Alexander D. Sapp, Carlos E. Díaz-Cano, Dr. Jozef Lengyel, Lucía Abarca-Cabrera, Dr. Paula Fraga-García
We analyze the adsorption of the proteinogenic amino acids (AAs) glutamine, glutamic acid, lysine, tyrosine, proline, and valine onto bare iron oxide nanoparticles (approx. 10 nm). Aiming to identify the governing principles of low molecular weight coronae, which remain underinvestigated, our study covers broad concentration ranges up to the solubility limit of the AAs. Isothermal experiments reveal that the highly soluble AAs valine, proline, and lysine form extensive multilayers on the nanoparticle surface, and infrared measurements indicate intermolecular interactions, particularly with valine and lysine, for higher AA contents. Conversely, the low solubility of tyrosine and glutamic acid restricts their adsorption capacity, despite their higher partitioning on the solid surface. Parameters derived from fitting a classic saturation model seem to align with well-documented physicochemical properties such as the hydrophobicity and the complexity indices – a promising first step towards formulating design principles. Scaling these parameters by the AA solubility reveals a clear correlation with the adsorption behavior. In adsorption experiments with AA model mixtures, sequential incubation increases the adsorption capacity for valine and proline, whereas simultaneous incubation with these AAs reduces tyrosine's capacity. Future studies should seek to elucidate adsorption patterns to advance our understanding of corona growth and evolution mechanisms.
我们分析了蛋白源氨基酸(AAs)谷氨酰胺、谷氨酸、赖氨酸、酪氨酸、脯氨酸和缬氨酸在裸氧化铁纳米颗粒(约 10 nm)上的吸附情况。低分子量电晕的基本原理尚未得到充分研究,我们的研究旨在确定低分子量电晕的基本原理。等温实验显示,高溶解度 AAs 缬氨酸、脯氨酸和赖氨酸在纳米粒子表面形成了广泛的多层膜,红外测量显示,当 AAs 含量较高时,分子间相互作用,尤其是与缬氨酸和赖氨酸的相互作用。相反,尽管酪氨酸和谷氨酸在固体表面的分配率较高,但它们的低溶解度限制了它们的吸附能力。通过拟合经典饱和模型得出的参数似乎与疏水性和复杂性指数等有据可查的理化特性相吻合--这是为制定设计原则迈出的充满希望的第一步。通过 AA 溶解度对这些参数进行缩放,可以发现它们与吸附行为有着明显的相关性。在 AA 模型混合物的吸附实验中,连续培养会提高缬氨酸和脯氨酸的吸附能力,而同时培养这些 AA 则会降低酪氨酸的吸附能力。未来的研究应寻求阐明新的吸附模式,以促进我们对电晕生长和演化机制的了解。
{"title":"Amino Acid Adsorption Onto Magnetic Nanoparticles Reveals Correlations With Physicochemical Parameters","authors":"Alexander D. Sapp, Carlos E. Díaz-Cano, Dr. Jozef Lengyel, Lucía Abarca-Cabrera, Dr. Paula Fraga-García","doi":"10.1002/cnma.202400280","DOIUrl":"10.1002/cnma.202400280","url":null,"abstract":"<p>We analyze the adsorption of the proteinogenic amino acids (AAs) glutamine, glutamic acid, lysine, tyrosine, proline, and valine onto bare iron oxide nanoparticles (approx. 10 nm). Aiming to identify the governing principles of low molecular weight coronae, which remain underinvestigated, our study covers broad concentration ranges up to the solubility limit of the AAs. Isothermal experiments reveal that the highly soluble AAs valine, proline, and lysine form extensive multilayers on the nanoparticle surface, and infrared measurements indicate intermolecular interactions, particularly with valine and lysine, for higher AA contents. Conversely, the low solubility of tyrosine and glutamic acid restricts their adsorption capacity, despite their higher partitioning on the solid surface. Parameters derived from fitting a classic saturation model seem to align with well-documented physicochemical properties such as the hydrophobicity and the complexity indices – a promising first step towards formulating design principles. Scaling these parameters by the AA solubility reveals a clear correlation with the adsorption behavior. In adsorption experiments with AA model mixtures, sequential incubation increases the adsorption capacity for valine and proline, whereas simultaneous incubation with these AAs reduces tyrosine's capacity. Future studies should seek to elucidate adsorption patterns to advance our understanding of corona growth and evolution mechanisms.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 12","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnma.202400280","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr. Liang Wang, Dr. Hong Zhang, Prof. Qing Shen, Prof. Shuzi Hayase
Nontoxic Sn-based perovskite solar cells (PSCs) represent a promising alternative to Pb-based PSCs, given their similar electronic properties and an ideal bandgap, accompanied by the highest theoretical efficiency (>33%). However, the performance of Sn-based PSCs lags significantly behind their Pb-based counterparts. This disparity arises from the susceptibility of Sn2+ to easy oxidation to Sn4+, an energy level mismatch, and fast crystilization. It is widely acknowledged that the oxidation of Sn2+ to Sn4+ results in severe P-type doping, leading to increased recombination, which is a primary factor contributing to the lower device performance. In this perspective article, we summarized the utilization of metallic Sn in Sn-based PSCs to facilitate the reduction of Sn4+ back to Sn2+. This approach is preferred due to its effectiveness, simplicity in process, and the absence of introducing additional impurities. Moreover, metallic Sn can serve as a source for synthesizing SnI2 and act as hole transport material through transformation from Sn to SnOx. We hope this article serve as a valuable reference for the ongoing development of Sn-based materials in PSCs technology.
{"title":"The Application of Metallic Sn in Sn-Based Perovskite Solar Cells","authors":"Dr. Liang Wang, Dr. Hong Zhang, Prof. Qing Shen, Prof. Shuzi Hayase","doi":"10.1002/cnma.202400260","DOIUrl":"10.1002/cnma.202400260","url":null,"abstract":"<p>Nontoxic Sn-based perovskite solar cells (PSCs) represent a promising alternative to Pb-based PSCs, given their similar electronic properties and an ideal bandgap, accompanied by the highest theoretical efficiency (>33%). However, the performance of Sn-based PSCs lags significantly behind their Pb-based counterparts. This disparity arises from the susceptibility of Sn<sup>2+</sup> to easy oxidation to Sn<sup>4+</sup>, an energy level mismatch, and fast crystilization. It is widely acknowledged that the oxidation of Sn<sup>2+</sup> to Sn<sup>4+</sup> results in severe P-type doping, leading to increased recombination, which is a primary factor contributing to the lower device performance. In this perspective article, we summarized the utilization of metallic Sn in Sn-based PSCs to facilitate the reduction of Sn<sup>4+</sup> back to Sn<sup>2+</sup>. This approach is preferred due to its effectiveness, simplicity in process, and the absence of introducing additional impurities. Moreover, metallic Sn can serve as a source for synthesizing SnI<sub>2</sub> and act as hole transport material through transformation from Sn to SnO<sub>x</sub>. We hope this article serve as a valuable reference for the ongoing development of Sn-based materials in PSCs technology.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The development of bifunctional electrocatalysts coupled with HER and OER activities in the same electrolyte to achieve overall water decomposition is more attractive and challenging for practical applications. Here, we prepared a CoFe-LDH catalyst via a hydrothermal method, and grew highly dispersed Pt−CoFe@CC bifunctional catalyst on a carbon cloth via the ethylene glycol thermal reduction method. The low content of Pt was limited to CoFe-LDH to balance the catalytic performance and cost, to achieve effective water decomposition. Surprisingly, the overall decomposition of water can be achieved with a voltage of only 1.6 V and good stability for up to 20 hours. This work provides a design idea and method for combining HER and OER bifunctional electrocatalysts.
在同一电解质中开发具有 HER 和 OER 活性的双功能电催化剂以实现水的整体分解对实际应用而言更具吸引力和挑战性。在此,我们通过水热法制备了 CoFe-LDH 催化剂,并通过乙二醇热还原法在碳布上生长了高度分散的 Pt-CoFe@CC 双功能催化剂。为了平衡催化性能和成本,CoFe-LDH 中的铂含量被限制在较低水平,以实现有效的水分解。令人惊讶的是,只需 1.6 V 的电压就能实现水的整体分解,且稳定性良好,可持续长达 20 小时。这项工作为 HER 和 OER 双功能电催化剂的结合提供了一种设计思路和方法。
{"title":"High Efficiency and Total Decomposition of Water by Pt−CoFe@CC Catalyst Loaded with a Small Amount of Pt","authors":"Yanqin Bi, Zenghua Zhao, Jianhua Qian, Liangliang Chen, Chunyang Duan","doi":"10.1002/cnma.202400366","DOIUrl":"10.1002/cnma.202400366","url":null,"abstract":"<p>The development of bifunctional electrocatalysts coupled with HER and OER activities in the same electrolyte to achieve overall water decomposition is more attractive and challenging for practical applications. Here, we prepared a CoFe-LDH catalyst via a hydrothermal method, and grew highly dispersed Pt−CoFe@CC bifunctional catalyst on a carbon cloth via the ethylene glycol thermal reduction method. The low content of Pt was limited to CoFe-LDH to balance the catalytic performance and cost, to achieve effective water decomposition. Surprisingly, the overall decomposition of water can be achieved with a voltage of only 1.6 V and good stability for up to 20 hours. This work provides a design idea and method for combining HER and OER bifunctional electrocatalysts.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew L. Villanueva, Justienne Rei P. Laxamana, Hannah Grace G. Necesito, Jonyl L. Garcia, Prof. Bernard John V. Tongol
Herein, we report the utilization of biochar derived from rice straw (RSB) as an effective support matrix for Pd nanoparticles and its application as an electrocatalyst for ethanol electro-oxidation (EEO) in an alkaline medium. Rice straw, a common agricultural byproduct, was pyrolyzed at 600 °C, 700 °C, and 800 °C under N2 atmosphere. Pd was loaded onto the RSB via borohydride reduction of Pd2+, with a nominal loading of 20 % Pd. Spectroscopic and morphological characterization revealed the formation of dispersed Pd nanoparticles on the RSB surface. Pyrolysis temperature was observed to influence both the porosity of the resulting RSB and the dispersion and degree of exposure of Pd nanoparticles deposited on the surface. Electrochemical characterization revealed that Pd/RSB could be a potential EEO electrocatalyst for direct ethanol fuel cell applications. Pd/RSB-700 exhibited better performance in terms of EEO forward mass activity (jf) and forward and backward mass activity (jf/jb) ratio relative to Pd/RSB-600 and Pd/RSB-800. Moreover, Pd/RSB was shown to be superior to commercial Pd on carbon black in terms of electrochemical stability. This study opens the potential of rice straw biochar as a sustainable and environmentally friendly carbon-based support matrix for Pd-based EEO electrocatalysts.
{"title":"Rice Straw Biochar as an Effective Support for Pd Nanoparticles for Ethanol Electro-Oxidation Reaction in Alkaline Condition","authors":"Matthew L. Villanueva, Justienne Rei P. Laxamana, Hannah Grace G. Necesito, Jonyl L. Garcia, Prof. Bernard John V. Tongol","doi":"10.1002/cnma.202400288","DOIUrl":"10.1002/cnma.202400288","url":null,"abstract":"<p>Herein, we report the utilization of biochar derived from rice straw (RSB) as an effective support matrix for Pd nanoparticles and its application as an electrocatalyst for ethanol electro-oxidation (EEO) in an alkaline medium. Rice straw, a common agricultural byproduct, was pyrolyzed at 600 °C, 700 °C, and 800 °C under N<sub>2</sub> atmosphere. Pd was loaded onto the RSB via borohydride reduction of Pd<sup>2+</sup>, with a nominal loading of 20 % Pd. Spectroscopic and morphological characterization revealed the formation of dispersed Pd nanoparticles on the RSB surface. Pyrolysis temperature was observed to influence both the porosity of the resulting RSB and the dispersion and degree of exposure of Pd nanoparticles deposited on the surface. Electrochemical characterization revealed that Pd/RSB could be a potential EEO electrocatalyst for direct ethanol fuel cell applications. Pd/RSB-700 exhibited better performance in terms of EEO forward mass activity (j<sub>f</sub>) and forward and backward mass activity (j<sub>f</sub>/j<sub><b>b</b></sub>) ratio relative to Pd/RSB-600 and Pd/RSB-800. Moreover, Pd/RSB was shown to be superior to commercial Pd on carbon black in terms of electrochemical stability. This study opens the potential of rice straw biochar as a sustainable and environmentally friendly carbon-based support matrix for Pd-based EEO electrocatalysts.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 12","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the present study, we aim to investigate the self‐organization of unexplored silicon carbide (SiC) film surfaces under 30 keV oblique Ar+ ions irradiation and hence unprecedented tailoring of optical and electrical characteristics with view of their uses in solar cells, gratings and nano‐ to micro‐scale devices. The surface morphology mainly consisted of triangular shaped nanoparticles which evolves into nanoscale ripple structures with an alignment parallel to the projection of ion beam direction. For the first time, we have demonstrated the fabrication of highly‐ordered ripple patterns with wavelength in visible region over SiC films and applicable as nano‐gratings. The underlying mechanism relies on the structural rearrangement due to transition of film microstructure from amorphous to mixed phase (crystalline, nano‐crystalline and amorphous) and lowering of C=C and C‐C vibration modes by the heavier Si atoms. These nanostructured silicon carbide film shows unparalleled optical (energy gap decreases from 4.60±0.4 eV to 3.16±0.2 eV) & electrical characteristics (conductivity increases from 6.6x10‐11 to 1.12x10‐3 S/m with linear I‐V behavior). Thus, we propose that ripple structured SiC films with wide band gap, high refractive index and high electrical conductivity with ohmic behaviour are promising candidates for application as window layer in solar cells and opto‐electronics.
{"title":"Fabrication of ripple structured silicon carbide (SiC) films for nano‐grating and solar cell applications","authors":"Gupta Divya, Kalpana Chhoker, Usha Rani, Amena Salim, Rahul Singhal, Vishal Sharma, Sanjeev Aggarwal","doi":"10.1002/cnma.202400455","DOIUrl":"https://doi.org/10.1002/cnma.202400455","url":null,"abstract":"In the present study, we aim to investigate the self‐organization of unexplored silicon carbide (SiC) film surfaces under 30 keV oblique Ar+ ions irradiation and hence unprecedented tailoring of optical and electrical characteristics with view of their uses in solar cells, gratings and nano‐ to micro‐scale devices. The surface morphology mainly consisted of triangular shaped nanoparticles which evolves into nanoscale ripple structures with an alignment parallel to the projection of ion beam direction. For the first time, we have demonstrated the fabrication of highly‐ordered ripple patterns with wavelength in visible region over SiC films and applicable as nano‐gratings. The underlying mechanism relies on the structural rearrangement due to transition of film microstructure from amorphous to mixed phase (crystalline, nano‐crystalline and amorphous) and lowering of C=C and C‐C vibration modes by the heavier Si atoms. These nanostructured silicon carbide film shows unparalleled optical (energy gap decreases from 4.60±0.4 eV to 3.16±0.2 eV) & electrical characteristics (conductivity increases from 6.6x10‐11 to 1.12x10‐3 S/m with linear I‐V behavior). Thus, we propose that ripple structured SiC films with wide band gap, high refractive index and high electrical conductivity with ohmic behaviour are promising candidates for application as window layer in solar cells and opto‐electronics.","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"28 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pape Diene Dione, Prof. Alioune Diouf, Dr. Abdoulaye Dramé, Dr. François Orange, Prof. Frédéric Guittard, Dr. Thierry Darmanin
Gecko-like structures have been prepared by soft-template electropolymerization in micellar solution. Various monomers were designed from a triphenylamine core but only one monomer gives such structures even if the monomer is not perfectly planar. Extremely long and densely packed-microtubes are obtained at constant potential. However, the surfaces are not both highly hydrophobic and with strong water adhesion as gecko foot but are superhydrophilic. These differences can be explained by a higher surface energy or difference in arrangement structures for our surfaces. More information can be found in the Research Article by Thierry Darmanin and co-workers.