingying Xia, Yingbin Yue, Shuli Wang, Yuhui Hu, Genjian Lai, Quanjiang Wu, Qianyang Liu, Xin Ding, Chunbao Guo
{"title":"Glutaredoxin-1 modulates the NF-κB signaling pathway to activate inducible nitric oxide synthase in experimental necrotizing enterocolitis","authors":"Yunfei Zhang, Mei Yan, Yingying Xia, Yingbin Yue, Shuli Wang, Yuhui Hu, Genjian Lai, Quanjiang Wu, Qianyang Liu, Xin Ding, Chunbao Guo","doi":"10.1016/j.omtm.2024.101214","DOIUrl":"https://doi.org/10.1016/j.omtm.2024.101214","url":null,"abstract":"","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"21 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139926330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thorough molecular configuration analysis of non-canonical AAV genomes in AAV vector preparations 对 AAV 载体制备中的非经典 AAV 基因组进行全面的分子构型分析
IF 4.7 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-02-19 DOI: 10.1016/j.omtm.2024.101215
Junping Zhang, Xiangping Yu, Matthew Chrzanowski, Jiahe Tian, Derek Pouchnik, Ping Guo, Roland W. Herzog, Weidong Xiao
{"title":"Thorough molecular configuration analysis of non-canonical AAV genomes in AAV vector preparations","authors":"Junping Zhang, Xiangping Yu, Matthew Chrzanowski, Jiahe Tian, Derek Pouchnik, Ping Guo, Roland W. Herzog, Weidong Xiao","doi":"10.1016/j.omtm.2024.101215","DOIUrl":"https://doi.org/10.1016/j.omtm.2024.101215","url":null,"abstract":"","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"10 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139926260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A toxicology study of Csf2ra complementation and pulmonary macrophage transplantation therapy of hereditary PAP in mice Csf2ra 互补和肺巨噬细胞移植治疗遗传性 PAP 小鼠毒理学研究
IF 4.7 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-02-17 DOI: 10.1016/j.omtm.2024.101213
Paritha Arumugam, Brenna C. Carey, Kathryn A. Wikenheiser-Brokamp, Jeffrey Krischer, Matthew Wessendarp, Kenjiro Shima, Claudia Chalk, Jennifer Stock, Yan Ma, Diane Black, Michelle Imbrogno, Margaret Collins, Dan Justin Kalenda Yombo, Haripriya Sakthivel, Takuji Suzuki, Carolyn Lutzko, Jose A. Cancelas, Michelle Adams, Elizabeth Hoskins, Dawn Lowe-Daniels, Lilith Reeves, Anne Kaiser, Bruce C. Trapnell
Pulmonary macrophage transplantation (PMT) is a gene and cell transplantation approach in development as therapy for hereditary pulmonary alveolar proteinosis (hPAP), a surfactant accumulation disorder caused by mutations in (and murine homologs). We conducted a toxicology study of PMT of gene-corrected macrophages (mGM-RαMϕs) or saline-control intervention in or wild-type (WT) mice including single ascending dose and repeat ascending dose studies evaluating safety, tolerability, pharmacokinetics, and pharmacodynamics. Lentiviral-mediated cDNA transfer restored GM-CSF signaling in mGM-RαMϕs. Following PMT, mGM-RαMϕs engrafted, remained within the lungs, and did not undergo uncontrolled proliferation or result in bronchospasm, pulmonary function abnormalities, pulmonary or systemic inflammation, anti-transgene product antibodies, or pulmonary fibrosis. Aggressive male fighting caused a similarly low rate of serious adverse events in saline- and PMT-treated mice. Transient, minor pulmonary neutrophilia and exacerbation of pre-existing hPAP-related lymphocytosis were observed 14 days after PMT of the safety margin dose but not the target dose (5,000,000 or 500,000 mGM-RαMϕs, respectively) and only in mice but not in WT mice. PMT reduced lung disease severity in mice. Results indicate PMT of mGM-RαMϕs was safe, well tolerated, and therapeutically efficacious in mice, and established a no adverse effect level and 10-fold safety margin.
肺巨噬细胞移植(PMT)是一种基因和细胞移植方法,目前正开发用于治疗遗传性肺泡蛋白沉着症(hPAP),这是一种由(和鼠类同源物)突变引起的表面活性物质蓄积症。我们对基因校正巨噬细胞(mGM-RαMϕs)的 PMT 或生理盐水对照干预或野生型(WT)小鼠进行了毒理学研究,包括单次升剂量和重复升剂量研究,以评估安全性、耐受性、药代动力学和药效学。慢病毒介导的 cDNA 转导恢复了 mGM-RαMϕs 的 GM-CSF 信号传导。在 PMT 之后,mGM-RαMϕs 接种并留在肺内,没有发生不受控制的增殖,也没有导致支气管痉挛、肺功能异常、肺部或全身炎症、抗转基因产物抗体或肺纤维化。在生理盐水和 PMT 处理的小鼠中,攻击性雄性打斗导致的严重不良事件发生率同样很低。在使用安全边际剂量而非目标剂量(分别为 5,000,000 或 500,000 mGM-RαMϕs)的 PMT 14 天后,仅在小鼠而非 WT 小鼠中观察到短暂、轻微的肺中性粒细胞增多和原有的 hPAP 相关淋巴细胞增多症加重。PMT 降低了小鼠肺病的严重程度。结果表明,mGM-RαMϕs PMT 对小鼠是安全、耐受性良好和有疗效的,并确定了无不良反应水平和 10 倍的安全系数。
{"title":"A toxicology study of Csf2ra complementation and pulmonary macrophage transplantation therapy of hereditary PAP in mice","authors":"Paritha Arumugam, Brenna C. Carey, Kathryn A. Wikenheiser-Brokamp, Jeffrey Krischer, Matthew Wessendarp, Kenjiro Shima, Claudia Chalk, Jennifer Stock, Yan Ma, Diane Black, Michelle Imbrogno, Margaret Collins, Dan Justin Kalenda Yombo, Haripriya Sakthivel, Takuji Suzuki, Carolyn Lutzko, Jose A. Cancelas, Michelle Adams, Elizabeth Hoskins, Dawn Lowe-Daniels, Lilith Reeves, Anne Kaiser, Bruce C. Trapnell","doi":"10.1016/j.omtm.2024.101213","DOIUrl":"https://doi.org/10.1016/j.omtm.2024.101213","url":null,"abstract":"Pulmonary macrophage transplantation (PMT) is a gene and cell transplantation approach in development as therapy for hereditary pulmonary alveolar proteinosis (hPAP), a surfactant accumulation disorder caused by mutations in (and murine homologs). We conducted a toxicology study of PMT of gene-corrected macrophages (mGM-RαMϕs) or saline-control intervention in or wild-type (WT) mice including single ascending dose and repeat ascending dose studies evaluating safety, tolerability, pharmacokinetics, and pharmacodynamics. Lentiviral-mediated cDNA transfer restored GM-CSF signaling in mGM-RαMϕs. Following PMT, mGM-RαMϕs engrafted, remained within the lungs, and did not undergo uncontrolled proliferation or result in bronchospasm, pulmonary function abnormalities, pulmonary or systemic inflammation, anti-transgene product antibodies, or pulmonary fibrosis. Aggressive male fighting caused a similarly low rate of serious adverse events in saline- and PMT-treated mice. Transient, minor pulmonary neutrophilia and exacerbation of pre-existing hPAP-related lymphocytosis were observed 14 days after PMT of the safety margin dose but not the target dose (5,000,000 or 500,000 mGM-RαMϕs, respectively) and only in mice but not in WT mice. PMT reduced lung disease severity in mice. Results indicate PMT of mGM-RαMϕs was safe, well tolerated, and therapeutically efficacious in mice, and established a no adverse effect level and 10-fold safety margin.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"27 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Therapy-Methods & Clinical Development
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1