首页 > 最新文献

New Astronomy最新文献

英文 中文
LRS Bianchi type-I with Hubble’s horizon as IR cut-off in f(R) gravity 公式省略]引力中以哈勃视界为红外截止点的 LRS 比安奇 I 型
IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-04 DOI: 10.1016/j.newast.2024.102274
Syed Mudassir Syed Iqbal , G.U. Khapekar , S.H. Shekh , A. Dixit

we explored the holographic dark energy model using Hubble’s Horizon as the infrared (IR) cut-off in Locally Rotationally Symmetric (LRS) Bianchi type-I, considering the f(R) gravity framework in our analysis. In order to solve the field equations, we assume a relation Fam and volumetric power law expansion (where m is constant). we have expressed various crucial cosmological parameters in terms of the redshift z and depicted them graphically to enhance our understanding of the expansion and evolution of the universe like holographic dark energy density (ρΛ), holographic dark energy pressure (pΛ), equation of state parameter (ω) , total energy density parameter (Ω) etc. Also, we analyzed the stability of the universe in our model through the squared speed of sound test and its validity by energy conditions. Ultimately, our model indicates that the universe is currently in an expanding phase, exhibiting an accelerating phase, closely approaching a flat geometry, and its behavior resembles that of a quintessence dark energy model.

我们探索了全息暗能量模型,将哈勃地平线(Hubble's Horizon)作为局部旋转对称(LRS)边奇 I 型的红外(IR)截止点,并在分析中考虑了引力框架。为了求解场方程,我们假设了一个关系和体积幂律膨胀(其中为常数)。我们用红移表示了各种关键的宇宙学参数,并用图形描述了它们,以加深我们对宇宙膨胀和演化的理解,如全息暗能量密度()、全息暗能量压力()、状态方程参数()、总能量密度参数()等。此外,我们还通过声速平方检验分析了我们模型中宇宙的稳定性及其在能量条件下的有效性。最终,我们的模型表明,宇宙目前正处于膨胀阶段,表现出加速阶段,接近于平面几何,其行为类似于五元暗能量模型。
{"title":"LRS Bianchi type-I with Hubble’s horizon as IR cut-off in f(R) gravity","authors":"Syed Mudassir Syed Iqbal ,&nbsp;G.U. Khapekar ,&nbsp;S.H. Shekh ,&nbsp;A. Dixit","doi":"10.1016/j.newast.2024.102274","DOIUrl":"10.1016/j.newast.2024.102274","url":null,"abstract":"<div><p>we explored the holographic dark energy model using Hubble’s Horizon as the infrared (IR) cut-off in Locally Rotationally Symmetric (LRS) Bianchi type-I, considering the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> gravity framework in our analysis. In order to solve the field equations, we assume a relation <span><math><mrow><mi>F</mi><mo>∝</mo><mspace></mspace><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup></mrow></math></span> and volumetric power law expansion (where <span><math><mi>m</mi></math></span> is constant). we have expressed various crucial cosmological parameters in terms of the redshift <span><math><mi>z</mi></math></span> and depicted them graphically to enhance our understanding of the expansion and evolution of the universe like holographic dark energy density (<span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>Λ</mi></mrow></msub></math></span>), holographic dark energy pressure (<span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>Λ</mi></mrow></msub></math></span>), equation of state parameter (<span><math><mi>ω</mi></math></span>) , total energy density parameter (<span><math><mi>Ω</mi></math></span>) etc. Also, we analyzed the stability of the universe in our model through the squared speed of sound test and its validity by energy conditions. Ultimately, our model indicates that the universe is currently in an expanding phase, exhibiting an accelerating phase, closely approaching a flat geometry, and its behavior resembles that of a quintessence dark energy model.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"113 ","pages":"Article 102274"},"PeriodicalIF":1.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New results on the two-body decay of neutrons shed new light on neutron stars 关于中子双体衰变的新成果为中子星带来新启示
IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-02 DOI: 10.1016/j.newast.2024.102275
Eugene Oks

In attempts to resolve the neutron lifetime puzzle, there was suggested a hypothetical decay of neutrons into some unspecified dark matter (DM) particles. Later there were performed studies on how the hypothetical decay of neutrons would affect neutron stars. Recently it was shown that with the allowance for the second solution of Dirac equation for hydrogen atoms, the theoretical branching ratio (BR) for the two-body decay of neutrons (compared to their three-body decay) is amplified by a factor of 3300 from 0.000004. So, the BR becomes about 1.3% in the excellent agreement with the “experimental” BR = (1.15 ± 0.27)% required for reconciling the two distinct experimental values of the neutron lifetime: one from the beam experiments, another from the trap experiments. This meant that the two-body decay of neutrons in the beam experiments (that count only the protons) plays a much more sizable part in the overestimation of the lifetime of neutrons in these experiments than previously thought. Hydrogen atoms corresponding to the second solution of Dirac equations are called the second flavor of hydrogen atoms (SFHA) by the analogy with the flavors of quarks. The existence of the SFHA is evidenced by four different types of atomic/molecular experiments. The primary feature of the SFHA is that due to having only the s-states, they do not emit or absorb the electromagnetic radiation (except for the 21 cm line): they are practically dark. The SFHA became a candidate for a part of DM for the first time after the SFHA-based successful qualitative and quantitative explanation of the perplexing observation by Bowman et al. of the anomalous absorption in the redshifted 21 cm line from the early Universe. In the present paper we analyzed how this neutron decay into the SFHA affects neutron stars. We showed that old neutron stars could very slowly generate the new specific, described in detail baryonic DM in the form of the SFHA. Some old neutron stars would release it into their tiny atmospheres, while some other old neutron stars would release it into the interstellar medium. Besides, mergers of a neutron star with another neutron star or with a black hole, accompanied by the ejection of neutron-rich material, can also lead to the formation of SFHA as the ejecta cools down. This is another interesting aspect of the multi-messenger astronomy focused on studying these mergers through the gravitational waves they generate. These mechanisms of generating new baryonic DM in the universe should have the fundamental importance. We point out the indirect observational evidence of the continuing generation of new baryonic DM. We hope that our results will stimulate a further research in this direction.

为了解开中子寿命之谜,有人提出了中子衰变为某种暗物质(DM)粒子的假设。后来,人们对中子的假想衰变会如何影响中子星进行了研究。最近的研究表明,考虑到氢原子狄拉克方程的第二解,中子二体衰变(与三体衰变相比)的理论分支率(BR)从 0.000004 放大了 3300 倍。因此,BR 变成了约 1.3%,与 "实验 "BR = (1.15 ± 0.27)%非常一致,这是协调中子寿命的两个不同实验值所需要的:一个来自束实验,另一个来自陷阱实验。这意味着在光束实验(只计算质子)中,中子的二体衰变在高估中子寿命方面所起的作用比以前想象的要大得多。与狄拉克方程第二解相对应的氢原子被称为氢原子第二味(SFHA),与夸克的味道类似。四种不同类型的原子/分子实验证明了 SFHA 的存在。SFHA 的主要特征是,由于只具有 s 态,它们既不发射也不吸收电磁辐射(21 厘米线除外):它们实际上是......。在鲍曼(Bowman)等人成功地定性和定量解释了宇宙早期红移21厘米线的异常吸收这一令人困惑的观测结果之后,SFHA首次成为了DM一部分的候选者。在本文中,我们分析了中子衰变到SFHA对中子星的影响。我们发现,老中子星可以非常缓慢地以SFHA的形式产生新的重子DM。一些老中子星会将其释放到它们微小的大气中,而另一些老中子星则会将其释放到星际介质中。此外,一颗中子星与另一颗中子星或黑洞合并时,伴随着富含中子的物质喷出,也会在喷出物冷却时形成SFHA。这是多信使天文学的另一个有趣的方面,重点是通过它们产生的引力波来研究这些合并。这些在宇宙中产生新重子DM的机制应该具有根本性的重要意义。我们指出了新重子 DM 不断产生的间接观测证据。我们希望我们的研究结果能够激发在这个方向上的进一步研究。
{"title":"New results on the two-body decay of neutrons shed new light on neutron stars","authors":"Eugene Oks","doi":"10.1016/j.newast.2024.102275","DOIUrl":"10.1016/j.newast.2024.102275","url":null,"abstract":"<div><p>In attempts to resolve the neutron lifetime puzzle, there was suggested a hypothetical decay of neutrons into some <em>unspecified</em> dark matter (DM) particles. Later there were performed studies on how the hypothetical decay of neutrons would affect neutron stars. Recently it was shown that with the allowance for the second solution of Dirac equation for hydrogen atoms, the theoretical branching ratio (BR) for the two-body decay of neutrons (compared to their three-body decay) is amplified by a factor of 3300 from 0.000004. So, the BR becomes about 1.3% in the excellent agreement with the “experimental” BR = (1.15 ± 0.27)% required for reconciling the two distinct experimental values of the neutron lifetime: one from the beam experiments, another from the trap experiments. This meant that the two-body decay of neutrons in the beam experiments (that count only the protons) plays a much more sizable part in the overestimation of the lifetime of neutrons in these experiments than previously thought. Hydrogen atoms corresponding to the second solution of Dirac equations are called the second flavor of hydrogen atoms (SFHA) by the analogy with the flavors of quarks. The existence of the SFHA is evidenced by four different types of atomic/molecular experiments. The primary feature of the SFHA is that due to having only the s-states, they do not emit or absorb the electromagnetic radiation (except for the 21 cm line): they are practically <em>dark</em>. The SFHA became a candidate for a part of DM for the first time after the SFHA-based successful qualitative and quantitative explanation of the perplexing observation by Bowman et al. of the anomalous absorption in the redshifted 21 cm line from the early Universe. In the present paper we analyzed how this neutron decay into the SFHA affects neutron stars. We showed that old neutron stars could very slowly generate the new <em>specific, described in detail</em> baryonic DM in the form of the SFHA. Some old neutron stars would release it into their tiny atmospheres, while some other old neutron stars would release it into the interstellar medium. Besides, mergers of a neutron star with another neutron star or with a black hole, accompanied by the ejection of neutron-rich material, can also lead to the formation of SFHA as the ejecta cools down. This is another interesting aspect of the multi-messenger astronomy focused on studying these mergers through the gravitational waves they generate. These mechanisms of generating new baryonic DM in the universe should have the fundamental importance. We point out the indirect observational evidence of the continuing generation of new baryonic DM. We hope that our results will stimulate a further research in this direction.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"113 ","pages":"Article 102275"},"PeriodicalIF":1.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Curvature related geometrical properties of topologically charged EiBI-gravity spacetime 拓扑带电 EiBI 引力时空的曲率相关几何特性
IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-06-30 DOI: 10.1016/j.newast.2024.102272
Absos Ali Shaikh , Faizuddin Ahmed , Mousumi Sarkar
<div><p>The objective of this article is to study topologically charged Eddington-inspired Born–Infeld (briefly, EiBI) gravity spacetime. It is proved that the topologically charged EiBI spacetime executes different types of pseudosymmetry, viz. Ricci generalized pseudosymmetry as <span><math><mrow><mi>R</mi><mi>⋅</mi><mi>R</mi><mo>=</mo><mi>Q</mi><mrow><mo>(</mo><mi>S</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, Ricci generalized projectively pseudosymmetry as <span><math><mrow><mi>P</mi><mi>⋅</mi><mi>R</mi><mo>=</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>Q</mi><mrow><mo>(</mo><mi>S</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, pseudosymmetry due to conformal curvature as <span><math><mrow><mi>C</mi><mi>⋅</mi><mi>C</mi><mo>=</mo><mo>−</mo><mfrac><mrow><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>ϵ</mi><msup><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>6</mn><msup><mrow><mi>r</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></mfrac><mi>Q</mi><mrow><mo>(</mo><mi>g</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span> and pseudosymmetry due to conharmonic curvature as <span><math><mrow><mi>K</mi><mi>⋅</mi><mi>K</mi><mo>=</mo><mo>−</mo><mfrac><mrow><mrow><mo>(</mo><msup><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mi>Q</mi><mrow><mo>(</mo><mi>g</mi><mo>,</mo><mi>K</mi><mo>)</mo></mrow></mrow></math></span>. Also, we have exhibited the linear dependence of <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>g</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>S</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span> on the difference <span><math><mrow><mo>(</mo><mi>C</mi><mi>⋅</mi><mi>R</mi><mo>−</mo><mi>R</mi><mi>⋅</mi><mi>C</mi><mo>)</mo></mrow></math></span>. Moreover, it is exhibited that the topologically charged EiBI spacetime is an Einstein manifold of level 3, 2-quasi Einstein, conformal 2-forms are recurrent, Ricci 1-forms are recurrent and generalized Roter type. As a special case, we have acquired the geometric structures of point-like global monopole (briefly, PGM) spacetime and topologically charged Ellis Bronnikov Wormhole (briefly, TCEBW) spacetime. Also, we have explored that the topologically charged EiBI spacetime possesses almost <span><math><mi>η</mi></math></span>-Ricci-Yamabe soliton, almost <span><math><mi>η</mi></math></span>-Ricci soliton, and for a certain condition it admits almost Ricci soliton. Further, it is also verified that such a spacetime reveals generalized curvature inheritance and for a particular condition it admits
本文旨在研究拓扑带电的爱丁顿启发的玻恩-因费尔德(简称 EiBI)引力时空。研究证明,带拓扑电荷的 EiBI 时空具有不同类型的伪对称性,即利玛窦广义伪对称性、利玛窦广义投影伪对称性、共形曲率引起的伪对称性和共谐曲率引起的伪对称性。同时,我们还展示了 和 对差分的线性依赖性。此外,我们还证明了拓扑上带电的 EiBI 时空是第 3 级爱因斯坦流形、2-准爱因斯坦流形、共形 2-forms 周期、Ricci 1-forms 周期和广义罗特型。作为特例,我们获得了点样全局单极(简称 PGM)时空和拓扑带电埃利斯-布朗尼科夫虫洞(简称 TCEBW)时空的几何结构。同时,我们还探索了拓扑带电的 EiBI 时空具有几乎-里奇-山边孤子、几乎-里奇孤子,并且在一定条件下,它还具有几乎里奇孤子。此外,还验证了这种时空具有广义曲率继承性,而且在特定条件下它还具有曲率继承性。此外,有趣的是,拓扑带电 EiBI 时空的能量动量张量满足多个伪对称类型条件,而且张量 、 和 都是线性相关的。最后,比较了拓扑带电 EiBI 时空和莫里斯-索恩虫洞(简称 MTW)时空的曲率受限几何结构的不同对称类型和伪对称特性。
{"title":"Curvature related geometrical properties of topologically charged EiBI-gravity spacetime","authors":"Absos Ali Shaikh ,&nbsp;Faizuddin Ahmed ,&nbsp;Mousumi Sarkar","doi":"10.1016/j.newast.2024.102272","DOIUrl":"10.1016/j.newast.2024.102272","url":null,"abstract":"&lt;div&gt;&lt;p&gt;The objective of this article is to study topologically charged Eddington-inspired Born–Infeld (briefly, EiBI) gravity spacetime. It is proved that the topologically charged EiBI spacetime executes different types of pseudosymmetry, viz. Ricci generalized pseudosymmetry as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, Ricci generalized projectively pseudosymmetry as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, pseudosymmetry due to conformal curvature as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;ϵ&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and pseudosymmetry due to conharmonic curvature as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Also, we have exhibited the linear dependence of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; on the difference &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Moreover, it is exhibited that the topologically charged EiBI spacetime is an Einstein manifold of level 3, 2-quasi Einstein, conformal 2-forms are recurrent, Ricci 1-forms are recurrent and generalized Roter type. As a special case, we have acquired the geometric structures of point-like global monopole (briefly, PGM) spacetime and topologically charged Ellis Bronnikov Wormhole (briefly, TCEBW) spacetime. Also, we have explored that the topologically charged EiBI spacetime possesses almost &lt;span&gt;&lt;math&gt;&lt;mi&gt;η&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-Ricci-Yamabe soliton, almost &lt;span&gt;&lt;math&gt;&lt;mi&gt;η&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-Ricci soliton, and for a certain condition it admits almost Ricci soliton. Further, it is also verified that such a spacetime reveals generalized curvature inheritance and for a particular condition it admits ","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"112 ","pages":"Article 102272"},"PeriodicalIF":1.9,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulsational and eclipsing nature of TIC 140736015 TIC 140736015 的脉动和蚀变性质
IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-06-29 DOI: 10.1016/j.newast.2024.102271
B. Gürol , A.-Y. Zhou

We present the discovery of γ Doradus-type pulsations in the eclipsing binary TIC 140736015. We obtained the physical and geometrical parameters of this detached eclipsing binary hosting a pulsating component. Based on the Transiting Exoplanet Survey Satellite (TESS) observation and Gaia DR3 data of TIC 140736015, we refined the light elements of the system using (OC) analysis and found that the eclipse times varied with a period of 2048 days, probably linked to the multiperiodic pulsational nature. We showed that essentially, only secondary eclipse is seen in the phased light curve. The frequency analysis using the out-of-eclipse data reveals that all the pulsational frequencies are located in the region lower than 5d1. After removing the pulsational variation from the observations we analysed the residual light curve together with the radial velocity data obtained from Gaia DR3 and find the masses and radii of the primary and secondary components as M1=1.429±0.022 M, M2=1.402±0.022 Mand R1=1.685±0.001 R, R2=1.393±0.001 R, respectively. Regarding the location of the components on the Hertzsprung–Russell diagram both components can be a γ Dor/solar-like pulsator.

我们在食双星 TIC 140736015 中发现了多拉杜斯型脉冲。我们获得了这个包含脉冲成分的分离食双星的物理和几何参数。根据TIC 140736015的凌日系外行星巡天卫星()观测数据和盖亚DR3数据,我们通过分析完善了该系统的光元素,并发现日食时间以天为周期变化,这可能与多周期脉冲性质有关。我们发现,在相位光曲线中基本上只能看到次食。利用日食外数据进行的频率分析表明,所有脉冲频率都位于低于......的区域。 从观测数据中剔除脉冲变化后,我们将残余光曲线与从盖亚 DR3 获得的径向速度数据一起进行了分析,发现主成分和副成分的质量和半径分别为......和......。从这两个成分在赫兹普朗-拉塞尔图上的位置来看,它们都可能是类似于多/太阳的脉动器。
{"title":"Pulsational and eclipsing nature of TIC 140736015","authors":"B. Gürol ,&nbsp;A.-Y. Zhou","doi":"10.1016/j.newast.2024.102271","DOIUrl":"10.1016/j.newast.2024.102271","url":null,"abstract":"<div><p>We present the discovery of <span><math><mi>γ</mi></math></span> Doradus-type pulsations in the eclipsing binary TIC 140736015. We obtained the physical and geometrical parameters of this detached eclipsing binary hosting a pulsating component. Based on the Transiting Exoplanet Survey Satellite (<em>TESS</em>) observation and Gaia DR3 data of TIC 140736015, we refined the light elements of the system using <span><math><mrow><mo>(</mo><mi>O</mi><mo>−</mo><mi>C</mi><mo>)</mo></mrow></math></span> analysis and found that the eclipse times varied with a period of <span><math><mrow><mo>∼</mo><mn>2048</mn></mrow></math></span> days, probably linked to the multiperiodic pulsational nature. We showed that essentially, only secondary eclipse is seen in the phased light curve. The frequency analysis using the out-of-eclipse data reveals that all the pulsational frequencies are located in the region lower than <span><math><mrow><mn>5</mn><mspace></mspace><msup><mrow><mi>d</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>. After removing the pulsational variation from the observations we analysed the residual light curve together with the radial velocity data obtained from Gaia DR3 and find the masses and radii of the primary and secondary components as <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>429</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>022</mn></mrow></math></span> <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>402</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>022</mn></mrow></math></span> <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>and <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>685</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>001</mn></mrow></math></span> <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>393</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>001</mn></mrow></math></span> <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, respectively. Regarding the location of the components on the Hertzsprung–Russell diagram both components can be a <span><math><mi>γ</mi></math></span> Dor/solar-like pulsator.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"113 ","pages":"Article 102271"},"PeriodicalIF":1.9,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First photometric study of W UMa-type binary systems: BK Vul and V699 Cep 对 W UMa 型双星系统的首次光度研究:BK Vul 和 V699 Cep
IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-06-29 DOI: 10.1016/j.newast.2024.102270
S. Adalalı , E. Soydugan

In this study, new CCD photometric observations and photometric analysis of BK Vul and V699 Cep systems, which are classified as contact binaries in the literature, are presented. For the V699 Cep, the TESS light curve was also used in the photometric analysis. We determined the basic astrophysical parameters of the BK Vul and V699 Cep systems from photometric analysis using the Wilson–Devinney method. Due to the lack of spectroscopic data for both systems in the literature, these absolute parameters were approximately calculated as to be M2 = 0.73 M, R1 = 1.39 R and R2 = 1.09 R for BK Vul, and M2 = 0.36 M, R1 = 2.40 R and R2 = 1.33 R for V699 Cep after estimating the mass of the primary component. The period decrease rate (dP/dt) and cyclic variation period of BK Vul were determined from the OC analysis as -3.86 ×107 day yr−1 and 27 yrs., respectively. The evolutionary status of components of both systems were discussed.

本研究介绍了对 BK Vul 和 V699 Cep 系统的新 CCD 测光观测结果和测光分析,这两个系统在文献中被归类为接触双星。对于 V699 Cep,TESS 光曲线也被用于光度分析。我们利用威尔逊-德文尼(Wilson-Devinney)方法通过测光分析确定了BK Vul和V699 Cep系统的基本天体物理参数。由于文献中缺乏这两个系统的光谱数据,在估算出主成分的质量后,这些绝对参数被近似计算为:BK Vul 的绝对参数为 M2 = 0.73 M⊙,R1 = 1.39 R⊙,R2 = 1.09 R⊙;V699 Cep 的绝对参数为 M2 = 0.36 M⊙,R1 = 2.40 R⊙,R2 = 1.33 R⊙。通过O-C分析确定BK Vul的周期下降率(dP/dt)和周期变化周期分别为-3.86×10-7天/年和27年。讨论了这两个系统各组成部分的演化状况。
{"title":"First photometric study of W UMa-type binary systems: BK Vul and V699 Cep","authors":"S. Adalalı ,&nbsp;E. Soydugan","doi":"10.1016/j.newast.2024.102270","DOIUrl":"https://doi.org/10.1016/j.newast.2024.102270","url":null,"abstract":"<div><p>In this study, new CCD photometric observations and photometric analysis of BK Vul and V699 Cep systems, which are classified as contact binaries in the literature, are presented. For the V699 Cep, the <em>TESS</em> light curve was also used in the photometric analysis. We determined the basic astrophysical parameters of the BK Vul and V699 Cep systems from photometric analysis using the Wilson–Devinney method. Due to the lack of spectroscopic data for both systems in the literature, these absolute parameters were approximately calculated as to be <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> = 0.73 <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> = 1.39 <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span> and <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> = 1.09 <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span> for BK Vul, and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> = 0.36 <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> = 2.40 <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span> and <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> = 1.33 <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span> for V699 Cep after estimating the mass of the primary component. The period decrease rate (<em>dP/dt</em>) and cyclic variation period of BK Vul were determined from the <span><math><mrow><mi>O</mi><mo>−</mo><mi>C</mi></mrow></math></span> analysis as -3.86 <span><math><mrow><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></math></span> day yr<sup>−1</sup> and 27 yrs., respectively. The evolutionary status of components of both systems were discussed.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"112 ","pages":"Article 102270"},"PeriodicalIF":1.9,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First light simultaneous triple-channel optical observations of the OPTICAM system at the OAN-SPM 在 OAN-SPM 对 OPTICAM 系统进行首次三通道同步光学观测
IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-06-25 DOI: 10.1016/j.newast.2024.102262
Angel Castro , Raúl Michel , Noel Castro Segura , Diego Altamirano , Carlos Tejada , Joel Herrera , Enrique Colorado , Gerardo Sierra , Liliana Altamirano-Dévora , Juan Echevarría , Rasjied Sloot , Rudy Wijnands , Iván Zavala , David Rojas , Juan V. Hernández Santisteban , Federico Vincentelli , Javier A. Hernández-Landa , Song Wang , Melissa Fuentes , Poshak Gandhi , Francisco Valenzuela

OPTICAM is a triple-band optical system developed for the 2.1 m telescope of the National Astronomical Observatory in the Sierra de San Pedro Mártir (OAN-SPM). Partial engineering tests were conducted in 2019, with the complete system experiencing its first light in March 2022. The system incorporates two beam splitters, enabling simultaneous observations on three channels. Users can choose three out of the five available filters from the SDSS filter set (ugriz), covering the wavelength range from 320 to 1000 nm. It offers an effective field of view of approximately 4.7, 4.7, and 5.6 arcminutes in each of its arms, respectively. Due to its design and capabilities, OPTICAM is suitable for coordinated observations with other ground-based and space-based observatories. This document presents the final instrument design and the current system status. Some of the optical tests carried out are described. We also present the results of scientific observations conducted during its first light and first year of operations.

OPTICAM 是为圣佩德罗马蒂尔山脉国家天文台(OAN-SPM)的 2.1 米望远镜开发的三波段光学系统。2019 年进行了部分工程测试,整个系统将于 2022 年 3 月首次点亮。该系统包含两个分光镜,可在三个频道上同时进行观测。用户可以从 SDSS 滤光片组()的五个可用滤光片中选择三个,波长范围从 320 纳米到 1000 纳米。它的每个臂的有效视场分别约为 4.7、4.7 和 5.6 弧分。由于其设计和功能,OPTICAM 适合与其他地面和空间观测站进行协调观测。本文件介绍了仪器的最终设计和目前的系统状况。介绍了已进行的一些光学测试。我们还介绍了在其首次点亮和第一年运行期间进行的科学观测的结果。
{"title":"First light simultaneous triple-channel optical observations of the OPTICAM system at the OAN-SPM","authors":"Angel Castro ,&nbsp;Raúl Michel ,&nbsp;Noel Castro Segura ,&nbsp;Diego Altamirano ,&nbsp;Carlos Tejada ,&nbsp;Joel Herrera ,&nbsp;Enrique Colorado ,&nbsp;Gerardo Sierra ,&nbsp;Liliana Altamirano-Dévora ,&nbsp;Juan Echevarría ,&nbsp;Rasjied Sloot ,&nbsp;Rudy Wijnands ,&nbsp;Iván Zavala ,&nbsp;David Rojas ,&nbsp;Juan V. Hernández Santisteban ,&nbsp;Federico Vincentelli ,&nbsp;Javier A. Hernández-Landa ,&nbsp;Song Wang ,&nbsp;Melissa Fuentes ,&nbsp;Poshak Gandhi ,&nbsp;Francisco Valenzuela","doi":"10.1016/j.newast.2024.102262","DOIUrl":"10.1016/j.newast.2024.102262","url":null,"abstract":"<div><p>OPTICAM is a triple-band optical system developed for the 2.1 m telescope of the National Astronomical Observatory in the Sierra de San Pedro Mártir (OAN-SPM). Partial engineering tests were conducted in 2019, with the complete system experiencing its first light in March 2022. The system incorporates two beam splitters, enabling simultaneous observations on three channels. Users can choose three out of the five available filters from the SDSS filter set (<span><math><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><msup><mrow><mi>g</mi></mrow><mrow><mo>′</mo></mrow></msup><msup><mrow><mi>r</mi></mrow><mrow><mo>′</mo></mrow></msup><msup><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msup><msup><mrow><mi>z</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span>), covering the wavelength range from 320 to 1000 nm. It offers an effective field of view of approximately 4.7, 4.7, and 5.6 arcminutes in each of its arms, respectively. Due to its design and capabilities, OPTICAM is suitable for coordinated observations with other ground-based and space-based observatories. This document presents the final instrument design and the current system status. Some of the optical tests carried out are described. We also present the results of scientific observations conducted during its first light and first year of operations.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"112 ","pages":"Article 102262"},"PeriodicalIF":1.9,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurable parameter combinations of environmentally-dephased EMRI gravitational-wave signals 环境相减 EMRI 重力波信号的可测量参数组合
IF 2 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-06-08 DOI: 10.1016/j.newast.2024.102263
Marco Immanuel B. Rivera , Reinabelle C. Reyes

The future space-borne Laser Interferometer Space Antenna (LISA) is expected to detect gravitational waves (GW) from Extreme Mass Ratio Inspiral (EMRI) binaries which may live in nontrivial environments such as accretion disks. In this work, we apply the Fisher matrix Principal Component Analysis (PCA) method to assess how well LISA observations can jointly constrain the source parameters and environmental densities around EMRIs. Specifically, we calculate the Fisher matrix from the post-Newtonian parameters of an EMRI binary embedded in a fluid with a constant density profile. We determine that the most dominant measurable parameter combination is dominated by contributions from environmental effects, namely, gravitational drag, accretion, and gravitational pull (in order of contribution). The proposed reparameterization of the PN parameters can be used to improve the power and efficiency of future detection and parameter estimation methods.

未来的星载激光干涉仪空间天线(LISA)有望探测到来自极端质量比激发(EMRI)双星的引力波(GW),这些双星可能生活在吸积盘等非简单环境中。在这项工作中,我们应用费舍尔矩阵主成分分析(PCA)方法来评估 LISA 观测能在多大程度上共同约束 EMRI 周围的源参数和环境密度。具体来说,我们根据嵌入恒定密度曲线流体中的 EMRI 双星的后牛顿参数计算费雪矩阵。我们确定,最主要的可测量参数组合是由环境效应贡献的,即引力拖拽、吸积和引力(按贡献大小排序)。提议的 PN 参数重新参数化可以用来提高未来探测和参数估计方法的功率和效率。
{"title":"Measurable parameter combinations of environmentally-dephased EMRI gravitational-wave signals","authors":"Marco Immanuel B. Rivera ,&nbsp;Reinabelle C. Reyes","doi":"10.1016/j.newast.2024.102263","DOIUrl":"10.1016/j.newast.2024.102263","url":null,"abstract":"<div><p>The future space-borne Laser Interferometer Space Antenna (LISA) is expected to detect gravitational waves (GW) from Extreme Mass Ratio Inspiral (EMRI) binaries which may live in nontrivial environments such as accretion disks. In this work, we apply the Fisher matrix Principal Component Analysis (PCA) method to assess how well LISA observations can jointly constrain the source parameters and environmental densities around EMRIs. Specifically, we calculate the Fisher matrix from the post-Newtonian parameters of an EMRI binary embedded in a fluid with a constant density profile. We determine that the most dominant measurable parameter combination is dominated by contributions from environmental effects, namely, gravitational drag, accretion, and gravitational pull (in order of contribution). The proposed reparameterization of the PN parameters can be used to improve the power and efficiency of future detection and parameter estimation methods.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"112 ","pages":"Article 102263"},"PeriodicalIF":2.0,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141393619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OSIRIS-GR: General relativistic activation of the polar cap of a compact neutron star OSIRIS-GR:紧凑型中子星极盖的广义相对论激活
IF 2 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-06-04 DOI: 10.1016/j.newast.2024.102261
R. Torres , T. Grismayer , F. Cruz , R.A. Fonseca , L.O. Silva

We present ab initio global general-relativistic Particle-in-cell (GR-PIC) simulations of compact millisecond neutron star magnetospheres in the axisymmetric aligned rotator configuration. We investigate the role of GR and plasma supply on the polar cap particle acceleration efficiency – the precursor of coherent radio emission – employing a new module for the PIC code OSIRIS, designed to model plasma dynamics around compact objects with fully self-consistent GR effects. We provide a detailed description of the main sub-algorithms of the novel PIC algorithm, including a charge-conserving current deposit scheme for curvilinear coordinates. We demonstrate efficient particle acceleration in the polar caps of compact neutron stars with denser magnetospheres, numerically validating the spacelike current extension provided by force-free models. We show that GR relaxes the minimum required poloidal magnetospheric current for the transition of the polar cap to the accelerator regime, thus justifying the observation of weak pulsars beyond the expected death line. We denote that spin-down luminosity intermittency and radio pulse nullings for older pulsars might arise from the interplay between the polar and outer gaps. Also, narrower radio beams are expected for weaker low-obliquity pulsars.

我们介绍了对轴对称对齐转子构型的紧凑型毫秒中子星磁层进行的全局广义相对论粒子入胞(GR-PIC)模拟。我们利用 PIC 代码 OSIRIS 的一个新模块研究了 GR 和等离子体供应对极盖粒子加速效率(相干射电发射的前兆)的作用,该模块旨在利用完全自洽的 GR 效应模拟紧凑天体周围的等离子体动力学。我们详细介绍了新型 PIC 算法的主要子算法,包括曲线坐标的电荷守恒电流沉积方案。我们证明了粒子在具有较密集磁层的紧凑中子星极盖中的高效加速,从数值上验证了无力模型所提供的类似于空间的电流扩展。我们表明,GR 放松了极盖过渡到加速器机制所需的最小极磁层电流,从而证明了在预期死亡线之外观测到弱脉冲星是合理的。我们指出,较老脉冲星的自旋下降光度间歇和射电脉冲无效可能是由于极隙和外隙之间的相互作用造成的。另外,较弱的低倾脉冲星的射电波束预计会更窄。
{"title":"OSIRIS-GR: General relativistic activation of the polar cap of a compact neutron star","authors":"R. Torres ,&nbsp;T. Grismayer ,&nbsp;F. Cruz ,&nbsp;R.A. Fonseca ,&nbsp;L.O. Silva","doi":"10.1016/j.newast.2024.102261","DOIUrl":"https://doi.org/10.1016/j.newast.2024.102261","url":null,"abstract":"<div><p>We present ab initio global general-relativistic Particle-in-cell (GR-PIC) simulations of compact millisecond neutron star magnetospheres in the axisymmetric aligned rotator configuration. We investigate the role of GR and plasma supply on the polar cap particle acceleration efficiency – the precursor of coherent radio emission – employing a new module for the PIC code OSIRIS, designed to model plasma dynamics around compact objects with fully self-consistent GR effects. We provide a detailed description of the main sub-algorithms of the novel PIC algorithm, including a charge-conserving current deposit scheme for curvilinear coordinates. We demonstrate efficient particle acceleration in the polar caps of compact neutron stars with denser magnetospheres, numerically validating the spacelike current extension provided by force-free models. We show that GR relaxes the minimum required poloidal magnetospheric current for the transition of the polar cap to the accelerator regime, thus justifying the observation of weak pulsars beyond the expected death line. We denote that spin-down luminosity intermittency and radio pulse nullings for older pulsars might arise from the interplay between the polar and outer gaps. Also, narrower radio beams are expected for weaker low-obliquity pulsars.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"112 ","pages":"Article 102261"},"PeriodicalIF":2.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1384107624000757/pdfft?md5=4b7e74c6e0596423df64b16f4a75d011&pid=1-s2.0-S1384107624000757-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141291525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinematical and ellipsoidal properties of the inner-halo hot subdwarfs observed in Gaia DR3 and LAMOST DR7 盖亚DR3和LAMOST DR7观测到的内光环热亚矮星的运动学和椭球特性
IF 2 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-06-03 DOI: 10.1016/j.newast.2024.102258
W.H. Elsanhoury
<div><p>Here, we report the kinematical parameters of inner-halo hot subdwarfs located within <span><math><mrow><mo>(</mo><mrow><mi>d</mi><mo>≤</mo><mn>15</mn><mrow><mspace></mspace><mtext>kpc</mtext></mrow></mrow><mo>)</mo></mrow></math></span> at high Galactic latitudes <span><math><mrow><mo>(</mo><mrow><msup><mrow><mi>b</mi></mrow><mi>o</mi></msup><mo>≥</mo><mn>20</mn></mrow><mo>)</mo></mrow></math></span>. The study included three program stars for one of the extreme He-rich groups (<em>e</em>He-1) with eccentricity (<em>e</em>= 0.65) and the z-component of the angular momentum (J<sub>z</sub> = 4288.66 kpc km <em>s</em><sup>−1</sup>), the inner halo program I with 121 points <span><math><mrow><mo>(</mo><mrow><msub><mi>T</mi><mtext>eff</mtext></msub><mo>≥</mo><mn>24</mn><mo>,</mo><mn>000</mn></mrow><mo>)</mo></mrow></math></span> and their subsections, i.e. inner halo program II (sdB; 79 points) with <span><math><mrow><mo>(</mo><mrow><mn>40</mn><mo>,</mo><mn>000</mn><mo>≥</mo><msub><mi>T</mi><mtext>eff</mtext></msub><mo>≥</mo><mn>24</mn><mo>,</mo><mn>000</mn></mrow><mo>)</mo></mrow></math></span> and inner halo program III (sdO; 42 points) with <span><math><mrow><mo>(</mo><mrow><mn>80</mn><mo>,</mo><mn>000</mn><mo>≥</mo><msub><mi>T</mi><mtext>eff</mtext></msub><mo>≥</mo><mn>40</mn><mo>,</mo><mn>000</mn></mrow><mo>)</mo></mrow></math></span>. First, we calculated the spatial velocities (<span><math><mrow><mover><mi>U</mi><mo>¯</mo></mover><mo>,</mo><mrow><mspace></mspace><mover><mi>V</mi><mo>¯</mo></mover></mrow><mo>,</mo><mrow><mspace></mspace><mover><mi>W</mi><mo>¯</mo></mover></mrow><mo>;</mo><mrow><mspace></mspace><mtext>km</mtext><mspace></mspace></mrow><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>)</mo></mrow></mrow></math></span> along the Galactic coordinates (i.e., 25.73 ± ± 5.07, 28.79 ± 5.37, −14.51 ± 3.81) and their dispersion velocities <span><math><mrow><mo>(</mo><mrow><msub><mi>σ</mi><mn>1</mn></msub><mo>,</mo><mspace></mspace><msub><mi>σ</mi><mn>2</mn></msub><mo>,</mo><mspace></mspace><msub><mi>σ</mi><mn>3</mn></msub><mo>;</mo><mrow><mspace></mspace><mtext>km</mtext><mspace></mspace></mrow><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo>)</mo></mrow></math></span> = (161.94 ± 12.73, 140.31 ± 11.85, 101.57 ± 10.08) and subsequently their subsections sdB and sdO. Second, we calculated the vertex longitudes <span><math><mrow><mo>(</mo><msub><mi>l</mi><mn>2</mn></msub><mo>)</mo></mrow></math></span> and the Solar motion <span><math><mrow><mo>(</mo><mrow><msub><mi>S</mi><mo>⊙</mo></msub><mo>=</mo><mn>41.24</mn><mrow><mspace></mspace><mspace></mspace></mrow><mn>6.42</mn><mrow><mspace></mspace><mtext>km</mtext><mspace></mspace></mrow><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo>)</mo></mrow></math></span> as well as their subsections. Finally, based on the kinematic relation of the ratio <span><math><mrow><mo>(</mo><mrow><msub><mi>σ</mi
在这里,我们报告了位于银河系高纬度(bo≥20)(d≤15kpc)范围内的内光环热亚矮星的运动学参数。该研究包括三颗程序恒星,它们属于极端富氦群组(eHe-1)之一,其偏心率(e= 0.65)和角动量的 z 分量(Jz = 4288.66 kpc km s-1)的内光环计划 I,包括 121 个点(Teff≥24,000)及其子部分,即内光环计划 II(sdB;79 个点)(40,000≥Teff≥24,000)和内光环计划 III(sdO;42 个点)(80,000≥Teff≥40,000)。首先,我们计算了沿银河系坐标(即 25.73 ± ± 5.07, 28.79 ± 5.37, -14.51 ± 3.81)的空间速度(U¯,V¯,W¯;kms-1)和它们的色散速度(σ1,σ2,σ3;kms-1)= (161.94 ± 12.73, 140.31 ± 11.85, 101.57 ± 10.08),随后又计算了它们的分段 sdB 和 sdO。其次,我们计算了顶点经度(l2)和太阳运动(S⊙=41.246.42kms-1)及其分段。最后,根据比率(σ2/σ1)的运动学关系和我们之前计算的角旋转率数值(|A-B|=26.07±5.10;kms-1kpc-1),我们得到了平均奥尔特常数为 (A&B;kms-1kpc-1) = (9.38 ± 0.33, -16.69±0.25)。
{"title":"Kinematical and ellipsoidal properties of the inner-halo hot subdwarfs observed in Gaia DR3 and LAMOST DR7","authors":"W.H. Elsanhoury","doi":"10.1016/j.newast.2024.102258","DOIUrl":"https://doi.org/10.1016/j.newast.2024.102258","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Here, we report the kinematical parameters of inner-halo hot subdwarfs located within &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;15&lt;/mn&gt;&lt;mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;kpc&lt;/mtext&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; at high Galactic latitudes &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;/msup&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;20&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The study included three program stars for one of the extreme He-rich groups (&lt;em&gt;e&lt;/em&gt;He-1) with eccentricity (&lt;em&gt;e&lt;/em&gt;= 0.65) and the z-component of the angular momentum (J&lt;sub&gt;z&lt;/sub&gt; = 4288.66 kpc km &lt;em&gt;s&lt;/em&gt;&lt;sup&gt;−1&lt;/sup&gt;), the inner halo program I with 121 points &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mtext&gt;eff&lt;/mtext&gt;&lt;/msub&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;24&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;000&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and their subsections, i.e. inner halo program II (sdB; 79 points) with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mn&gt;40&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;000&lt;/mn&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mtext&gt;eff&lt;/mtext&gt;&lt;/msub&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;24&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;000&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and inner halo program III (sdO; 42 points) with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mn&gt;80&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;000&lt;/mn&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mtext&gt;eff&lt;/mtext&gt;&lt;/msub&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;40&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;000&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. First, we calculated the spatial velocities (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mover&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mover&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;km&lt;/mtext&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; along the Galactic coordinates (i.e., 25.73 ± ± 5.07, 28.79 ± 5.37, −14.51 ± 3.81) and their dispersion velocities &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;km&lt;/mtext&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; = (161.94 ± 12.73, 140.31 ± 11.85, 101.57 ± 10.08) and subsequently their subsections sdB and sdO. Second, we calculated the vertex longitudes &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and the Solar motion &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;⊙&lt;/mo&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;41.24&lt;/mn&gt;&lt;mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mrow&gt;&lt;mn&gt;6.42&lt;/mn&gt;&lt;mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;km&lt;/mtext&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; as well as their subsections. Finally, based on the kinematic relation of the ratio &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"112 ","pages":"Article 102258"},"PeriodicalIF":2.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141291524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observational constraints on modified CPL models considering non-cold dark matter 考虑非冷暗物质的修正 CPL 模型的观测约束
IF 2 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-06-01 DOI: 10.1016/j.newast.2024.102259
Gopal Sardar, Subenoy Chakraborty

In the present work we consider three modified Chevallier–Polarski–Linder (CPL) models with considering non-cold dark matter in the background of homogeneous and isotropic FLRW space–time model. From the observational data set ((Pantheon+)+BAO+HST) we find that all the parameters involved in the models having equation of dark energy state ωde=ω0+ω1a(1+a)p (Model II) and ωde=ω0+ω11a(1+a)p (Model III) do not depend on p. We also find that for all the models equation of state for dark matter is almost same and observe that Model I is more preferable than the other two proposed models.

在本研究中,我们考虑了三个修正的切瓦利埃-波兰斯基-林德(CPL)模型,其中考虑了在均质和各向同性的 FLRW 时空模型背景下的非冷暗物质。从观测数据集((Pantheon+)+BAO+HST)中我们发现,暗能量状态方程为ωde=ω0+ω1a(1+a)p(模型II)和ωde=ω0+ω11-a(1+a)p(模型III)的模型所涉及的所有参数都不依赖于p。
{"title":"Observational constraints on modified CPL models considering non-cold dark matter","authors":"Gopal Sardar,&nbsp;Subenoy Chakraborty","doi":"10.1016/j.newast.2024.102259","DOIUrl":"10.1016/j.newast.2024.102259","url":null,"abstract":"<div><p>In the present work we consider three modified Chevallier–Polarski–Linder (CPL) models with considering non-cold dark matter in the background of homogeneous and isotropic FLRW space–time model. From the observational data set ((Pantheon+)+BAO+HST) we find that all the parameters involved in the models having equation of dark energy state <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>d</mi><mi>e</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>+</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mfrac><mrow><mi>a</mi></mrow><mrow><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>a</mi><mo>)</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup></mrow></mfrac></mrow></math></span> (Model II) and <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>d</mi><mi>e</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>+</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mfrac><mrow><mn>1</mn><mo>−</mo><mi>a</mi></mrow><mrow><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>a</mi><mo>)</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup></mrow></mfrac></mrow></math></span> (Model III) do not depend on <span><math><mi>p</mi></math></span>. We also find that for all the models equation of state for dark matter is almost same and observe that Model I is more preferable than the other two proposed models.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"112 ","pages":"Article 102259"},"PeriodicalIF":2.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141277508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
New Astronomy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1