Centella asiatica is a widely spread herb mostly found in the tropics having extensive medicinal values. Here, we report for the first time, transcriptome-wide characterization of miRNA profile from the leaves of C. asiatica using high-throughput Illumina sequencing. We identified 227 conserved and 109 putative novel miRNAs. Computational screening revealed potential mRNA targets for both the conserved and novel miRNAs encoding diverse transcription factors and enzymes involved in plant development, disease resistance, metabolic and signaling pathways. Gene ontology annotation and KEGG analysis revealed the miRNA targets to be involved in a wide range of metabolomic and regulatory pathways. The differential expression of the miRNA encoding genes in diverse tissues was determined by real-time PCR analysis. We also found that gene expression levels of miR156, 159 and 1171 was reduced in salicylic acid treated axenic shoot cultures of C. asiatica compared to its control. Furthermore, RLM-RACE experiments mapped miRNA-mediated cleavage at two of the mRNA targets. The present study represents the large-scale identification of microRNAs from C. asiatica and contributes to the base for the up-coming studies on miRNA-mediated gene regulation of plant secondary metabolite pathways in particular.