首页 > 最新文献

New Astronomy最新文献

英文 中文
Does dynamical wormhole evolve from emergent scenario? 动态虫洞是由突发情景演化而来的吗?
IF 2 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-05-06 DOI: 10.1016/j.newast.2024.102248
Dhritimalya Roy , Ayanendu Dutta , Bikram Ghosh , Subenoy Chakraborty

In the present work we analyze a dynamical wormhole solution with two fluids system (one isotropic and homogeneous and the other being inhomogeneous and anisotropic in nature) as the matter at the throat. We choose two different forms of Equation of State(EoS) and investigate two solutions of the wormhole geometry. The properties to ensure existence and traversability has been analyzed. Also, the model of the dynamic wormhole has been examined for a possibility of the Emergent Universe(EU) model in cosmological context. Finally, for the dynamical wormholes so obtained, Null Energy Condition(NEC) has been examined near the throat.

在本研究中,我们分析了以两种流体系统(一种是各向同性的均质流体系统,另一种是非均质的各向异性流体系统)作为咽喉物质的动力学虫洞解决方案。我们选择了两种不同形式的状态方程(EoS),并研究了虫洞几何的两种解。我们分析了确保虫洞存在和可穿越的特性。此外,我们还研究了动态虫洞的模型,以寻找宇宙学背景下新兴宇宙(EU)模型的可能性。最后,对所得到的动态虫洞的咽喉附近的空能量条件(NEC)进行了研究。
{"title":"Does dynamical wormhole evolve from emergent scenario?","authors":"Dhritimalya Roy ,&nbsp;Ayanendu Dutta ,&nbsp;Bikram Ghosh ,&nbsp;Subenoy Chakraborty","doi":"10.1016/j.newast.2024.102248","DOIUrl":"https://doi.org/10.1016/j.newast.2024.102248","url":null,"abstract":"<div><p>In the present work we analyze a dynamical wormhole solution with two fluids system (one isotropic and homogeneous and the other being inhomogeneous and anisotropic in nature) as the matter at the throat. We choose two different forms of Equation of State(EoS) and investigate two solutions of the wormhole geometry. The properties to ensure existence and traversability has been analyzed. Also, the model of the dynamic wormhole has been examined for a possibility of the Emergent Universe(EU) model in cosmological context. Finally, for the dynamical wormholes so obtained, Null Energy Condition(NEC) has been examined near the throat.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"111 ","pages":"Article 102248"},"PeriodicalIF":2.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140894097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-dimensional stellar orbits due to off-centered dark matter halo at the center of the disc galaxies 圆盘星系中心偏离中心的暗物质晕导致的三维恒星轨道
IF 2 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-05-04 DOI: 10.1016/j.newast.2024.102246
Meenu Prajapati, Mamta Gulati

Stellar orbits and the evolution of galaxies are intertwined processes that have long-term implications on each other. This paper studies how stellar orbits at the galaxy’s central region are disturbed by an asymmetric dark matter halo potential. Evidence from the observations and simulations in the Milky Way type galaxy suggests that the center of the dark matter halo could be off-centered by a few parsecs concerning the center of the core. The equations of motion of stars in the core of galaxies are expressed in terms of three-dimensional perturbed potential arising from the offset halo. The central region’s azimuthal variation in the effective potential is obtained and the first-order epicyclic theory is used to solve for the orbits. The magnitude of this perturbation potential grows at small radii and exhibits m=1 azimuthal fluctuations. In the central region, within 3 kpc radius, even a small halo offset of 300 pc can cause a surprisingly strong spatial and kinematical lopsidedness. A planar orbit, initially assumed to be in disc plane, tends to leave the plane giving rise to non-planar configuration. Furthermore, as long as the halo offset persists, the central region will stay lopsided. The dark matter halo would significantly impact the dynamic development of this region and could help fuel the active galactic nucleus.

恒星轨道和星系演化是相互交织的过程,对彼此都有长期影响。本文研究了星系中心区域的恒星轨道如何受到不对称暗物质光环势能的干扰。在银河系中的观测和模拟证据表明,暗物质晕的中心可能与核心中心偏离几帕斯卡。星系核心恒星的运动方程是用偏移光环产生的三维扰动势来表示的。得到了中心区域有效位势的方位角变化,并利用一阶外圆理论求解了轨道。这种扰动势的大小在小半径处增长,并表现出 m=1 的方位角波动。在半径为 3 kpc 的中心区域,即使是 300 pc 的微小光环偏移,也会造成令人惊讶的强烈空间和运动学倾斜。最初假定在圆盘平面内的平面轨道往往会离开平面,从而产生非平面构型。此外,只要光环偏移持续存在,中心区域就会保持倾斜。暗物质光环将对这一区域的动态发展产生重大影响,并可能为活动星系核提供燃料。
{"title":"Three-dimensional stellar orbits due to off-centered dark matter halo at the center of the disc galaxies","authors":"Meenu Prajapati,&nbsp;Mamta Gulati","doi":"10.1016/j.newast.2024.102246","DOIUrl":"https://doi.org/10.1016/j.newast.2024.102246","url":null,"abstract":"<div><p>Stellar orbits and the evolution of galaxies are intertwined processes that have long-term implications on each other. This paper studies how stellar orbits at the galaxy’s central region are disturbed by an asymmetric dark matter halo potential. Evidence from the observations and simulations in the Milky Way type galaxy suggests that the center of the dark matter halo could be off-centered by a few parsecs concerning the center of the core. The equations of motion of stars in the core of galaxies are expressed in terms of three-dimensional perturbed potential arising from the offset halo. The central region’s azimuthal variation in the effective potential is obtained and the first-order epicyclic theory is used to solve for the orbits. The magnitude of this perturbation potential grows at small radii and exhibits <span><math><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow></math></span> azimuthal fluctuations. In the central region, within 3 kpc radius, even a small halo offset of 300 pc can cause a surprisingly strong spatial and kinematical lopsidedness. A planar orbit, initially assumed to be in disc plane, tends to leave the plane giving rise to non-planar configuration. Furthermore, as long as the halo offset persists, the central region will stay lopsided. The dark matter halo would significantly impact the dynamic development of this region and could help fuel the active galactic nucleus.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"111 ","pages":"Article 102246"},"PeriodicalIF":2.0,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140894096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Escape from a rotating barred galaxy 逃离旋转条状星系
IF 2 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-30 DOI: 10.1016/j.newast.2024.102247
Euaggelos E. Zotos , Christof Jung

We study the dynamics in the outer regions of a rotating barred galaxy and in particular, we observe the escape of a test particle from the gravitational potential of the galaxy. The acceleration mechanism of the test particle is a close encounter with one of the ends of the bar with the right relative phase of the position of the bar. This is a possible mechanism for the creation of high-velocity stars, i.e. stars with an energy sufficient to escape from the galaxy. Our results suggest that good candidates for high-velocity stars accelerated by this mechanism are the old low-mass high-velocity stars moving close to the disc. We will encounter the asymptotic dynamics which leads naturally to the study of a type of Poincaré map which can be reinterpreted as a scattering map. Thereby an iterated scattering map enters the picture in a quite natural form. The present work is a supplement to previous work on the dynamics in the inner region of the same model.

我们研究了一个旋转棒状星系外部区域的动力学,特别是观测了一个测试粒子从星系引力势中逃逸的过程。测试粒子的加速机制是与棒状星系的一端近距离相遇,棒状星系位置的相对相位正确。这是产生高速恒星的可能机制,即能量足以逃离星系的恒星。我们的研究结果表明,由这种机制加速的高速恒星的良好候选者是靠近圆盘运动的老的低质量高速恒星。我们会遇到渐近动力学,这自然会导致对一种可以被重新解释为散射图的庞加莱图的研究。这样,迭代散射图就以一种非常自然的形式出现了。本研究是对之前关于同一模型内部区域动力学研究的补充。
{"title":"Escape from a rotating barred galaxy","authors":"Euaggelos E. Zotos ,&nbsp;Christof Jung","doi":"10.1016/j.newast.2024.102247","DOIUrl":"https://doi.org/10.1016/j.newast.2024.102247","url":null,"abstract":"<div><p>We study the dynamics in the outer regions of a rotating barred galaxy and in particular, we observe the escape of a test particle from the gravitational potential of the galaxy. The acceleration mechanism of the test particle is a close encounter with one of the ends of the bar with the right relative phase of the position of the bar. This is a possible mechanism for the creation of high-velocity stars, i.e. stars with an energy sufficient to escape from the galaxy. Our results suggest that good candidates for high-velocity stars accelerated by this mechanism are the old low-mass high-velocity stars moving close to the disc. We will encounter the asymptotic dynamics which leads naturally to the study of a type of Poincaré map which can be reinterpreted as a scattering map. Thereby an iterated scattering map enters the picture in a quite natural form. The present work is a supplement to previous work on the dynamics in the inner region of the same model.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"111 ","pages":"Article 102247"},"PeriodicalIF":2.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140879440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the physical properties of the γ Dor binary star RX Dra with photometry and asteroseismology 利用测光和星震学探索γ Dor双星RX Dra的物理特性
IF 2 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-25 DOI: 10.1016/j.newast.2024.102234
Ping Li, Wen-Ping Liao, Qi-Huan Zeng, Qi-Bin Sun, Min-Yu Li
<div><p>We model the TESS light curve of the binary system RX Dra, and also first calculate a lot of theoretical models to fit the g-mode frequencies previously detected from the TESS series of this system. The mass ratio is determined to be <span><math><mi>q</mi></math></span>=0.9026<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>0032</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>0032</mn></mrow></msubsup></math></span>. We newly found that there are 16 frequencies (F1–F7, F11–F20) identified as dipole g-modes, two frequencies (F21, F22) identified as quadrupole g-modes, and another two frequencies (F23, F24) identified as g-sextupole modes, based on these model fits. The primary star is newly determined to be a <span><math><mi>γ</mi></math></span> Dor pulsator in the main-sequence stage with a rotation period of about 5.7<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>7</mn></mrow></msubsup></math></span> days, rotating slower than the orbital motion. The fundamental parameters of two components are firstly estimated as follows: <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>=1.53<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>17</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>00</mn></mrow></msubsup></math></span> M <span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>= 1.38<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>00</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>18</mn></mrow></msubsup></math></span> M <span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>=7240<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>44</mn></mrow><mrow><mo>+</mo><mn>490</mn></mrow></msubsup></math></span> K, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>=6747<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>221</mn></mrow><mrow><mo>+</mo><mn>201</mn></mrow></msubsup></math></span> K, <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>=1.8288<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>0959</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>0260</mn></mrow></msubsup></math></span> R <span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>= 1.3075<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>2543</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>0450</mn></mrow></msubsup></math></span> R <span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, <span><math><msub><mrow><mi>L</mi></mrow><
我们对双星系统 RX Dra 的 TESS 光曲线进行了建模,并首先计算了大量理论模型,以拟合之前从该系统的 TESS 系列中探测到的 g 模式频率。质量比被确定为q=0.9026-0.0032+0.0032。根据这些模型拟合,我们新发现有 16 个频率(F1-F7,F11-F20)被确定为偶极 g 模式,两个频率(F21,F22)被确定为四极 g 模式,另外两个频率(F23,F24)被确定为 g 六极模式。新测定的主星是一颗处于主序阶段的γ Dor 脉动器,自转周期约为 5.7-0.2+0.7 天,自转速度慢于轨道运动。首先估算出两个分量的基本参数如下m1=1.53-0.17+0.00 m ⊙, m2=1.38-0.00+0.18 m ⊙, t1=7240-44+490 k, t2=6747-221+201 k, r1=1.8288-0.0959+0.0260 R ⊙,R2= 1.3075-0.2543+0.0450 R ⊙,L1=8.2830-0.6036+1.8015 L ⊙,L2=3.4145-0.1843+0.1320 L ⊙。我们的结果表明,这颗次星位于 H-R 图中的类太阳脉动器区域,表明它可能是这一类型的脉动星。最后,主星对流核心的半径估计约为 0.1403-0.0000+0.0206 R ⊙。
{"title":"Exploring the physical properties of the γ Dor binary star RX Dra with photometry and asteroseismology","authors":"Ping Li,&nbsp;Wen-Ping Liao,&nbsp;Qi-Huan Zeng,&nbsp;Qi-Bin Sun,&nbsp;Min-Yu Li","doi":"10.1016/j.newast.2024.102234","DOIUrl":"10.1016/j.newast.2024.102234","url":null,"abstract":"&lt;div&gt;&lt;p&gt;We model the TESS light curve of the binary system RX Dra, and also first calculate a lot of theoretical models to fit the g-mode frequencies previously detected from the TESS series of this system. The mass ratio is determined to be &lt;span&gt;&lt;math&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;=0.9026&lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;0032&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;0032&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;. We newly found that there are 16 frequencies (F1–F7, F11–F20) identified as dipole g-modes, two frequencies (F21, F22) identified as quadrupole g-modes, and another two frequencies (F23, F24) identified as g-sextupole modes, based on these model fits. The primary star is newly determined to be a &lt;span&gt;&lt;math&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; Dor pulsator in the main-sequence stage with a rotation period of about 5.7&lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; days, rotating slower than the orbital motion. The fundamental parameters of two components are firstly estimated as follows: &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;=1.53&lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;17&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;00&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; M &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⊙&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;= 1.38&lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;00&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;18&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; M &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⊙&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;=7240&lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;44&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;490&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; K, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;=6747&lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;221&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;201&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; K, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;=1.8288&lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;0959&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;0260&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; R &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⊙&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;= 1.3075&lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;2543&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;0450&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; R &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⊙&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"111 ","pages":"Article 102234"},"PeriodicalIF":2.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140791345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
f(R,A) gravity theory in Einstein space background and causality violation 爱因斯坦空间中的 f(R,A) 重力理论 bac
IF 2 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-23 DOI: 10.1016/j.newast.2024.102245
Faizuddin Ahmed

In this paper, we exploration a Petrov type-N vacuum solution to Einstein’s field equations, while incorporating a negative cosmological constant (Λ<0) within the framework of modified gravity theories. This solution intriguingly accommodates closed time-like curves at a particular moment in time, effectively violates the causality condition, thus acts as a time-machine model. A key observation is that the determinant of the Ricci tensor Rμν for this particular Einstein space metric differs from zero. This noteworthy finding suggests to the existence of an anti-curvature tensor defined Aμν=Rμν1 and hence, an anti-curvature scalar A=gμνAμν, which is introduced with the Lagrangian of the system, thereby giving rise to as Ricci-inverse gravity theory. We consider class-I models of Ricci-inverse gravity, where the function f=f(R,A)=(R+κA) with κ is the coupling constant. We demonstrate that this Einstein space metric serves as a vacuum solution with a negative modified cosmological constant within the framework of Ricci-inverse gravity. Consequently, the violation of causality persists within this new gravity theory as well. Moreover, we solve the modified field equations by considering matter content other than vacuum and demonstrate that the energy-density and isotropic pressure satisfies the equation ρ=p=3κΛ.

本文探索了爱因斯坦场方程的彼得罗夫N型真空解,同时在修正引力理论框架内加入了负宇宙常数(Λ<0)。这种解法有趣地在特定时刻容纳了封闭的类时间曲线,有效地违反了因果关系条件,从而充当了时间机器模型。一个关键的观察结果是,这一特殊爱因斯坦空间度量的里奇张量 Rμν 的行列式与零不同。这一值得注意的发现表明,存在一个定义为 Aμν=Rμν-1 的反曲率张量,因此存在一个反曲率标量 A=gμνAμν,它与系统的拉格朗日一起被引入,从而产生了里奇反引力理论。我们考虑了里奇反引力的 I 类模型,其中函数 f=f(R,A)=(R+κA) κ 是耦合常数。我们证明,在里奇反引力框架内,这个爱因斯坦空间度量是一个具有负修正宇宙学常数的真空解。因此,违反因果关系的现象在这个新引力理论中也持续存在。此外,我们通过考虑真空以外的物质内容来求解修正场方程,并证明能量密度和各向同性压力满足方程ρ=-p=3κΛ。
{"title":"f(R,A) gravity theory in Einstein space background and causality violation","authors":"Faizuddin Ahmed","doi":"10.1016/j.newast.2024.102245","DOIUrl":"10.1016/j.newast.2024.102245","url":null,"abstract":"<div><p>In this paper, we exploration a Petrov type-N vacuum solution to Einstein’s field equations, while incorporating a negative cosmological constant (<span><math><mrow><mi>Λ</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span>) within the framework of modified gravity theories. This solution intriguingly accommodates closed time-like curves at a particular moment in time, effectively violates the causality condition, thus acts as a time-machine model. A key observation is that the determinant of the Ricci tensor <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msup></math></span> for this particular Einstein space metric differs from zero. This noteworthy finding suggests to the existence of an anti-curvature tensor defined <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msup><mo>=</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></mrow></math></span> and hence, an anti-curvature scalar <span><math><mrow><mi>A</mi><mo>=</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msub><mspace></mspace><msup><mrow><mi>A</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msup></mrow></math></span>, which is introduced with the Lagrangian of the system, thereby giving rise to as Ricci-inverse gravity theory. We consider <strong>class-I</strong> models of Ricci-inverse gravity, where the function <span><math><mrow><mi>f</mi><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mi>R</mi><mo>+</mo><mi>κ</mi><mspace></mspace><mi>A</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mi>κ</mi></math></span> is the coupling constant. We demonstrate that this Einstein space metric serves as a vacuum solution with a negative modified cosmological constant within the framework of Ricci-inverse gravity. Consequently, the violation of causality persists within this new gravity theory as well. Moreover, we solve the modified field equations by considering matter content other than vacuum and demonstrate that the energy-density and isotropic pressure satisfies the equation <span><math><mrow><mi>ρ</mi><mo>=</mo><mo>−</mo><mi>p</mi><mo>=</mo><mfrac><mrow><mn>3</mn><mspace></mspace><mi>κ</mi></mrow><mrow><mi>Λ</mi></mrow></mfrac></mrow></math></span>.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"111 ","pages":"Article 102245"},"PeriodicalIF":2.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140778925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The improved component masses and parallaxes for the two close binary stars: HD 80671 and HD 97038 两颗近双星的改进分量和视差:HD 80671 和 HD 97038
IF 2 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-20 DOI: 10.1016/j.newast.2024.102244
Suhail Masda
<div><p>We present the fundamental stellar parameters, including the individual component masses, as well as the orbital parameters, and dynamical parallaxes of the two close binary stars; HD<!--> <!-->80671, and HD<!--> <!-->97038. The stellar parameters are spectrophotometrically estimated via Al-Wardat’s method for analyzing binary and multiple stellar systems, which is having a combination of the spectroscopic analysis and the photometric analysis to build the combined and individual synthetic spectral energy distributions of the individual components of the systems and so to estimate their fundamental parameters, metallicities, and ages. It employs Kurucz’s model atmospheres of single stars, while the orbital parameters are estimated using Tokovinin’s method. The individual spectrophotometric component masses are inferred with good accuracy, and found to be <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>S</mi><mi>p</mi><mi>h</mi></mrow><mrow><mi>A</mi></mrow></msubsup></math></span> = 1.47<span><math><mrow><mo>±</mo><mn>0</mn><mo>.</mo><mn>10</mn><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>M</mi></mrow><mrow><mi>S</mi><mi>p</mi><mi>h</mi></mrow><mrow><mi>B</mi></mrow></msubsup><mo>=</mo><mn>1</mn><mo>.</mo><mn>29</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>09</mn><mspace></mspace><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></mrow></math></span> with an age of <span><math><mrow><mn>1</mn><mo>.</mo><mn>0</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>09</mn></mrow></math></span> Gyr for HD<!--> <!-->80671, and <span><math><mrow><msubsup><mrow><mi>M</mi></mrow><mrow><mi>S</mi><mi>p</mi><mi>h</mi></mrow><mrow><mi>A</mi></mrow></msubsup><mo>=</mo><mn>1</mn><mo>.</mo><mn>17</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>09</mn><mspace></mspace><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>M</mi></mrow><mrow><mi>S</mi><mi>p</mi><mi>h</mi></mrow><mrow><mi>B</mi></mrow></msubsup><mo>=</mo><mn>1</mn><mo>.</mo><mn>12</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>08</mn><mspace></mspace><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></mrow></math></span> with an age of <span><math><mrow><mn>3</mn><mo>.</mo><mn>981</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>35</mn></mrow></math></span> Gyr for HD<!--> <!-->97038. The improved dynamical parallaxes are given as <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>d</mi><mi>y</mi><mi>n</mi></mrow></msub><mo>=</mo><mn>28</mn><mo>.</mo><mn>305</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>45</mn></mrow></math></span> mas for HD<!--> <!-->80671, and <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>d</mi><mi>y</mi><mi>n</mi></mrow></msub><mo>=</mo><mn>16</mn><mo>.</mo><mn>26</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>30</mn></mrow></math></span> mas for HD<!--> <!-->97038. The evolutionary status of two binaries is discussed depending on the positions of the compo
我们介绍了两颗近双星HD 80671和HD 97038的基本恒星参数,包括各自的质量、轨道参数和动态视差。恒星参数是通过 Al-Wardat 分析双星和多恒星系统的方法进行分光光度估算的,该方法结合了光谱分析和光度分析,以建立系统中各个组成部分的综合和单独合成光谱能量分布,从而估算出它们的基本参数、金属性和年龄。它采用了 Kurucz 的单星大气模型,而轨道参数则是用 Tokovinin 的方法估算的。推断出的单个分光光度成分质量精确度很高,HD 80671的质量为MSphA=1.47±0.10M⊙,MSphB=1.29±0.09M⊙,年龄为1.0±0.09Gyr;HD 97038的质量为MSphA=1.17±0.09M⊙,MSphB=1.12±0.08M⊙,年龄为3.981±0.35Gyr。改进后的动态视差为:HD 80671的πdyn=28.305±0.45mas,HD 97038的πdyn=16.26±0.30mas。根据各成分在等时线和演化轨道上的位置,讨论了两个双星的演化状况。
{"title":"The improved component masses and parallaxes for the two close binary stars: HD 80671 and HD 97038","authors":"Suhail Masda","doi":"10.1016/j.newast.2024.102244","DOIUrl":"10.1016/j.newast.2024.102244","url":null,"abstract":"&lt;div&gt;&lt;p&gt;We present the fundamental stellar parameters, including the individual component masses, as well as the orbital parameters, and dynamical parallaxes of the two close binary stars; HD&lt;!--&gt; &lt;!--&gt;80671, and HD&lt;!--&gt; &lt;!--&gt;97038. The stellar parameters are spectrophotometrically estimated via Al-Wardat’s method for analyzing binary and multiple stellar systems, which is having a combination of the spectroscopic analysis and the photometric analysis to build the combined and individual synthetic spectral energy distributions of the individual components of the systems and so to estimate their fundamental parameters, metallicities, and ages. It employs Kurucz’s model atmospheres of single stars, while the orbital parameters are estimated using Tokovinin’s method. The individual spectrophotometric component masses are inferred with good accuracy, and found to be &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; = 1.47&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⊙&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;29&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;09&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⊙&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with an age of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;09&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; Gyr for HD&lt;!--&gt; &lt;!--&gt;80671, and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;17&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;09&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⊙&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;12&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;08&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⊙&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with an age of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;981&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;35&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; Gyr for HD&lt;!--&gt; &lt;!--&gt;97038. The improved dynamical parallaxes are given as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;28&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;305&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;45&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; mas for HD&lt;!--&gt; &lt;!--&gt;80671, and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;16&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;26&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;30&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; mas for HD&lt;!--&gt; &lt;!--&gt;97038. The evolutionary status of two binaries is discussed depending on the positions of the compo","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"111 ","pages":"Article 102244"},"PeriodicalIF":2.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140772694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resolving the pulsation contents of 13 δ Scuti stars with TESS and K2 用 TESS 和 K2 分辨 13 δ Scuti 恒星的脉动内容
IF 2 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-17 DOI: 10.1016/j.newast.2024.102235
Ai-Ying Zhou

Using the TESS and Kepler K2 light curve archives, I have reanalyzed 13 known δ Scuti stars. AD Ari is now reclassified as a rotating ellipsoidal binary variable. EX Cnc and HD 73712 are reclassified as hybrid δ Sct-γ Dor pulsators. EX Cnc turns out to be an enticing asteroseismic target because of its three distinct groups of pulsation frequencies. The strong beating caused by two close frequencies is present in the star CD-54 7154. More than 71 pulsation frequencies were resolved for ι Boo and IT Dra with high significant levels, while V1821 Cyg, V2238 Cyg, BR Cnc, BU Cnc, and BV Cnc pulsate with a few dozen frequencies. In particular, K2 data revealed a significantly richer pulsational spectrum for the two δ Scuti stars BU Cnc and BV Cnc from six to 26. Unlike the other 12 stars, BN Cnc shows the simplest pulsation pattern. With high-precision and long-term space-based photometry, we are able to discern the pulsational contents of these stars more clearly and enhance our knowledge of them. This reanalysis using TESS and Kepler K2 data highlights the diversity of pulsational behavior among δ Scuti stars and the value of long-duration, high-precision photometry. Further asteroseismic modeling of these stars, particularly EX Cnc with its distinct frequency groups, promises to refine our understanding of their internal structures and pulsational mechanisms.

利用TESS和开普勒K2光曲线档案,我重新分析了13颗已知的δ Scuti恒星。AD Ari现在被重新归类为旋转椭圆双星变星。EX Cnc和HD 73712被重新归类为混合δ Sct-γ Dor脉冲星。EX Cnc是一个诱人的小行星地震目标,因为它有三组不同的脉动频率。CD-54 7154 号恒星中也存在由两个相近频率引起的强烈跳动。ι Boo 和 IT Dra 星有超过 71 个脉动频率被解析出来,并且具有很高的显著性,而 V1821 Cyg、V2238 Cyg、BR Cnc、BU Cnc 和 BV Cnc 的脉动频率只有几十个。特别是 K2 数据显示,BU Cnc 和 BV Cnc 这两颗 δ Scuti 星的脉动谱明显更丰富,从 6 个频率到 26 个频率不等。与其他 12 颗恒星不同,BN Cnc 的脉动模式最为简单。通过高精度和长期的天基光度测量,我们能够更清楚地分辨出这些恒星的脉动内容,加深我们对它们的了解。这次利用 TESS 和开普勒 K2 数据进行的重新分析突出了 δ Scuti 恒星脉冲行为的多样性以及长时间高精度测光的价值。对这些恒星,特别是具有不同频率组的 EX Cnc 星,进一步进行小行星地震建模,有望完善我们对其内部结构和脉冲机制的理解。
{"title":"Resolving the pulsation contents of 13 δ Scuti stars with TESS and K2","authors":"Ai-Ying Zhou","doi":"10.1016/j.newast.2024.102235","DOIUrl":"https://doi.org/10.1016/j.newast.2024.102235","url":null,"abstract":"<div><p>Using the <em>TESS</em> and <em>Kepler</em> K2 light curve archives, I have reanalyzed 13 known <span><math><mi>δ</mi></math></span> Scuti stars. AD Ari is now reclassified as a rotating ellipsoidal binary variable. EX Cnc and HD 73712 are reclassified as hybrid <span><math><mi>δ</mi></math></span> Sct-<span><math><mi>γ</mi></math></span> Dor pulsators. EX Cnc turns out to be an enticing asteroseismic target because of its three distinct groups of pulsation frequencies. The strong beating caused by two close frequencies is present in the star CD-54 7154. More than 71 pulsation frequencies were resolved for <span><math><mi>ι</mi></math></span> Boo and IT Dra with high significant levels, while V1821 Cyg, V2238 Cyg, BR Cnc, BU Cnc, and BV Cnc pulsate with a few dozen frequencies. In particular, K2 data revealed a significantly richer pulsational spectrum for the two <span><math><mi>δ</mi></math></span> Scuti stars BU Cnc and BV Cnc from six to 26. Unlike the other 12 stars, BN Cnc shows the simplest pulsation pattern. With high-precision and long-term space-based photometry, we are able to discern the pulsational contents of these stars more clearly and enhance our knowledge of them. This reanalysis using <em>TESS</em> and <em>Kepler</em> K2 data highlights the diversity of pulsational behavior among <span><math><mi>δ</mi></math></span> Scuti stars and the value of long-duration, high-precision photometry. Further asteroseismic modeling of these stars, particularly EX Cnc with its distinct frequency groups, promises to refine our understanding of their internal structures and pulsational mechanisms.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"111 ","pages":"Article 102235"},"PeriodicalIF":2.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140646292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Particle motion around traversable wormholes: Possibility of closed timelike geodesics 围绕可穿越虫洞的粒子运动封闭时间似大地线的可能性
IF 2 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-16 DOI: 10.1016/j.newast.2024.102236
Ayanendu Dutta , Dhritimalya Roy , Subenoy Chakraborty

The present work investigates the general wormhole solution in Einstein gravity with an exponential shape function around an ultrastatic and a finite redshift geometry. The geodesic motion around the wormholes is studied in which the deflection angle of the orbiting photon sphere is found to be negative after a certain region, indicating the presence of repulsive effect of gravity in both the ultrastatic and finite redshift wormholes. Various unbounded and bounded timelike trajectories are presented on the wormhole embedding diagrams, in which some of the bound orbits involve intersection points that may lead to causality violating geodesics. Another class of closed timelike geodesics are obtained in the unstable circular trajectory that appeared at the wormhole throat. Finally, the trajectories are classified in terms of the family of CTG orbits.

本研究探讨了爱因斯坦引力中的一般虫洞解,其指数形状函数围绕超静态和有限红移几何。研究了虫洞周围的大地运动,发现轨道光子球的偏转角在一定区域后为负值,这表明超稳定虫洞和有限红移虫洞中都存在引力的排斥效应。虫洞嵌入图上呈现了各种无界和有界的类时间轨迹,其中一些有界轨道涉及交点,可能导致违反因果关系的大地线。在虫洞咽喉出现的不稳定环形轨迹中,还得到了另一类封闭的时间似大地线。最后,根据 CTG 轨道族对轨迹进行了分类。
{"title":"Particle motion around traversable wormholes: Possibility of closed timelike geodesics","authors":"Ayanendu Dutta ,&nbsp;Dhritimalya Roy ,&nbsp;Subenoy Chakraborty","doi":"10.1016/j.newast.2024.102236","DOIUrl":"https://doi.org/10.1016/j.newast.2024.102236","url":null,"abstract":"<div><p>The present work investigates the general wormhole solution in Einstein gravity with an exponential shape function around an ultrastatic and a finite redshift geometry. The geodesic motion around the wormholes is studied in which the deflection angle of the orbiting photon sphere is found to be negative after a certain region, indicating the presence of repulsive effect of gravity in both the ultrastatic and finite redshift wormholes. Various unbounded and bounded timelike trajectories are presented on the wormhole embedding diagrams, in which some of the bound orbits involve intersection points that may lead to causality violating geodesics. Another class of closed timelike geodesics are obtained in the unstable circular trajectory that appeared at the wormhole throat. Finally, the trajectories are classified in terms of the family of CTG orbits.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"111 ","pages":"Article 102236"},"PeriodicalIF":2.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140605221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The first study of the short period contact binary V415 Gem 对短周期接触双星V415宝石的首次研究
IF 2 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-13 DOI: 10.1016/j.newast.2024.102233
Bin Zhang , Yidan Gao

The photometric study of the short period contact binary V415 Gem are performed for the first time. We discovered that it is a W-subtype shallow contact binary with a mass ratio of q = 2.297 and a contact degree of f = 3.6%. The light curves of the target exhibit an O’Connell effect, we attached a cool star-spot on its primary component for better fitting results. At the same time, the third light was found during our analysis by using the 2015 version of the Wilson–Devinney (WD) code. And the average luminosity contribution of the third light is 44% of the total light. Besides, the OC curve of V415 Gem exhibits a cyclic variation, which is due to the light-travel time effect caused by the presence of a third component with an amplitude of 0.0033 days and a period of 11.5 years. The mass of the third body is estimated to be M31.08M.

我们首次对短周期接触双星V415 Gem进行了光度研究。我们发现它是一颗W亚型浅接触双星,质量比为q = 2.297,接触度为f = 3.6%。目标的光变曲线呈现出奥康纳尔效应,我们在其主成分上附加了一个冷星点,以获得更好的拟合结果。同时,我们在分析过程中使用了 2015 版的威尔逊-德文尼(W-D)代码,发现了第三道光。第三光的平均光度占总光度的 44%。此外,V415宝石的O-C曲线呈现出周期性变化,这是由于第三个分量的存在所引起的光程时间效应,其振幅为0.0033天,周期为11.5年。第三个天体的质量估计为 M3∼1.08M⊙。
{"title":"The first study of the short period contact binary V415 Gem","authors":"Bin Zhang ,&nbsp;Yidan Gao","doi":"10.1016/j.newast.2024.102233","DOIUrl":"https://doi.org/10.1016/j.newast.2024.102233","url":null,"abstract":"<div><p>The photometric study of the short period contact binary V415 Gem are performed for the first time. We discovered that it is a W-subtype shallow contact binary with a mass ratio of q = 2.297 and a contact degree of f = 3.6%. The light curves of the target exhibit an O’Connell effect, we attached a cool star-spot on its primary component for better fitting results. At the same time, the third light was found during our analysis by using the 2015 version of the Wilson–Devinney (<span><math><mrow><mi>W</mi><mo>−</mo><mi>D</mi></mrow></math></span>) code. And the average luminosity contribution of the third light is 44% of the total light. Besides, the <span><math><mrow><mi>O</mi><mo>−</mo><mi>C</mi></mrow></math></span> curve of V415 Gem exhibits a cyclic variation, which is due to the light-travel time effect caused by the presence of a third component with an amplitude of 0.0033 days and a period of 11.5 years. The mass of the third body is estimated to be M<span><math><mrow><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub><mo>∼</mo><mn>1</mn><mo>.</mo><mn>08</mn></mrow></math></span>M<span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"111 ","pages":"Article 102233"},"PeriodicalIF":2.0,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140554673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ASIVA – Platform for observational and computational analysis of stellar variables ASIVA - 恒星变量观测和计算分析平台
IF 2 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-06 DOI: 10.1016/j.newast.2024.102232
Parvej Reja Saleh , Tanveer Singh , Debasish Hazarika , Surabhi Rajkumari , Saurabh Rajkumar , Pritam Das , Padmakar Singh Parihar , Eeshankur Saikia

The astronomical data analysis consists of two crucial process; data reduction of the captured images and data analysis of the derived magnitudes. We present the platform ASIVA, a data analysis platform which comes along with a data reduction pipeline. The data reduction pipeline gives flexibility to analyse the FITS images and also perform image alignment for detecting the correct image coordinates for required objects. It can be custom scheduled with cron jobs so that it picks the latest data and appends the results accordingly. The data analysis platform allows user to effectively analyse the ensemble data and perform accurate data processing and grouping with ease. It is integrated with a custom algorithm to detect the variable stars from an ensemble with its relative standard deviations. The statistical, spectral and non-linear dynamics features can be extracted from time series data which can be eventually used for in-depth analysis. To validate the capability, we have analysed 15 nights of Orion Nebula Cluster field in I filter which had 1585 images. ASIVA reduces manual effort to a great extent thus saves analysis time and excludes human errors.

天文数据分析包括两个关键过程:对拍摄到的图像进行数据还原和对得出的星等进行数据分析。我们介绍的 ASIVA 平台是一个数据分析平台,它配备了数据还原管道。数据还原流水线可以灵活地分析 FITS 图像,还可以执行图像配准,为所需的天体检测正确的图像坐标。它可以通过 cron 作业进行自定义调度,以便选取最新数据并相应地添加结果。数据分析平台可让用户有效地分析集合数据,并轻松执行精确的数据处理和分组。它集成了一种定制算法,可以从集合中检测出变星及其相对标准偏差。可以从时间序列数据中提取统计、光谱和非线性动力学特征,最终用于深入分析。为了验证其能力,我们分析了猎户座星云星团15个夜晚的I滤光片,共1585幅图像。ASIVA 在很大程度上减少了人工操作,从而节省了分析时间并避免了人为错误。
{"title":"ASIVA – Platform for observational and computational analysis of stellar variables","authors":"Parvej Reja Saleh ,&nbsp;Tanveer Singh ,&nbsp;Debasish Hazarika ,&nbsp;Surabhi Rajkumari ,&nbsp;Saurabh Rajkumar ,&nbsp;Pritam Das ,&nbsp;Padmakar Singh Parihar ,&nbsp;Eeshankur Saikia","doi":"10.1016/j.newast.2024.102232","DOIUrl":"https://doi.org/10.1016/j.newast.2024.102232","url":null,"abstract":"<div><p>The astronomical data analysis consists of two crucial process; data reduction of the captured images and data analysis of the derived magnitudes. We present the platform ASIVA, a data analysis platform which comes along with a data reduction pipeline. The data reduction pipeline gives flexibility to analyse the FITS images and also perform image alignment for detecting the correct image coordinates for required objects. It can be custom scheduled with cron jobs so that it picks the latest data and appends the results accordingly. The data analysis platform allows user to effectively analyse the ensemble data and perform accurate data processing and grouping with ease. It is integrated with a custom algorithm to detect the variable stars from an ensemble with its relative standard deviations. The statistical, spectral and non-linear dynamics features can be extracted from time series data which can be eventually used for in-depth analysis. To validate the capability, we have analysed 15 nights of Orion Nebula Cluster field in I filter which had 1585 images. ASIVA reduces manual effort to a great extent thus saves analysis time and excludes human errors.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"111 ","pages":"Article 102232"},"PeriodicalIF":2.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140618276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
New Astronomy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1