首页 > 最新文献

ChemNanoMat最新文献

英文 中文
Carbamodithioate-Modified Nanoscale Zerovalent Iron: Redox-Active Hybrid for Cr (VI) and p-Nitrophenol Remediation 碳氨基硫代酸修饰纳米级零价铁:铬(VI)和对硝基酚修复的氧化还原活性杂合物
IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-15 DOI: 10.1002/cnma.202500503
Harrish Tony Praveen Antoni Raja, K. K. R. Datta

The rise of redox-active nanoscale zerovalent iron materials toward the decontamination of heavy metals and nitroaromatics is witnessing upward trend toward sustainable water treatment technologies. Herein, we synthesize air-stable carbamodithioate-modified nanoscale zerovalent iron (NZVI-CD) via in situ route at room temperature conditions. The structure, wetting, and morphology of NZVI-CD were evaluated using various characterization techniques like XRD, FT-IR, XPS, SEM, TEM, and water contact angle (WCA) measurements. NZVI-CD showcases the excellent reduction of hexavalent chromium and p-nitrophenol under room temperature and optimal pH conditions. Kinetic studies revealed that removal of hexavalent chromium and p-nitrophenol using NZVI-CD follows pseudo second order kinetics, besides favoring Langmuir adsorption isotherm model with a maximum sorption capacity (Qmax) of 178.57 mg g−1 and 45.45 mg g−1 for Cr (VI) and p-nitrophenol, respectively.

氧化还原活性纳米级零价铁材料在重金属和硝基芳烃净化方面的兴起,见证了可持续水处理技术的上升趋势。在此,我们在室温条件下通过原位法合成了空气稳定的氨基甲酸乙酯修饰的纳米零价铁(NZVI-CD)。采用XRD、FT-IR、XPS、SEM、TEM和水接触角(WCA)等多种表征技术对NZVI-CD的结构、润湿和形貌进行了评价。NZVI-CD在室温和最佳pH条件下表现出六价铬和对硝基酚的优异还原效果。动力学研究表明,NZVI-CD对六价铬和对硝基苯酚的去除符合准二级动力学,且对Cr (VI)和对硝基苯酚的最大吸附量(Qmax)分别为178.57 mg g−1和45.45 mg g−1,有利于Langmuir吸附等温线模型。
{"title":"Carbamodithioate-Modified Nanoscale Zerovalent Iron: Redox-Active Hybrid for Cr (VI) and p-Nitrophenol Remediation","authors":"Harrish Tony Praveen Antoni Raja,&nbsp;K. K. R. Datta","doi":"10.1002/cnma.202500503","DOIUrl":"10.1002/cnma.202500503","url":null,"abstract":"<p>The rise of redox-active nanoscale zerovalent iron materials toward the decontamination of heavy metals and nitroaromatics is witnessing upward trend toward sustainable water treatment technologies. Herein, we synthesize air-stable carbamodithioate-modified nanoscale zerovalent iron (NZVI-CD) via in situ route at room temperature conditions. The structure, wetting, and morphology of NZVI-CD were evaluated using various characterization techniques like XRD, FT-IR, XPS, SEM, TEM, and water contact angle (WCA) measurements. NZVI-CD showcases the excellent reduction of hexavalent chromium and p-nitrophenol under room temperature and optimal pH conditions. Kinetic studies revealed that removal of hexavalent chromium and p-nitrophenol using NZVI-CD follows pseudo second order kinetics, besides favoring Langmuir adsorption isotherm model with a maximum sorption capacity (<i>Q</i><sub>max</sub>) of 178.57 mg g<sup>−1</sup> and 45.45 mg g<sup>−1</sup> for Cr (VI) and p-nitrophenol, respectively.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"12 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145891502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of Liquid Interface with Delicate Nanoarchitectonics for Molecular Recognition, Analysis, Reaction, Molecular Machine, Microrobot, and Life 精细纳米结构的液体界面在分子识别、分析、反应、分子机器、微型机器人和生命中的作用
IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-15 DOI: 10.1002/cnma.202500514
Katsuhiko Ariga

Ultimate functional materials could be functional substances found in biological systems. The organization of biological organizations can be described as a rational entity composed of functional small molecules and objects. It is becoming increasingly evident that liquid interfaces play a pivotal role in the development of sophisticated biological functions. It is therefore the case that the present review discusses the subject of nanoarchitectonics in the context of liquid interfaces as the environment. Specifically, the focus is on molecular recognition, analytical techniques, specific reactions, control of molecular machines and microrobots at liquid interfaces, and regulation of biological phenomena utilizing liquid interface environments. These examples will illustrate the role of liquid interfaces in achieving delicate nanoarchitectonics. The electronic properties are modulated in accordance with the variations in dielectric natures, extending perpendicularly to the interface. This enables delicate control of intermolecular interactions. Concurrently, the application of delicate forces within the interface direction facilitates precise structural adjustments of molecular structures analogous to those observed in biological systems. This theme is positioned as the convergence of chemistry (Chem) and nanotechnology/nanoarchitectonics (Nano) for materials (Mat) creation. This paper reveals the unexpectedly important role liquid interfaces can play within this context.

终极功能材料可能是在生物系统中发现的功能物质。生物组织的组织可以被描述为由具有功能的小分子和物体组成的理性实体。越来越明显的是,液体界面在复杂生物功能的发展中起着关键作用。因此,本文以液体界面为环境,讨论纳米建筑学的主题。具体来说,重点是分子识别,分析技术,特定反应,分子机器和微型机器人在液体界面的控制,以及利用液体界面环境的生物现象的调节。这些例子将说明液体界面在实现精细纳米结构中的作用。根据介电性质的变化调制电子性质,垂直延伸到界面。这使得分子间相互作用的精细控制成为可能。同时,在界面方向上施加微妙的力有助于分子结构的精确结构调整,类似于在生物系统中观察到的结构调整。这个主题被定位为化学(Chem)和纳米技术/纳米建筑学(Nano)在材料(Mat)创造方面的融合。本文揭示了液体界面在此背景下可以发挥的意想不到的重要作用。
{"title":"Roles of Liquid Interface with Delicate Nanoarchitectonics for Molecular Recognition, Analysis, Reaction, Molecular Machine, Microrobot, and Life","authors":"Katsuhiko Ariga","doi":"10.1002/cnma.202500514","DOIUrl":"10.1002/cnma.202500514","url":null,"abstract":"<p>Ultimate functional materials could be functional substances found in biological systems. The organization of biological organizations can be described as a rational entity composed of functional small molecules and objects. It is becoming increasingly evident that liquid interfaces play a pivotal role in the development of sophisticated biological functions. It is therefore the case that the present review discusses the subject of nanoarchitectonics in the context of liquid interfaces as the environment. Specifically, the focus is on molecular recognition, analytical techniques, specific reactions, control of molecular machines and microrobots at liquid interfaces, and regulation of biological phenomena utilizing liquid interface environments. These examples will illustrate the role of liquid interfaces in achieving delicate nanoarchitectonics. The electronic properties are modulated in accordance with the variations in dielectric natures, extending perpendicularly to the interface. This enables delicate control of intermolecular interactions. Concurrently, the application of delicate forces within the interface direction facilitates precise structural adjustments of molecular structures analogous to those observed in biological systems. This theme is positioned as the convergence of chemistry (Chem) and nanotechnology/nanoarchitectonics (Nano) for materials (Mat) creation. This paper reveals the unexpectedly important role liquid interfaces can play within this context.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"12 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://aces.onlinelibrary.wiley.com/doi/epdf/10.1002/cnma.202500514","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145887182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Feature: Tailoring Bismuth-Based Photocatalysts for Nitrogen Reduction Reaction (ChemNanoMat 11/2025) 封面特色:定制用于氮还原反应的铋基光催化剂(ChemNanoMat 11/2025)
IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-14 DOI: 10.1002/cnma.70100
Esakkinaveen Dhanaraman, Atul Verma, Yen-Pei Fu

In the Review by Yen-Pei Fu and co-workers, recent progress in bismuth-based photocatalysts for nitrogen reduction reactions is highlighted. Through strategies such as defect engineering, heterojunction construction, crystal facet tuning, and morphological control, these catalysts achieve improved charge separation and catalytic activity. The advances pave the way for sustainable ammonia synthesis and inspire future design of high-performance bismuth-based photocatalysts.

本文综述了近年来铋基光催化剂在氮还原反应中的研究进展。通过缺陷工程、异质结构建、晶面调谐和形态控制等策略,这些催化剂实现了更好的电荷分离和催化活性。这些进展为可持续氨合成铺平了道路,并启发了高性能铋基光催化剂的未来设计。
{"title":"Cover Feature: Tailoring Bismuth-Based Photocatalysts for Nitrogen Reduction Reaction (ChemNanoMat 11/2025)","authors":"Esakkinaveen Dhanaraman,&nbsp;Atul Verma,&nbsp;Yen-Pei Fu","doi":"10.1002/cnma.70100","DOIUrl":"https://doi.org/10.1002/cnma.70100","url":null,"abstract":"<p>In the Review by Yen-Pei Fu and co-workers, recent progress in bismuth-based photocatalysts for nitrogen reduction reactions is highlighted. Through strategies such as defect engineering, heterojunction construction, crystal facet tuning, and morphological control, these catalysts achieve improved charge separation and catalytic activity. The advances pave the way for sustainable ammonia synthesis and inspire future design of high-performance bismuth-based photocatalysts.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://aces.onlinelibrary.wiley.com/doi/epdf/10.1002/cnma.70100","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145500819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Decoding Tio2 Nanoparticle Formation via Nanotube Disintegration: Synthesis, Thermal Transformation, and Photocatalytic Synergy (ChemNanoMat 11/2025) 封面:通过纳米管分解解码二氧化钛纳米颗粒的形成:合成、热转化和光催化协同作用(ChemNanoMat 11/2025)
IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-14 DOI: 10.1002/cnma.70101
Yilan Zeng, Marcel Šihor, Zuzana Zmrhalová, Adéla Šlachtová, Leonid Satrapinskyy, Roch Tomáš, Lenka Matějová, Martin Reli, Martin Motola

Under anodic bias in a fluoride-containing electrolyte, TiO2 nanotube arrays undergo progressive dissolution. Tube walls collapse, fragment, and detach into the surrounding medium, forming dispersed nanoparticles. This self-driven top-down transformation is initiated by the electric field and sustained by chemical etching, capturing the dynamic pathway from ordered architecture to particulate form. More in the Research Article by Yilan Zeng, Martin Motola, and co-workers.

在含氟电解质的阳极偏压下,TiO2纳米管阵列会逐渐溶解。管壁坍塌、破碎并脱离到周围的介质中,形成分散的纳米颗粒。这种自驱动的自上而下的转变由电场发起,由化学蚀刻维持,捕获了从有序结构到颗粒形式的动态途径。本文由曾宜兰、马丁·摩托拉及其同事撰写。
{"title":"Front Cover: Decoding Tio2 Nanoparticle Formation via Nanotube Disintegration: Synthesis, Thermal Transformation, and Photocatalytic Synergy (ChemNanoMat 11/2025)","authors":"Yilan Zeng,&nbsp;Marcel Šihor,&nbsp;Zuzana Zmrhalová,&nbsp;Adéla Šlachtová,&nbsp;Leonid Satrapinskyy,&nbsp;Roch Tomáš,&nbsp;Lenka Matějová,&nbsp;Martin Reli,&nbsp;Martin Motola","doi":"10.1002/cnma.70101","DOIUrl":"https://doi.org/10.1002/cnma.70101","url":null,"abstract":"<p>Under anodic bias in a fluoride-containing electrolyte, TiO<sub>2</sub> nanotube arrays undergo progressive dissolution. Tube walls collapse, fragment, and detach into the surrounding medium, forming dispersed nanoparticles. This self-driven top-down transformation is initiated by the electric field and sustained by chemical etching, capturing the dynamic pathway from ordered architecture to particulate form. More in the Research Article by Yilan Zeng, Martin Motola, and co-workers.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://aces.onlinelibrary.wiley.com/doi/epdf/10.1002/cnma.70101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145500820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ionic Bond and Hydrogen Bond Synergistic Endow Electrolytes Self-Healing Ability for Lithium-Ion Batteries 离子键和氢键协同作用赋予锂离子电池电解质自愈能力
IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-10 DOI: 10.1002/cnma.202500269
Wenting Chen, Feng Hai, Xin Gao, Weicheng Xue, Wei Tang, Mingtao Li

Self-healing electrolytes can heal automatically when cracks occur during battery assembly or operation, improving the cycle life of lithium batteries. However, due to the weak self-healing force, the current electrolyte healing speed is relatively slow. In this work, the double synergistic action of hydrogen bond and ionic bond is used to improve the healing speed of electrolytes. In addition, the introduction of ionic liquids imparts nonflammability to the electrolyte, greatly improving safety. At room temperature, the tensile ratio of the electrolyte reaches 300%, and the conductivity reaches 7.1 × 10−4 S cm−1. It has a wide electrochemical window (5.1 V) and good electrochemical performance with an initial discharge specific capacity of up to 139.3 mAh g−1 at 0.1 C using the LiFePO4 cathode material.

自愈电解质可以在电池组装或使用过程中出现裂纹时自动修复,提高锂电池的循环寿命。但由于自愈力较弱,目前电解液的愈合速度相对较慢。在这项工作中,利用氢键和离子键的双重协同作用来提高电解质的愈合速度。此外,离子液体的引入使电解质具有不可燃性,大大提高了安全性。在室温下,电解质的拉伸率达到300%,电导率达到7.1 × 10−4 S cm−1。它具有宽的电化学窗口(5.1 V)和良好的电化学性能,在0.1 C下的初始放电比容量高达139.3 mAh g−1。
{"title":"Ionic Bond and Hydrogen Bond Synergistic Endow Electrolytes Self-Healing Ability for Lithium-Ion Batteries","authors":"Wenting Chen,&nbsp;Feng Hai,&nbsp;Xin Gao,&nbsp;Weicheng Xue,&nbsp;Wei Tang,&nbsp;Mingtao Li","doi":"10.1002/cnma.202500269","DOIUrl":"https://doi.org/10.1002/cnma.202500269","url":null,"abstract":"<p>Self-healing electrolytes can heal automatically when cracks occur during battery assembly or operation, improving the cycle life of lithium batteries. However, due to the weak self-healing force, the current electrolyte healing speed is relatively slow. In this work, the double synergistic action of hydrogen bond and ionic bond is used to improve the healing speed of electrolytes. In addition, the introduction of ionic liquids imparts nonflammability to the electrolyte, greatly improving safety. At room temperature, the tensile ratio of the electrolyte reaches 300%, and the conductivity reaches 7.1 × 10<sup>−4 </sup>S cm<sup>−1</sup>. It has a wide electrochemical window (5.1 V) and good electrochemical performance with an initial discharge specific capacity of up to 139.3 mAh g<sup>−1</sup> at 0.1 C using the LiFePO<sub>4</sub> cathode material.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 12","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145706349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “[One-step Solvothermally Synthesized Ni doped MoS2@SnS2 Nanocomposite as a High Performance Supercapacitor Electrode Material]” “一步溶胶热合成掺镍MoS2@SnS2纳米复合材料作为高性能超级电容器电极材料”的勘误表
IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-08 DOI: 10.1002/cnma.202500277
<p>[Ravindra Kumar, Ashish Kumar Keshari, Susanta Sinha Roy, Geetika Patel, Vemoori Raju, Sourav Sain and Gurupada Maity, <i>ChemNanoMat</i> 2025, e202400584, https://doi.org/10.1002/cnma.202400584]</p><p>The authors regret that the specific capacitance values reported throughout the paper were incorrect. This is due to the wrongly conversion of unit for the area of the electrode in Equation 1 (for CV curve) and 2 (for GCD curve) as observed by us later. The values were calculated again based on the Equation 1 and 2 using right unit.</p><p>This has also affected the values for energy and power density. Related to this, Equation 3 was incorrect. The complete and correct Equation 3 is E <span></span><math></math>. Where the energy density (E) in Wh cm<sup>−2</sup> and the power density (P) in W cm<sup>−2</sup>. The correct values of specific capacitance for Ni-MoS<sub>2</sub>@SnS<sub>2</sub> are therefore 199.95 mF cm<sup>−2</sup> and 64.47 mF cm<sup>−2</sup> at the scan rate of 10 mV s<sup>−1</sup> and 100 mV s<sup>−1</sup> respectively) in comparison to sole SnS<sub>2</sub> (a specific capacitance of about 30.96 mF cm<sup>−2</sup> and 23.47 mF cm<sup>−2</sup> at the same parameters). Further, it exhibits energy and power density of 5.9 μWh cm<sup>−2</sup> and 151.9 μW cm<sup>−2</sup> respectively.</p><p>The complete and correct Figure 7 is now shown below.</p><p>The change in specific capacitance values for sole SnS<sub>2</sub>, MoS<sub>2</sub>@SnS<sub>2</sub> and Ni-MoS<sub>2</sub>@SnS<sub>2</sub> do not affect the overall conclusions of the paper. The Ni-MoS<sub>2</sub>@SnS<sub>2</sub> still shows superior performance as compared to the sole SnS<sub>2</sub> and MoS<sub>2</sub>@SnS<sub>2</sub>.</p><p>The authors also regret that paragraph 2 of the Introduction reported incorrect information on the background and context. The corrected paragraph 2 is below:</p><p>Recently, the research groups are mainly focused on the development of transition metal sulfides (TMSs) as an electro-active component for the SCs applications, attributed to their notable stability, unique crystal structure, better redox properties, rapid electron/ion diffusion, better electrochemical performance, extended cycle life, high abundance, easy production, low cost, rapid charging and discharging rates, and high specific capacity.<sup>11</sup> Among the numerous TMSs like MoS<sub>2</sub>, SnS<sub>2</sub>, and WS<sub>2</sub>, FeS<sub>2</sub>, NiS, NiCo<sub>2</sub>S<sub>4</sub>, MnS<sub>2</sub>, CoS<sub>2</sub>, and CuS<sub>2</sub> etc. due to their graphite like layered structures, high surface area, the good specific capacitance, high cycling stability, high electronic conductivities and excellent electrochemical stability suggesting that they could be utilized as potential supercapacitor electrode material. Among them tin disulfide (SnS<sub>2</sub>) is one of the most important TMS with a two-dimensional (2D) CdI<sub>2</sub>-type hexagonal layered structural material compose
[Ravindra Kumar, Ashish Kumar Keshari, Susanta Sinha Roy, Geetika Patel, Vemoori Raju, Sourav Sain和Gurupada Maity, ChemNanoMat 2025, e202400584, https://doi.org/10.1002/cnma.202400584]The]作者遗憾的是,整个论文中报告的具体电容值是不正确的。这是由于我们后来观察到,公式1 (CV曲线)和公式2 (GCD曲线)中电极面积的单位转换错误。根据公式1和公式2,使用右单位再次计算值。这也影响了能量和功率密度的值。与此相关,公式3是不正确的。完整正确的方程3是E。式中,能量密度(E)为Wh cm−2,功率密度(P)为W cm−2。因此,Ni-MoS2@SnS2的正确比电容值分别为199.95 mF cm−2和64.47 mF cm−2(扫描速率分别为10 mV s−1和100 mV s−1),而SnS2的比电容值分别为30.96 mF cm−2和23.47 mF cm−2。其能量密度为5.9 μWh cm−2,功率密度为151.9 μW cm−2。完整且正确的图7现在显示在下面。鞋底SnS2、MoS2@SnS2和Ni-MoS2@SnS2比电容值的变化不影响本文的总体结论。与唯一的SnS2相比,Ni-MoS2@SnS2仍然表现出优越的性能,MoS2@SnS2.The的作者也对引言第2段报告的背景和上下文信息不正确感到遗憾。最近,由于过渡金属硫化物具有显著的稳定性、独特的晶体结构、更好的氧化还原性能、快速的电子/离子扩散、更好的电化学性能、延长的循环寿命、高丰度、易于生产、低成本、快速的充放电速率和高比容量,研究小组主要致力于开发过渡金属硫化物(tms)作为SCs应用的电活性成分在MoS2、SnS2、WS2等众多的tms中,FeS2、NiS、NiCo2S4、MnS2、CoS2、CuS2等由于其石墨状层状结构、高比表面积、良好的比电容、高循环稳定性、高电子导电性和优异的电化学稳定性,可以作为潜在的超级电容器电极材料。其中,二硫化锡(SnS2)是最重要的TMS材料之一,它是一种由三个原子层(S-Sn-S)叠合而成的二维(2D) cdi2型六方层状结构材料,通过原子层之间的弱范德华相互作用已成为超级电容器阳极材料的研究热点。此外,SnS2价格较低,其元素地壳组成丰富(2.2 ppm),化学稳定性高,对环境无害,因此在SCs中显示出应用的机会。12-17到目前为止,已经合成了一系列不同的Mo和sn基结构,并将其用于sc的电化学性能改进。例如,Wang等人制造的MoS2纳米颗粒作为超级电容器的阳极材料,在扫描速率为0.5 mv - 1.18时,其面积比电容为29 μF cm - 2。Winchester等人合成了剥离的MoS2,在扫描速率为10 mv - 1.19时,其比面积电容为2 mF cm - 2。同样,Yang等人报道了MoS2多孔膜在电流密度为1 mA cm - 2时的比电容为15 mF cm - 2在其他工作中,Lou等人报道了超级电容器用D-MoS2纳米片电极在5 mv - 1扫描速率下的比电容为3.8 mF cm - 2最近,一种Ni/SnS2纳米花的合成报道了在电流密度为1 mA cm−2.22时的比电容为410 mF cm−2,但由于其导电性差,MoS2和SnS2单独表现出较低的能量密度和较差的循环稳定性。此外,在SC应用中,二维SnS2倾向于堆叠,这将大大降低其电化学性能。因此,基于单一金属硫化物(SnS2或MoS2)的电极在充放电循环过程中,由于氧化还原动力学缓慢和结构崩溃(即导致显着的体积和表面积减少),其电化学性能仍然令人不满意。为了克服这些问题,人们做出了大量的努力来提高其电化学性能,例如与其他导电材料结合,采用各种形态来提高比表面积和电化学稳定性。MoS2也具有与SnS2非常相似的层状结构叠加和弱范德华相互作用。 此外,在双金属硫化物中,两种金属离子的结合可以导致协同效应,增强材料的导电性;提供更大的表面积,电化学稳定性和结构稳定性,更多的氧化还原反应活性位点,更高的充放电率和高比电容。此外,通过改变两种金属的比例,可以调整双金属硫化物的性质,以优化特定应用的性能。SnS2与另一种导电金属硫化物框架(如MoS2)的结合被认为是一种潜在的纳米复合材料,即使在高电流密度下也能获得优异的比电容和延长的循环寿命。例如,Sahoo等人通过水热法合成了MoS2/MnO2,并报道了在扫描速率为25 mv−1时的比电容为118 mF cm−2,在5000次循环中容量保持率为84% 23Ranjan等人合成了MoS2/NiMnIn/ss,并报道了CeO2@MoS2纳米复合材料在0.7 Ag - 1.24 Li电流密度下的比电容为87.82 mF cm - 2,在2.25 mA cm - 2电流密度下的比电容为90 mF cm - 2表1给出了用于超级电容器的其他金属硫化物基复合材料的性能。18-29此外,SnS2结合MoS2可以提高电子性能,从而获得较高的电化学性能。在早期的工作中,已经有许多研究报告通过制造这些材料的杂化和复合结构来提高这些材料的比容量和可持续性,从而与单独的SnS2和MoS2相比,具有更好的电化学性能。此外,SnS2和MoS2纳米结构材料提供了更大的表面积,更多的活性位点,以及更有效的电子转移和离子扩散途径。因此,可以提高活性物质的利用效率,从而提高电化学性能,如高比电容和延长循环寿命。因此,可以预期SnS2/MoS2复合结构将具有显著的性能。据我们所知,掺镍双金属-硫化物Ni-MoS2@SnS2纳米复合材料的超级电容器性能研究很少。在这里,我们要指出的是,表1中公布的旧电容值并没有错,我们在提交的材料中更新电容值是为了解决引言部分第2段中提出的背景中的一个小差异。在这种情况下,参考文献[18-29]也将被更新,因为原始参考文献没有很好地与背景讨论的逻辑流程保持一致,从而削弱了科学背景的清晰度。为了在不改变论文核心结果或结论的前提下提高叙述的连贯性,我们修改了参考文献[18-29],以更好地支持引言。我们向您保证,这些变化不会影响任何科学数据、解释或研究结论。此外,由于电容值的变化,表2也进行了更新。图2(b)和图4中的峰值分配是不正确的。完整和正确的图2(b)和图4如下所示。在拉曼光谱数据中,SnS2的峰值出现在178 cm−1;对于XPS数据,Ni卫星峰值出现在861.95 eV。Raman和XPS数据中峰分配的变化不影响本文的整体分析和结论。在“参考文献”部分,由于引言部分第2段的相关背景发生了变化,修订后的参考文献[18 - 29]如下:王志强,卢志强,孔德东,孙建军,崔勇,崔勇,化学工程学报,2014,33(4):940 - 947。温彻斯特,S. Gosh, S. Feng, A. L. Elias, T. Mallouk, M. Terrones和S. Talapatra, ACS苹果公司。板牙。[j] .中国机械工程,2014,26(6):555 - 563。杨洪辉,阮国光,向春
{"title":"Corrigendum to “[One-step Solvothermally Synthesized Ni doped MoS2@SnS2 Nanocomposite as a High Performance Supercapacitor Electrode Material]”","authors":"","doi":"10.1002/cnma.202500277","DOIUrl":"https://doi.org/10.1002/cnma.202500277","url":null,"abstract":"&lt;p&gt;[Ravindra Kumar, Ashish Kumar Keshari, Susanta Sinha Roy, Geetika Patel, Vemoori Raju, Sourav Sain and Gurupada Maity, &lt;i&gt;ChemNanoMat&lt;/i&gt; 2025, e202400584, https://doi.org/10.1002/cnma.202400584]&lt;/p&gt;&lt;p&gt;The authors regret that the specific capacitance values reported throughout the paper were incorrect. This is due to the wrongly conversion of unit for the area of the electrode in Equation 1 (for CV curve) and 2 (for GCD curve) as observed by us later. The values were calculated again based on the Equation 1 and 2 using right unit.&lt;/p&gt;&lt;p&gt;This has also affected the values for energy and power density. Related to this, Equation 3 was incorrect. The complete and correct Equation 3 is E &lt;span&gt;&lt;/span&gt;&lt;math&gt;&lt;/math&gt;. Where the energy density (E) in Wh cm&lt;sup&gt;−2&lt;/sup&gt; and the power density (P) in W cm&lt;sup&gt;−2&lt;/sup&gt;. The correct values of specific capacitance for Ni-MoS&lt;sub&gt;2&lt;/sub&gt;@SnS&lt;sub&gt;2&lt;/sub&gt; are therefore 199.95 mF cm&lt;sup&gt;−2&lt;/sup&gt; and 64.47 mF cm&lt;sup&gt;−2&lt;/sup&gt; at the scan rate of 10 mV s&lt;sup&gt;−1&lt;/sup&gt; and 100 mV s&lt;sup&gt;−1&lt;/sup&gt; respectively) in comparison to sole SnS&lt;sub&gt;2&lt;/sub&gt; (a specific capacitance of about 30.96 mF cm&lt;sup&gt;−2&lt;/sup&gt; and 23.47 mF cm&lt;sup&gt;−2&lt;/sup&gt; at the same parameters). Further, it exhibits energy and power density of 5.9 μWh cm&lt;sup&gt;−2&lt;/sup&gt; and 151.9 μW cm&lt;sup&gt;−2&lt;/sup&gt; respectively.&lt;/p&gt;&lt;p&gt;The complete and correct Figure 7 is now shown below.&lt;/p&gt;&lt;p&gt;The change in specific capacitance values for sole SnS&lt;sub&gt;2&lt;/sub&gt;, MoS&lt;sub&gt;2&lt;/sub&gt;@SnS&lt;sub&gt;2&lt;/sub&gt; and Ni-MoS&lt;sub&gt;2&lt;/sub&gt;@SnS&lt;sub&gt;2&lt;/sub&gt; do not affect the overall conclusions of the paper. The Ni-MoS&lt;sub&gt;2&lt;/sub&gt;@SnS&lt;sub&gt;2&lt;/sub&gt; still shows superior performance as compared to the sole SnS&lt;sub&gt;2&lt;/sub&gt; and MoS&lt;sub&gt;2&lt;/sub&gt;@SnS&lt;sub&gt;2&lt;/sub&gt;.&lt;/p&gt;&lt;p&gt;The authors also regret that paragraph 2 of the Introduction reported incorrect information on the background and context. The corrected paragraph 2 is below:&lt;/p&gt;&lt;p&gt;Recently, the research groups are mainly focused on the development of transition metal sulfides (TMSs) as an electro-active component for the SCs applications, attributed to their notable stability, unique crystal structure, better redox properties, rapid electron/ion diffusion, better electrochemical performance, extended cycle life, high abundance, easy production, low cost, rapid charging and discharging rates, and high specific capacity.&lt;sup&gt;11&lt;/sup&gt; Among the numerous TMSs like MoS&lt;sub&gt;2&lt;/sub&gt;, SnS&lt;sub&gt;2&lt;/sub&gt;, and WS&lt;sub&gt;2&lt;/sub&gt;, FeS&lt;sub&gt;2&lt;/sub&gt;, NiS, NiCo&lt;sub&gt;2&lt;/sub&gt;S&lt;sub&gt;4&lt;/sub&gt;, MnS&lt;sub&gt;2&lt;/sub&gt;, CoS&lt;sub&gt;2&lt;/sub&gt;, and CuS&lt;sub&gt;2&lt;/sub&gt; etc. due to their graphite like layered structures, high surface area, the good specific capacitance, high cycling stability, high electronic conductivities and excellent electrochemical stability suggesting that they could be utilized as potential supercapacitor electrode material. Among them tin disulfide (SnS&lt;sub&gt;2&lt;/sub&gt;) is one of the most important TMS with a two-dimensional (2D) CdI&lt;sub&gt;2&lt;/sub&gt;-type hexagonal layered structural material compose","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://aces.onlinelibrary.wiley.com/doi/epdf/10.1002/cnma.202500277","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145500845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Nitrogen and Cobalt Dopants for Efficient Lithium Storage: Metal-Organic Framework-Derived Mesoporous Carbonaceous Materials 氮和钴掺杂剂对高效锂存储的影响:金属-有机骨架衍生的介孔碳质材料
IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-07 DOI: 10.1002/cnma.202500410
Betzabeth T. Briceño Paredes, Ezequiel P. de la Llave, Federico Roncaroli

Cobalt- and nitrogen-doped mesoporous carbons are obtained from the pyrolysis at different temperatures (700 and 900 °C) of either ZIF-67 (catena-(bis(μ2-2-methylimidazolato)-cobalt(II)) or CoNic (catena-(bis(μ3-nicotinato)-bis(μ2-nicotinato)-(μ2-aqua)-di-cobalt(II)) cobalt metal-organic frameworks (MOFs), from Co(CO2)2Pz (catena-((μ2-pyrazine-2,3-dicarboxylato)-diaqua-cobalt(II) dehydrate)), a linear coordination polymer (CP), and CoCO2Pz (diaqua-bis(pyrazine-2-carboxylato)-cobalt(II)) a complex, followed by acid treatment. The lithium storage capacities of these materials are studied as a function of the BET-specific surface area and N and Co contents, discussed in the context of the state of the art bibliography. Clear correlation between these three parameters with the material reversible maximum capacity is observed. The specific contribution to the total capacity of each one of these three structural features is discussed. The two highest capacity values are observed for ZIF-67 and Co(CO2)2Pz pyrolized at 700 °C, affording values of 979 and 915 mA h g−1, respectively. The Co(CO2)2Pz 700 material exhibits a high cycle stability (400 cycles) at high rate capability. Postmortem analysis of the electrodes is carried out by means of SEM microscopy, EDX, and XPS techniques, revealing promising structural stability after challenging cycling conditions. These results are discussed in terms of the accepted mechanisms for Li storage and are relevant for the design of new anodes.

在不同温度下(700℃和900℃)热解ZIF-67 (catena-(双(μ2-2-甲基咪唑)-钴(II))或CoNic (catena-(双(μ2-nicotinato)-双(μ2-nicotinato)-(μ2-aqua)-双钴(II)))钴金属有机骨架(MOFs),由Co(CO2)2Pz (catena-((μ2-吡嗪-2,3-二羧基lato)-双水-钴(II)脱水)组成),得到了掺杂钴和氮的介孔碳。和CoCO2Pz(双水-双(吡嗪-2-羧酸)-钴(II))一个配合物,然后进行酸处理。研究了这些材料的锂存储容量作为bet比表面积和N和Co含量的函数,并在最新文献的背景下进行了讨论。这三个参数与材料的可逆最大容量之间存在明显的相关性。讨论了这三种结构特征对总承载力的具体贡献。ZIF-67和Co(CO2)2Pz在700℃热解时的容量值最高,分别为979和915 mA h g−1。Co(CO2)2Pz 700材料在高速率下表现出高循环稳定性(400次循环)。通过SEM显微镜、EDX和XPS技术对电极进行了事后分析,揭示了在具有挑战性的循环条件下具有良好的结构稳定性。这些结果在锂存储的公认机制方面进行了讨论,并与新阳极的设计有关。
{"title":"Effect of Nitrogen and Cobalt Dopants for Efficient Lithium Storage: Metal-Organic Framework-Derived Mesoporous Carbonaceous Materials","authors":"Betzabeth T. Briceño Paredes,&nbsp;Ezequiel P. de la Llave,&nbsp;Federico Roncaroli","doi":"10.1002/cnma.202500410","DOIUrl":"https://doi.org/10.1002/cnma.202500410","url":null,"abstract":"<p>Cobalt- and nitrogen-doped mesoporous carbons are obtained from the pyrolysis at different temperatures (700 and 900 °C) of either ZIF-67 (catena-(bis(μ<sub>2</sub>-2-methylimidazolato)-cobalt(II)) or CoNic (catena-(bis(μ<sub>3</sub>-nicotinato)-bis(μ<sub>2</sub>-nicotinato)-(μ<sub>2</sub>-aqua)-di-cobalt(II)) cobalt metal-organic frameworks (MOFs), from Co(CO<sub>2</sub>)<sub>2</sub>Pz (catena-((μ<sub>2</sub>-pyrazine-2,3-dicarboxylato)-diaqua-cobalt(II) dehydrate)), a linear coordination polymer (CP), and CoCO<sub>2</sub>Pz (diaqua-bis(pyrazine-2-carboxylato)-cobalt(II)) a complex, followed by acid treatment. The lithium storage capacities of these materials are studied as a function of the BET-specific surface area and N and Co contents, discussed in the context of the state of the art bibliography. Clear correlation between these three parameters with the material reversible maximum capacity is observed. The specific contribution to the total capacity of each one of these three structural features is discussed. The two highest capacity values are observed for ZIF-67 and Co(CO<sub>2</sub>)<sub>2</sub>Pz pyrolized at 700 °C, affording values of 979 and 915 mA h g<sup>−1</sup>, respectively. The Co(CO<sub>2</sub>)<sub>2</sub>Pz 700 material exhibits a high cycle stability (400 cycles) at high rate capability. Postmortem analysis of the electrodes is carried out by means of SEM microscopy, EDX, and XPS techniques, revealing promising structural stability after challenging cycling conditions. These results are discussed in terms of the accepted mechanisms for Li storage and are relevant for the design of new anodes.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 12","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145706505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Platinum-Decorated Laser-Induced Graphene Electrodes: Optimizing Hydrogen Evolution Reaction Catalysis through Minimal Platinum Loading 铂装饰激光诱导石墨烯电极:通过最小铂负载优化析氢反应催化
IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-02 DOI: 10.1002/cnma.202500464
Thiago A. S. Soares, Emerson C. Kohlrausch, Otavio A. L. Alves, Beatriz S. G. Xavier, Anderson Thesing, Jesum Alves Fernandes, Giovanna Machado

The hydrogen evolution reaction (HER)represents a cornerstone process for sustainable hydrogen production. This study explores laser-induced graphene (LIG) electrodes doped with platinum (Pt) nanoclusters deposited via magnetron sputtering, focusing on the relationship between deposition time, structural changes, and catalytic activity. The electrodes demonstrate superior HER performance, with Pt@LIG60s achieving an overpotential of 116 mV at −10 mA cm–2 and a mass activity of 14 A mg–1 at 100 mV, outperforming commercial Pt/C catalysts. Raman spectroscopy reveals an optimal defect density (ID/IG ≈ 1.17) and enhanced Pt-LIG interactions at 60 s of deposition. XPS analysis confirms the presence of Pt2+ species strongly anchored to LIG defect sites, facilitating efficient hydrogen adsorption and desorption. This study highlights the potential of minimal Pt loading on LIG substrates for cost-effective and high efficiency HER catalysis.

析氢反应(HER)是可持续制氢的基础过程。本研究探讨了通过磁控溅射沉积掺杂铂纳米团簇的激光诱导石墨烯(LIG)电极,重点研究了沉积时间、结构变化和催化活性之间的关系。该电极表现出优异的HER性能,Pt@LIG60s在−10 mA cm-2时的过电位为116 mV,在100 mV时的质量活性为14 a mg-1,优于商用Pt/C催化剂。拉曼光谱显示,在沉积60 s时,存在最佳缺陷密度(ID/IG≈1.17)和增强的Pt-LIG相互作用。XPS分析证实了Pt2+物质的存在,这些物质牢固地锚定在LIG缺陷位点上,促进了高效的氢吸附和解吸。这项研究强调了在LIG底物上最小Pt负载的潜力,具有成本效益和高效率的HER催化。
{"title":"Platinum-Decorated Laser-Induced Graphene Electrodes: Optimizing Hydrogen Evolution Reaction Catalysis through Minimal Platinum Loading","authors":"Thiago A. S. Soares,&nbsp;Emerson C. Kohlrausch,&nbsp;Otavio A. L. Alves,&nbsp;Beatriz S. G. Xavier,&nbsp;Anderson Thesing,&nbsp;Jesum Alves Fernandes,&nbsp;Giovanna Machado","doi":"10.1002/cnma.202500464","DOIUrl":"10.1002/cnma.202500464","url":null,"abstract":"<p>The hydrogen evolution reaction (HER)represents a cornerstone process for sustainable hydrogen production. This study explores laser-induced graphene (LIG) electrodes doped with platinum (Pt) nanoclusters deposited via magnetron sputtering, focusing on the relationship between deposition time, structural changes, and catalytic activity. The electrodes demonstrate superior HER performance, with Pt@LIG60s achieving an overpotential of 116 mV at −10 mA cm<sup>–2</sup> and a mass activity of 14 A mg<sup>–1</sup> at 100 mV, outperforming commercial Pt/C catalysts. Raman spectroscopy reveals an optimal defect density (I<sub>D</sub>/I<sub>G</sub> ≈ 1.17) and enhanced Pt-LIG interactions at 60 s of deposition. XPS analysis confirms the presence of Pt<sup>2+</sup> species strongly anchored to LIG defect sites, facilitating efficient hydrogen adsorption and desorption. This study highlights the potential of minimal Pt loading on LIG substrates for cost-effective and high efficiency HER catalysis.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"12 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://aces.onlinelibrary.wiley.com/doi/epdf/10.1002/cnma.202500464","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145891342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Porous Carbon Adsorbents Derived from Iron-Containing Metal–Organic Frameworks for Efficient Cr(VI) Removal 含铁金属有机骨架制备的磁性多孔碳吸附剂对Cr(VI)的高效去除
IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-02 DOI: 10.1002/cnma.202500391
Yulu Qu, Zaixing Yan, Wan Wang, Yajun Gao, Tianxiang Zhao

The escalating threat of Cr(VI) contamination in water due to rapid industrialization necessitates the development of effective and economical removal technologies. Herein, the synthesis of porous carbon adsorbents (MECs) is reported through a one-step carbonization process involving ethylenediaminetetraacetic acid dipotassium salt dihydrate (EDTA-2K·2H2O) and an iron-containing metal–organic framework, MIL-100(Fe). MECs boast a high specific surface area (up to 1206.0 m2 g−1) and magnetic properties, rendering them suitable for the adsorption and removal of Cr(VI) ions from aqueous solutions. The effects of various parameters, including pH, adsorbent dosage, temperature, contact time, and ion concentrations, on Cr(VI) removal are systematically investigated. The results indicate that MECs not only demonstrate high adsorption capacity, selectivity, stability, and reversibility but also achieve a maximum adsorption capacity of 296.0 mg·g−1 at 328.15 K within just 40 min. Furthermore, MECC, which was synthesized by directly carbonizing components MIL-100(Fe) and EDTA-2K·2H2O at a mass ratio of 1:8, can be easily recovered via magnetic recycling. Mechanistic studies have elucidated that Cr(VI) adsorption on MECs involves both physical and chemical interactions. This research provides valuable insights into the design of porous magnetic carbon materials for Cr(VI) removal applications.

随着工业化进程的加快,水体中铬(VI)污染的威胁日益加剧,开发高效、经济的去除技术势在必行。本文报道了以二水乙二胺四乙酸二钾盐(EDTA-2K·2H2O)和含铁金属有机骨架MIL-100(Fe)为原料,通过一步炭化工艺合成多孔碳吸附剂(MECs)。MECs具有高比表面积(高达1206.0 m2 g−1)和磁性能,适合于从水溶液中吸附和去除Cr(VI)离子。系统地研究了各种参数,包括pH、吸附剂用量、温度、接触时间和离子浓度对Cr(VI)去除的影响。结果表明,MECs不仅具有较高的吸附容量、选择性、稳定性和可逆性,而且在328.15 K条件下,仅需40 min即可达到296.0 mg·g−1的最大吸附量。此外,MIL-100(Fe)和EDTA-2K·2H2O组分按1:8的质量比直接碳化合成的MECC易于磁回收。机理研究表明,Cr(VI)在MECs上的吸附涉及物理和化学相互作用。该研究为设计用于去除Cr(VI)的多孔磁性碳材料提供了有价值的见解。
{"title":"Magnetic Porous Carbon Adsorbents Derived from Iron-Containing Metal–Organic Frameworks for Efficient Cr(VI) Removal","authors":"Yulu Qu,&nbsp;Zaixing Yan,&nbsp;Wan Wang,&nbsp;Yajun Gao,&nbsp;Tianxiang Zhao","doi":"10.1002/cnma.202500391","DOIUrl":"https://doi.org/10.1002/cnma.202500391","url":null,"abstract":"<p>The escalating threat of Cr(VI) contamination in water due to rapid industrialization necessitates the development of effective and economical removal technologies. Herein, the synthesis of porous carbon adsorbents (MECs) is reported through a one-step carbonization process involving ethylenediaminetetraacetic acid dipotassium salt dihydrate (EDTA-2K·2H<sub>2</sub>O) and an iron-containing metal–organic framework, MIL-100(Fe). MECs boast a high specific surface area (up to 1206.0 m<sup>2</sup> g<sup>−1</sup>) and magnetic properties, rendering them suitable for the adsorption and removal of Cr(VI) ions from aqueous solutions. The effects of various parameters, including pH, adsorbent dosage, temperature, contact time, and ion concentrations, on Cr(VI) removal are systematically investigated. The results indicate that MECs not only demonstrate high adsorption capacity, selectivity, stability, and reversibility but also achieve a maximum adsorption capacity of 296.0 mg·g<sup>−1</sup> at 328.15 K within just 40 min. Furthermore, MECC, which was synthesized by directly carbonizing components MIL-100(Fe) and EDTA-2K·2H<sub>2</sub>O at a mass ratio of 1:8, can be easily recovered via magnetic recycling. Mechanistic studies have elucidated that Cr(VI) adsorption on MECs involves both physical and chemical interactions. This research provides valuable insights into the design of porous magnetic carbon materials for Cr(VI) removal applications.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 12","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145706406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanomaterial-Based Precision Medicine for Breast Cancer Diagnosis and Treatment 基于纳米材料的乳腺癌诊断和治疗精准医学
IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-10-28 DOI: 10.1002/cnma.202500389
Tanaka Ndongwe, Xavier Siwe Noundou, Gauta Gold Matlou, Stéphanie Bessoles, Johanne Seguin, Cyrille Richard, Nathalie Mignet, Yohann Corvis, Bwalya Angel Witika

There has been a recent paradigm shift among scientists concerning the development of novel anticancer diagnostic and treatment agents. The interest lies in the utilization of nanomedicine which has triggered significant attention in cancer research. At present, nanomedicine has transformed the current landscape of science through the use of numerous nanoformulations not only in cancer diagnosis but also in treatment. Nanoformulations including but not limited to polymeric, lipidic, metallic, crystal, and quantum dots nanomaterials have been demonstrated to play a pivotal role in circumventing major challenges associated with anticancer medications such as targeting cancer cells and reducing side effects. The use of nanomaterials in cancer is largely attributed to their distinct tunable features such as small size, improved drug loading, high sensitivity, high surface area-to-volume ratio, and site specificity, all of which are key in the development of next-generation antitumoural formulations. Additionally, the versatility of these nanomedicine formulations extends to the overall improvement of the bioavailability of antitumoural medicines. Consequently, researchers are investigating the potential use of nanomaterials in oncology to improve tumor diagnosis and treatment. This article focuses on the potential role of nanomedicines in breast cancer diagnosis and treatment using polymeric, lipidic, metallic, organic, quantum dot nanomaterials which are promising for innovant therapies and personalized nanomedicine.

最近,科学家们在开发新型抗癌诊断和治疗药物方面发生了范式转变。纳米医学的应用引起了人们对癌症研究的极大关注。目前,纳米医学通过在癌症诊断和治疗中使用大量纳米制剂,已经改变了当前的科学格局。纳米配方包括但不限于聚合物、脂质、金属、晶体和量子点纳米材料,已被证明在规避抗癌药物相关的重大挑战(如靶向癌细胞和减少副作用)方面发挥着关键作用。纳米材料在癌症中的应用很大程度上归功于其独特的可调特性,如小尺寸、改进的药物负载、高灵敏度、高表面积体积比和位点特异性,所有这些都是开发下一代抗肿瘤配方的关键。此外,这些纳米药物配方的多功能性扩展到抗肿瘤药物的生物利用度的整体改善。因此,研究人员正在研究纳米材料在肿瘤学中的潜在用途,以改善肿瘤的诊断和治疗。本文重点介绍了纳米药物在乳腺癌诊断和治疗中的潜在作用,聚合物、脂质、金属、有机、量子点等纳米材料在创新治疗和个性化纳米医学中的应用前景。
{"title":"Nanomaterial-Based Precision Medicine for Breast Cancer Diagnosis and Treatment","authors":"Tanaka Ndongwe,&nbsp;Xavier Siwe Noundou,&nbsp;Gauta Gold Matlou,&nbsp;Stéphanie Bessoles,&nbsp;Johanne Seguin,&nbsp;Cyrille Richard,&nbsp;Nathalie Mignet,&nbsp;Yohann Corvis,&nbsp;Bwalya Angel Witika","doi":"10.1002/cnma.202500389","DOIUrl":"https://doi.org/10.1002/cnma.202500389","url":null,"abstract":"<p>There has been a recent paradigm shift among scientists concerning the development of novel anticancer diagnostic and treatment agents. The interest lies in the utilization of nanomedicine which has triggered significant attention in cancer research. At present, nanomedicine has transformed the current landscape of science through the use of numerous nanoformulations not only in cancer diagnosis but also in treatment. Nanoformulations including but not limited to polymeric, lipidic, metallic, crystal, and quantum dots nanomaterials have been demonstrated to play a pivotal role in circumventing major challenges associated with anticancer medications such as targeting cancer cells and reducing side effects. The use of nanomaterials in cancer is largely attributed to their distinct tunable features such as small size, improved drug loading, high sensitivity, high surface area-to-volume ratio, and site specificity, all of which are key in the development of next-generation antitumoural formulations. Additionally, the versatility of these nanomedicine formulations extends to the overall improvement of the bioavailability of antitumoural medicines. Consequently, researchers are investigating the potential use of nanomaterials in oncology to improve tumor diagnosis and treatment. This article focuses on the potential role of nanomedicines in breast cancer diagnosis and treatment using polymeric, lipidic, metallic, organic, quantum dot nanomaterials which are promising for innovant therapies and personalized nanomedicine.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://aces.onlinelibrary.wiley.com/doi/epdf/10.1002/cnma.202500389","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145500950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ChemNanoMat
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1