Pub Date : 2024-05-01DOI: 10.4196/kjpp.2024.28.3.275
Mohamed Ali Metwally, El-Yamani Ibrahim El-Zawahry, Maher Amer Ali, Diaa Farrag Ibrahim, Shereen Ahmed Sabry, Omnia Mohamed Sarhan
Worldwide, cardiovascular disease is the main cause of death, which accordingly increased by hyperlipidemia. Hyperlipidemia therapy can include lifestyle changes and medications to control cholesterol levels. Statins are the medications of the first choice for dealing with lipid abnormalities. Rosuvastatin founds to control high lipid levels by hindering liver production of cholesterol and to achieve the targeted levels of low-density lipoprotein cholesterol, another lipid lowering agents named ezetimibe may be used as an added therapy. Both rosuvastatin and ezetimibe have low bioavailability which will stand as barrier to decrease cholesterol levels, because of such depictions, formulations of this combined therapy in nanotechnology will be of a great assistance. Our study demonstrated preparations of nanoparticles of this combined therapy, showing their physical characterizations, and examined their behavior in laboratory conditions and vivo habitation. The mean particle size was uniform, polydispersity index and zeta potential of formulations were found to be in the ranges of (0.181-0.72) and (-13.4 to -6.24), respectively. Acceptable limits of entrapment efficiency were affirmed with appearance of spherical and uniform nanoparticles. In vitro testing showed a sustained release of drug exceeded 90% over 24 h. In vivo study revealed an enhanced dissolution and bioavailability from loaded nanoparticles, which was evidenced by calculated pharmacokinetic parameters using triton for hyperlipidemia induction. Stability studies were performed and assured that the formulations are kept the same up to one month. Therefore, nano formulations is a suitable transporter for combined therapy of rosuvastatin and ezetimibe with improvement in their dissolution and bioavailability.
{"title":"Development and assessment of nano drug delivery systems for combined delivery of rosuvastatin and ezetimibe.","authors":"Mohamed Ali Metwally, El-Yamani Ibrahim El-Zawahry, Maher Amer Ali, Diaa Farrag Ibrahim, Shereen Ahmed Sabry, Omnia Mohamed Sarhan","doi":"10.4196/kjpp.2024.28.3.275","DOIUrl":"https://doi.org/10.4196/kjpp.2024.28.3.275","url":null,"abstract":"<p><p>Worldwide, cardiovascular disease is the main cause of death, which accordingly increased by hyperlipidemia. Hyperlipidemia therapy can include lifestyle changes and medications to control cholesterol levels. Statins are the medications of the first choice for dealing with lipid abnormalities. Rosuvastatin founds to control high lipid levels by hindering liver production of cholesterol and to achieve the targeted levels of low-density lipoprotein cholesterol, another lipid lowering agents named ezetimibe may be used as an added therapy. Both rosuvastatin and ezetimibe have low bioavailability which will stand as barrier to decrease cholesterol levels, because of such depictions, formulations of this combined therapy in nanotechnology will be of a great assistance. Our study demonstrated preparations of nanoparticles of this combined therapy, showing their physical characterizations, and examined their behavior in laboratory conditions and vivo habitation. The mean particle size was uniform, polydispersity index and zeta potential of formulations were found to be in the ranges of (0.181-0.72) and (-13.4 to -6.24), respectively. Acceptable limits of entrapment efficiency were affirmed with appearance of spherical and uniform nanoparticles. In vitro testing showed a sustained release of drug exceeded 90% over 24 h. In vivo study revealed an enhanced dissolution and bioavailability from loaded nanoparticles, which was evidenced by calculated pharmacokinetic parameters using triton for hyperlipidemia induction. Stability studies were performed and assured that the formulations are kept the same up to one month. Therefore, nano formulations is a suitable transporter for combined therapy of rosuvastatin and ezetimibe with improvement in their dissolution and bioavailability.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 3","pages":"275-284"},"PeriodicalIF":2.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058542/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140868283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.4196/kjpp.2024.28.3.197
Nak-Eun Choi, Si-Chan Park, In-Ryoung Kim
The potential of tivozanib as a treatment for oral squamous cell carcinoma (OSCC) was explored in this study. We investigated the effects of tivozanib on OSCC using the Ca9-22 and CAL27 cell lines. OSCC is a highly prevalent cancer type with a significant risk of lymphatic metastasis and recurrence, which necessitates the development of innovative treatment approaches. Tivozanib, a vascular endothelial growth factor receptor inhibitor, has shown efficacy in inhibiting neovascularization in various cancer types but has not been thoroughly studied in OSCC. Our comprehensive assessment revealed that tivozanib effectively inhibited OSCC cells. This was accompanied by the suppression of Bcl-2, a reduction in matrix metalloproteinase levels, and the induction of intrinsic pathway-mediated apoptosis. Furthermore, tivozanib contributed to epithelial-to-mesenchymal transition (EMT) inhibition by increasing E-cadherin levels while decreasing N-cadherin levels. These findings highlight the substantial anticancer potential of tivozanib in OSCC and thus its promise as a therapeutic option. Beyond reducing cell viability and inducing apoptosis, the capacity of tivozanib to inhibit EMT and modulate key proteins presents the possibility of a paradigm shift in OSCC treatment.
{"title":"Tivozanib-induced activation of the mitochondrial apoptotic pathway and suppression of epithelial-to-mesenchymal transition in oral squamous cell carcinoma.","authors":"Nak-Eun Choi, Si-Chan Park, In-Ryoung Kim","doi":"10.4196/kjpp.2024.28.3.197","DOIUrl":"https://doi.org/10.4196/kjpp.2024.28.3.197","url":null,"abstract":"<p><p>The potential of tivozanib as a treatment for oral squamous cell carcinoma (OSCC) was explored in this study. We investigated the effects of tivozanib on OSCC using the Ca9-22 and CAL27 cell lines. OSCC is a highly prevalent cancer type with a significant risk of lymphatic metastasis and recurrence, which necessitates the development of innovative treatment approaches. Tivozanib, a vascular endothelial growth factor receptor inhibitor, has shown efficacy in inhibiting neovascularization in various cancer types but has not been thoroughly studied in OSCC. Our comprehensive assessment revealed that tivozanib effectively inhibited OSCC cells. This was accompanied by the suppression of Bcl-2, a reduction in matrix metalloproteinase levels, and the induction of intrinsic pathway-mediated apoptosis. Furthermore, tivozanib contributed to epithelial-to-mesenchymal transition (EMT) inhibition by increasing E-cadherin levels while decreasing N-cadherin levels. These findings highlight the substantial anticancer potential of tivozanib in OSCC and thus its promise as a therapeutic option. Beyond reducing cell viability and inducing apoptosis, the capacity of tivozanib to inhibit EMT and modulate key proteins presents the possibility of a paradigm shift in OSCC treatment.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 3","pages":"197-207"},"PeriodicalIF":2.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058548/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140875039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.4196/kjpp.2024.28.3.229
Quan He, Weihua Liu, Xiaomei Ma, Hongxiu Li, Weiqi Feng, Xuzhi Lu, Ying Li, Zi Chen
Cough is a common symptom of several respiratory diseases. However, frequent coughing from acute to chronic often causes great pain to patients. It may turn into cough variant asthma, which seriously affects people's quality of life. For cough treatment, it is dominated by over-the-counter antitussive drugs, such as asmeton, but most currently available antitussive drugs have serious side effects. Thus, there is a great need for the development of new drugs with potent cough suppressant. BALB/c mice were used to construct mice model with cough to investigate the pharmacological effects of pectolinarigenin (PEC). Hematoxylin-eosin and Masson staining were used to assess lung injury and airway remodeling, and ELISA was used to assess the level of inflammatory factor release. In addition, inflammatory cell counts were measured to assess airway inflammation. Airway hyperresponsiveness assay was used to assess respiratory resistance in mice. Finally, we used Western blotting to explore the potential mechanisms of PEC. We found that PEC could alleviate lung tissue injury and reduce the release of inflammatory factors, inhibit of cough frequency and airway wall collagen deposition in mice model with cough. Meanwhile, PEC inhibited the Ras/ERK/c-Fos pathway to exhibit antitussive effect. Therefore, PEC may be a potential drug for cough suppression.
咳嗽是多种呼吸道疾病的常见症状。然而,从急性到慢性的频繁咳嗽往往会给患者带来极大的痛苦。它可能演变成咳嗽变异性哮喘,严重影响人们的生活质量。对于咳嗽的治疗,目前主要采用非处方止咳药,如阿斯美通,但目前大多数止咳药都有严重的副作用。因此,亟需开发具有强效止咳作用的新药。为了研究果胶苷元(PEC)的药理作用,我们利用 BALB/c 小鼠建立了咳嗽小鼠模型。血栓素-伊红和马森染色用于评估肺损伤和气道重塑,ELISA用于评估炎症因子的释放水平。此外,还测量了炎性细胞计数,以评估气道炎症。气道高反应性试验用于评估小鼠的呼吸阻力。最后,我们使用 Western 印迹法探讨了 PEC 的潜在机制。我们发现,PEC 能减轻咳嗽小鼠肺组织损伤,减少炎症因子的释放,抑制咳嗽频率和气道壁胶原沉积。同时,PEC还能抑制Ras/ERK/c-Fos通路,从而发挥镇咳作用。因此,PEC 可能是一种潜在的止咳药物。
{"title":"Pectolinarigenin ameliorated airway inflammation and airway remodeling to exhibit antitussive effect.","authors":"Quan He, Weihua Liu, Xiaomei Ma, Hongxiu Li, Weiqi Feng, Xuzhi Lu, Ying Li, Zi Chen","doi":"10.4196/kjpp.2024.28.3.229","DOIUrl":"https://doi.org/10.4196/kjpp.2024.28.3.229","url":null,"abstract":"<p><p>Cough is a common symptom of several respiratory diseases. However, frequent coughing from acute to chronic often causes great pain to patients. It may turn into cough variant asthma, which seriously affects people's quality of life. For cough treatment, it is dominated by over-the-counter antitussive drugs, such as asmeton, but most currently available antitussive drugs have serious side effects. Thus, there is a great need for the development of new drugs with potent cough suppressant. BALB/c mice were used to construct mice model with cough to investigate the pharmacological effects of pectolinarigenin (PEC). Hematoxylin-eosin and Masson staining were used to assess lung injury and airway remodeling, and ELISA was used to assess the level of inflammatory factor release. In addition, inflammatory cell counts were measured to assess airway inflammation. Airway hyperresponsiveness assay was used to assess respiratory resistance in mice. Finally, we used Western blotting to explore the potential mechanisms of PEC. We found that PEC could alleviate lung tissue injury and reduce the release of inflammatory factors, inhibit of cough frequency and airway wall collagen deposition in mice model with cough. Meanwhile, PEC inhibited the Ras/ERK/c-Fos pathway to exhibit antitussive effect. Therefore, PEC may be a potential drug for cough suppression.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 3","pages":"229-237"},"PeriodicalIF":2.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058546/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140862742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.4196/kjpp.2024.28.3.183
Jinxiu Hou, Bo Wang, Jing Li, Wenbo Liu
Ferroptosis is a novel mechanism of programmed cell death, characterized by intracellular iron overload, intensified lipid peroxidation, and abnormal accumulation of reactive oxygen species, which ultimately resulting in cell membrane impairment and demise. Research has revealed that cancer cells exhibit a greater demand for iron compared to normal cells, indicating a potential susceptibility of cancer cells to ferroptosis. Stomach and colorectal cancers are common gastrointestinal malignancies, and their elevated occurrence and mortality rates render them a global health concern. Despite significant advancements in medical treatments, certain unfavorable consequences and drug resistance persist. Consequently, directing attention towards the phenomenon of ferroptosis in gastric and colorectal cancers holds promise for enhancing therapeutic efficacy. This review aims to elucidate the intricate cellular metabolism associated with ferroptosis, encompassing lipid and amino acid metabolism, as well as iron metabolic processes. Furthermore, the significance of ferroptosis in the context of gastric and colorectal cancer is thoroughly examined and discussed.
{"title":"Ferroptosis and its role in gastric and colorectal cancers.","authors":"Jinxiu Hou, Bo Wang, Jing Li, Wenbo Liu","doi":"10.4196/kjpp.2024.28.3.183","DOIUrl":"https://doi.org/10.4196/kjpp.2024.28.3.183","url":null,"abstract":"<p><p>Ferroptosis is a novel mechanism of programmed cell death, characterized by intracellular iron overload, intensified lipid peroxidation, and abnormal accumulation of reactive oxygen species, which ultimately resulting in cell membrane impairment and demise. Research has revealed that cancer cells exhibit a greater demand for iron compared to normal cells, indicating a potential susceptibility of cancer cells to ferroptosis. Stomach and colorectal cancers are common gastrointestinal malignancies, and their elevated occurrence and mortality rates render them a global health concern. Despite significant advancements in medical treatments, certain unfavorable consequences and drug resistance persist. Consequently, directing attention towards the phenomenon of ferroptosis in gastric and colorectal cancers holds promise for enhancing therapeutic efficacy. This review aims to elucidate the intricate cellular metabolism associated with ferroptosis, encompassing lipid and amino acid metabolism, as well as iron metabolic processes. Furthermore, the significance of ferroptosis in the context of gastric and colorectal cancer is thoroughly examined and discussed.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 3","pages":"183-196"},"PeriodicalIF":2.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058540/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140866099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.4196/kjpp.2024.28.3.253
John Rajan, Girwar Singh Gaur, Karthik Shanmugavel, Adinarayanan S
Chronic neuropathic pain (CNP) is a complex condition often arising from neural maladaptation after nerve injury. Understanding CNP complications involves the intricate interplay between brain-heart dynamics, assessed through quantitative electroencephalogram (qEEG) and heart rate variability (HRV). However, insights into their interaction in chronic pain are limited. Resting EEG and simultaneous electrocardiogram (lead II) of the participants were recorded for qEEG and HRV analysis. Correlations between HRV and qEEG parameters were calculated and compared with age, sex, and body mass index (BMI)-matched controls. CNP patients showed reduced HRV and significant increases in qEEG power spectral densities within delta, theta, and beta frequency ranges. A positive correlation was found between low frequency/ high frequency (LF/HF) ratio in HRV analysis and theta, alpha, and beta frequency bands in qEEG among CNP patients. However, no significant correlation was observed between parasympathetic indices and theta, beta bands in qEEG within CNP group, unlike age, sex, and BMI-matched healthy controls. CNP patients display significant HRV reductions and distinctive qEEG patterns. While healthy controls exhibit significant correlations between parasympathetic HRV parameters and qEEG spectral densities, these relationships are diminished or absent in CNP individuals. LF/HF ratio, reflecting sympathovagal balance, correlates significantly with qEEG frequency bands (theta, alpha, beta), illuminating autonomic dysregulation in CNP. These findings emphasize the intricate brain-heart interplay in chronic pain, warranting further exploration.
{"title":"Relation between heart rate variability and spectral analysis of electroencephalogram in chronic neuropathic pain patients.","authors":"John Rajan, Girwar Singh Gaur, Karthik Shanmugavel, Adinarayanan S","doi":"10.4196/kjpp.2024.28.3.253","DOIUrl":"https://doi.org/10.4196/kjpp.2024.28.3.253","url":null,"abstract":"<p><p>Chronic neuropathic pain (CNP) is a complex condition often arising from neural maladaptation after nerve injury. Understanding CNP complications involves the intricate interplay between brain-heart dynamics, assessed through quantitative electroencephalogram (qEEG) and heart rate variability (HRV). However, insights into their interaction in chronic pain are limited. Resting EEG and simultaneous electrocardiogram (lead II) of the participants were recorded for qEEG and HRV analysis. Correlations between HRV and qEEG parameters were calculated and compared with age, sex, and body mass index (BMI)-matched controls. CNP patients showed reduced HRV and significant increases in qEEG power spectral densities within delta, theta, and beta frequency ranges. A positive correlation was found between low frequency/ high frequency (LF/HF) ratio in HRV analysis and theta, alpha, and beta frequency bands in qEEG among CNP patients. However, no significant correlation was observed between parasympathetic indices and theta, beta bands in qEEG within CNP group, unlike age, sex, and BMI-matched healthy controls. CNP patients display significant HRV reductions and distinctive qEEG patterns. While healthy controls exhibit significant correlations between parasympathetic HRV parameters and qEEG spectral densities, these relationships are diminished or absent in CNP individuals. LF/HF ratio, reflecting sympathovagal balance, correlates significantly with qEEG frequency bands (theta, alpha, beta), illuminating autonomic dysregulation in CNP. These findings emphasize the intricate brain-heart interplay in chronic pain, warranting further exploration.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 3","pages":"253-264"},"PeriodicalIF":2.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058544/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140873145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.4196/kjpp.2024.28.3.265
Jianfeng Shan, Yuanxiao Liang, Zhili Yang, Wenshan Chen, Yun Chen, Ke Sun
This study aims to explore possible effect of RNA polymerase I subunit D (POLR1D) on proliferation and angiogenesis ability of colorectal cancer (CRC) cells and mechanism herein. The correlation of POLR1D and Yin Yang 1 (YY1) expressions with prognosis of CRC patients in TCGA database was analyzed. Quantitative realtime polymerase chain reaction (qRT-PCR) and Western blot were applied to detect expression levels of POLR1D and YY1 in CRC cell lines and CRC tissues. SW480 and HT- 29 cells were transfected with si-POLR1D or pcDNA3.1-POLR1D to achieve POLR1D suppression or overexpression before cell migration, angiogenesis of human umbilical vein endothelial cells were assessed. Western blot was used to detect expressions of p38 MAPK signal pathway related proteins and interaction of YY1 with POLR1D was confirmed by dual luciferase reporter gene assay and chromatin immunoprecipitation (ChIP). TCGA data showed that both POLR1D and YY1 expressions were up-regulated in CRC patients. High expression of POLR1D was associated with poor prognosis of CRC patients. The results showed that POLR1D and YY1 were highly expressed in CRC cell lines. Inhibition or overexpression of POLR1D can respectively suppress or enhance proliferation and angiogenesis of CRC cells. YY1 inhibition can suppress CRC progression and deactivate p38 MAPK signal pathway, which can be counteracted by POLR1D overexpression. JASPAR predicted YY1 can bind with POLR1D promoter, which was confirmed by dual luciferase reporter gene assay and ChIP. YY1 transcription can up-regulate POLR1D expression to activate p38 MAPK signal pathway, thus promoting proliferation and angiogenesis ability of CRC cells.
{"title":"RNA polymerase I subunit D activated by Yin Yang 1 transcription promote cell proliferation and angiogenesis of colorectal cancer cells.","authors":"Jianfeng Shan, Yuanxiao Liang, Zhili Yang, Wenshan Chen, Yun Chen, Ke Sun","doi":"10.4196/kjpp.2024.28.3.265","DOIUrl":"https://doi.org/10.4196/kjpp.2024.28.3.265","url":null,"abstract":"<p><p>This study aims to explore possible effect of RNA polymerase I subunit D (POLR1D) on proliferation and angiogenesis ability of colorectal cancer (CRC) cells and mechanism herein. The correlation of POLR1D and Yin Yang 1 (YY1) expressions with prognosis of CRC patients in TCGA database was analyzed. Quantitative realtime polymerase chain reaction (qRT-PCR) and Western blot were applied to detect expression levels of POLR1D and YY1 in CRC cell lines and CRC tissues. SW480 and HT- 29 cells were transfected with si-POLR1D or pcDNA3.1-POLR1D to achieve POLR1D suppression or overexpression before cell migration, angiogenesis of human umbilical vein endothelial cells were assessed. Western blot was used to detect expressions of p38 MAPK signal pathway related proteins and interaction of YY1 with POLR1D was confirmed by dual luciferase reporter gene assay and chromatin immunoprecipitation (ChIP). TCGA data showed that both POLR1D and YY1 expressions were up-regulated in CRC patients. High expression of POLR1D was associated with poor prognosis of CRC patients. The results showed that POLR1D and YY1 were highly expressed in CRC cell lines. Inhibition or overexpression of POLR1D can respectively suppress or enhance proliferation and angiogenesis of CRC cells. YY1 inhibition can suppress CRC progression and deactivate p38 MAPK signal pathway, which can be counteracted by POLR1D overexpression. JASPAR predicted YY1 can bind with POLR1D promoter, which was confirmed by dual luciferase reporter gene assay and ChIP. YY1 transcription can up-regulate POLR1D expression to activate p38 MAPK signal pathway, thus promoting proliferation and angiogenesis ability of CRC cells.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 3","pages":"265-273"},"PeriodicalIF":2.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058543/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140863307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.4196/kjpp.2024.28.3.209
Jehee Jang, Ki-Woon Kang, Young-Won Kim, Seohyun Jeong, Jaeyoon Park, Jihoon Park, Jisung Moon, Junghyun Jang, Seohyeon Kim, Sunghun Kim, Sungjoo Cho, Yurim Lee, Hyoung Kyu Kim, Jin Han, Eun-A Ko, Sung-Cherl Jung, Jung-Ha Kim, Jae-Hong Ko
In addition to cellular damage, ischemia-reperfusion (IR) injury induces substantial damage to the mitochondria and endoplasmic reticulum. In this study, we sought to determine whether impaired mitochondrial function owing to IR could be restored by transplanting mitochondria into the heart under ex vivo IR states. Additionally, we aimed to provide preliminary results to inform therapeutic options for ischemic heart disease (IHD). Healthy mitochondria isolated from autologous gluteus maximus muscle were transplanted into the hearts of Sprague-Dawley rats damaged by IR using the Langendorff system, and the heart rate and oxygen consumption capacity of the mitochondria were measured to confirm whether heart function was restored. In addition, relative expression levels were measured to identify the genes related to IR injury. Mitochondrial oxygen consumption capacity was found to be lower in the IR group than in the group that underwent mitochondrial transplantation after IR injury (p < 0.05), and the control group showed a tendency toward increased oxygen consumption capacity compared with the IR group. Among the genes related to fatty acid metabolism, Cpt1b (p < 0.05) and Fads1 (p < 0.01) showed significant expression in the following order: IR group, IR + transplantation group, and control group. These results suggest that mitochondrial transplantation protects the heart from IR damage and may be feasible as a therapeutic option for IHD.
{"title":"Cardioprotection <i>via</i> mitochondrial transplantation supports fatty acid metabolism in ischemia-reperfusion injured rat heart.","authors":"Jehee Jang, Ki-Woon Kang, Young-Won Kim, Seohyun Jeong, Jaeyoon Park, Jihoon Park, Jisung Moon, Junghyun Jang, Seohyeon Kim, Sunghun Kim, Sungjoo Cho, Yurim Lee, Hyoung Kyu Kim, Jin Han, Eun-A Ko, Sung-Cherl Jung, Jung-Ha Kim, Jae-Hong Ko","doi":"10.4196/kjpp.2024.28.3.209","DOIUrl":"https://doi.org/10.4196/kjpp.2024.28.3.209","url":null,"abstract":"<p><p>In addition to cellular damage, ischemia-reperfusion (IR) injury induces substantial damage to the mitochondria and endoplasmic reticulum. In this study, we sought to determine whether impaired mitochondrial function owing to IR could be restored by transplanting mitochondria into the heart under ex vivo IR states. Additionally, we aimed to provide preliminary results to inform therapeutic options for ischemic heart disease (IHD). Healthy mitochondria isolated from autologous gluteus maximus muscle were transplanted into the hearts of Sprague-Dawley rats damaged by IR using the Langendorff system, and the heart rate and oxygen consumption capacity of the mitochondria were measured to confirm whether heart function was restored. In addition, relative expression levels were measured to identify the genes related to IR injury. Mitochondrial oxygen consumption capacity was found to be lower in the IR group than in the group that underwent mitochondrial transplantation after IR injury (p < 0.05), and the control group showed a tendency toward increased oxygen consumption capacity compared with the IR group. Among the genes related to fatty acid metabolism, <i>Cpt1b</i> (p < 0.05) and <i>Fads1</i> (p < 0.01) showed significant expression in the following order: IR group, IR + transplantation group, and control group. These results suggest that mitochondrial transplantation protects the heart from IR damage and may be feasible as a therapeutic option for IHD.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 3","pages":"209-217"},"PeriodicalIF":2.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058541/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140855976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.4196/kjpp.2024.28.3.285
Hongkun Li, Yunfei Bian
Myocardial infarction is one of the leading causes of mortality globally. Currently, the pleiotropic inflammatory cytokine interleukin-6 (IL-6) is considered to be intimately related to the severity of myocardial injury during myocardial infarction. Interventions targeting IL-6 are a promising therapeutic option for myocardial infarction, but the underlying molecular mechanisms are not well understood. Here, we report the novel role of IL-6 in regulating adverse cardiac remodeling mediated by fibroblasts in a mouse model of myocardial infarction. It was found that the elevated expression of IL-6 in myocardium and cardiac fibroblasts was observed after myocardial infarction. Further, fibroblast-specific knockdown of Il6 significantly attenuated cardiac fibrosis and adverse cardiac remodeling and preserved cardiac function induced by myocardial infarction. Mechanistically, the role of Il6 contributing to cardiac fibrosis depends on signal transduction and activation of transcription (STAT)3 signaling activation. Additionally, Stat3 binds to the Il11 promoter region and contributes to the increased expression of Il11, which exacerbates cardiac fibrosis. In conclusion, these results suggest a novel role for IL-6 derived from fibroblasts in mediating Stat3 activation and substantially augmented Il11 expression in promoting cardiac fibrosis, highlighting its potential as a therapeutic target for cardiac fibrosis.
{"title":"Fibroblast-derived interleukin-6 exacerbates adverse cardiac remodeling after myocardial infarction.","authors":"Hongkun Li, Yunfei Bian","doi":"10.4196/kjpp.2024.28.3.285","DOIUrl":"https://doi.org/10.4196/kjpp.2024.28.3.285","url":null,"abstract":"<p><p>Myocardial infarction is one of the leading causes of mortality globally. Currently, the pleiotropic inflammatory cytokine interleukin-6 (IL-6) is considered to be intimately related to the severity of myocardial injury during myocardial infarction. Interventions targeting IL-6 are a promising therapeutic option for myocardial infarction, but the underlying molecular mechanisms are not well understood. Here, we report the novel role of IL-6 in regulating adverse cardiac remodeling mediated by fibroblasts in a mouse model of myocardial infarction. It was found that the elevated expression of IL-6 in myocardium and cardiac fibroblasts was observed after myocardial infarction. Further, fibroblast-specific knockdown of <i>Il6</i> significantly attenuated cardiac fibrosis and adverse cardiac remodeling and preserved cardiac function induced by myocardial infarction. Mechanistically, the role of Il6 contributing to cardiac fibrosis depends on signal transduction and activation of transcription (STAT)3 signaling activation. Additionally, Stat3 binds to the <i>Il11</i> promoter region and contributes to the increased expression of <i>Il11</i>, which exacerbates cardiac fibrosis. In conclusion, these results suggest a novel role for IL-6 derived from fibroblasts in mediating Stat3 activation and substantially augmented <i>Il11</i> expression in promoting cardiac fibrosis, highlighting its potential as a therapeutic target for cardiac fibrosis.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 3","pages":"285-294"},"PeriodicalIF":2.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058547/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140867336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.4196/kjpp.2024.28.3.239
Canmin Zhu, Dili Wang, Chang Chang, Aofei Liu, Ji Zhou, Ting Yang, Yuanfeng Jiang, Xia Li, Weijian Jiang
Dexmedetomidine displays multiple mechanisms of neuroprotection in ameliorating ischemic brain injury. In this study, we explored the beneficial effects of dexmedetomidine on blood-brain barrier (BBB) integrity and neuroinflammation in cerebral ischemia/reperfusion injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 1.5 h and reperfusion for 24 h to establish a rat model of cerebral ischemia/reperfusion injury. Dexmedetomidine (9 g/kg) was administered to rats 30 min after MCAO through intravenous injection, and SB203580 (a p38 MAPK inhibitor, 200 g/kg) was injected intraperitoneally 30 min before MCAO. Brain damages were evaluated by 2,3,5-triphenyltetrazolium chloride staining, hematoxylin-eosin staining, Nissl staining, and brain water content assessment. BBB permeability was examined by Evans blue staining. Expression levels of claudin-5, zonula occludens-1, occludin, and matrix metalloproteinase-9 (MMP-9) as well as M1/M2 phenotypes-associated markers were assessed using immunofluorescence, RT-qPCR, Western blotting, and gelatin zymography. Enzyme-linked immunosorbent assay was used to examine inflammatory cytokine levels. We found that dexmedetomidine or SB203580 attenuated infarct volume, brain edema, BBB permeability, and neuroinflammation, and promoted M2 microglial polarization after cerebral ischemia/reperfusion injury. Increased MMP-9 activity by ischemia/reperfusion injury was inhibited by dexmedetomidine or SB203580. Dexmedetomidine inhibited the activation of the ERK, JNK, and p38 MAPK pathways. Moreover, activation of JNK or p38 MAPK reversed the protective effects of dexmedetomidine against ischemic brain injury. Overall, dexmedetomidine ameliorated brain injury by alleviating BBB permeability and promoting M2 polarization in experimental cerebral ischemia/reperfusion injury model by inhibiting the activation of JNK and p38 MAPK pathways.
{"title":"Dexmedetomidine alleviates blood-brain barrier disruption in rats after cerebral ischemia-reperfusion by suppressing JNK and p38 MAPK signaling.","authors":"Canmin Zhu, Dili Wang, Chang Chang, Aofei Liu, Ji Zhou, Ting Yang, Yuanfeng Jiang, Xia Li, Weijian Jiang","doi":"10.4196/kjpp.2024.28.3.239","DOIUrl":"https://doi.org/10.4196/kjpp.2024.28.3.239","url":null,"abstract":"<p><p>Dexmedetomidine displays multiple mechanisms of neuroprotection in ameliorating ischemic brain injury. In this study, we explored the beneficial effects of dexmedetomidine on blood-brain barrier (BBB) integrity and neuroinflammation in cerebral ischemia/reperfusion injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 1.5 h and reperfusion for 24 h to establish a rat model of cerebral ischemia/reperfusion injury. Dexmedetomidine (9 g/kg) was administered to rats 30 min after MCAO through intravenous injection, and SB203580 (a p38 MAPK inhibitor, 200 g/kg) was injected intraperitoneally 30 min before MCAO. Brain damages were evaluated by 2,3,5-triphenyltetrazolium chloride staining, hematoxylin-eosin staining, Nissl staining, and brain water content assessment. BBB permeability was examined by Evans blue staining. Expression levels of claudin-5, zonula occludens-1, occludin, and matrix metalloproteinase-9 (MMP-9) as well as M1/M2 phenotypes-associated markers were assessed using immunofluorescence, RT-qPCR, Western blotting, and gelatin zymography. Enzyme-linked immunosorbent assay was used to examine inflammatory cytokine levels. We found that dexmedetomidine or SB203580 attenuated infarct volume, brain edema, BBB permeability, and neuroinflammation, and promoted M2 microglial polarization after cerebral ischemia/reperfusion injury. Increased MMP-9 activity by ischemia/reperfusion injury was inhibited by dexmedetomidine or SB203580. Dexmedetomidine inhibited the activation of the ERK, JNK, and p38 MAPK pathways. Moreover, activation of JNK or p38 MAPK reversed the protective effects of dexmedetomidine against ischemic brain injury. Overall, dexmedetomidine ameliorated brain injury by alleviating BBB permeability and promoting M2 polarization in experimental cerebral ischemia/reperfusion injury model by inhibiting the activation of JNK and p38 MAPK pathways.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 3","pages":"239-252"},"PeriodicalIF":2.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140871298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.4196/kjpp.2024.28.2.129
Qi Yang, Ting Yang, Xing Liu, Shengquan Liu, Wei Liu, Liangui Nie, Chun Chu, Jun Yang
Sulfur dioxide (SO2), a novel endogenous gas signaling molecule, is involved in the regulation of cardiac function. Exerting a key role in progression of hyperthyroidism-induced cardiomyopathy (HTC), myocardial fibrosis is mainly caused by myocardial apoptosis, leading to poor treatment outcomes and prognoses. This study aimed to investigate the effect of SO2 on the hyperthyroidism-induced myocardial fibrosis and the underlying regulatory mechanisms. Elisa, Masson staining, Western-Blot, transmission electron microscope, and immunofluorescence were employed to evaluate the myocardial interstitial collagen deposition, endoplasmic reticulum stress (ERS), apoptosis, changes in endogenous SO2, and Hippo pathways from in vitro and in vivo experiments. The study results indicated that the hyperthyroidism-induced myocardial fibrosis was accompanied by decreased cardiac function, and down-regulated ERS, apoptosis, and endogenous SO2-producing enzyme aspartate aminotransferase (AAT)1/2 in cardiac myocytes. In contrast, exogenous SO2 donors improved cardiac function, reduced myocardial interstitial collagen deposition, up-regulated AAT1/2, antagonized ERS and apoptosis, and inhibited excessive activation of Hippo pathway in hyperthyroid rats. In conclusion, the results herein suggested that SO2 inhibited the overactivation of the Hippo pathway, antagonized ERS and apoptosis, and alleviated myocardial fibrosis in hyperthyroid rats. Therefore, this study was expected to identify intervention targets and new strategies for prevention and treatment of HTC.
二氧化硫(SO2)是一种新型的内源性气体信号分子,参与心脏功能的调节。心肌纤维化是甲亢诱发心肌病(HTC)进展的关键因素,主要由心肌凋亡引起,导致治疗效果和预后不佳。本研究旨在探讨二氧化硫对甲亢诱导的心肌纤维化的影响及其潜在调控机制。采用Elisa、Masson染色、Western-Blot、透射电子显微镜和免疫荧光技术,从体外和体内实验评估心肌间质胶原沉积、内质网应激(ERS)、细胞凋亡、内源性SO2变化和Hippo通路。研究结果表明,甲状腺机能亢进症诱发的心肌纤维化伴随着心脏功能下降,并下调心肌细胞中的ERS、细胞凋亡和内源性SO2产生酶天冬氨酸氨基转移酶(AAT)1/2。相反,外源性 SO2 供体可改善甲亢大鼠的心脏功能,减少心肌间质胶原沉积,上调 AAT1/2,拮抗 ERS 和细胞凋亡,并抑制 Hippo 通路的过度激活。总之,本文的研究结果表明,SO2能抑制Hippo通路的过度激活,拮抗ERS和细胞凋亡,缓解甲亢大鼠的心肌纤维化。因此,这项研究有望为预防和治疗 HTC 找出干预靶点和新策略。
{"title":"Effects of gas signaling molecule SO<sub>2</sub> in cardiac functions of hyperthyroid rats.","authors":"Qi Yang, Ting Yang, Xing Liu, Shengquan Liu, Wei Liu, Liangui Nie, Chun Chu, Jun Yang","doi":"10.4196/kjpp.2024.28.2.129","DOIUrl":"10.4196/kjpp.2024.28.2.129","url":null,"abstract":"<p><p>Sulfur dioxide (SO<sub>2</sub>), a novel endogenous gas signaling molecule, is involved in the regulation of cardiac function. Exerting a key role in progression of hyperthyroidism-induced cardiomyopathy (HTC), myocardial fibrosis is mainly caused by myocardial apoptosis, leading to poor treatment outcomes and prognoses. This study aimed to investigate the effect of SO<sub>2</sub> on the hyperthyroidism-induced myocardial fibrosis and the underlying regulatory mechanisms. Elisa, Masson staining, Western-Blot, transmission electron microscope, and immunofluorescence were employed to evaluate the myocardial interstitial collagen deposition, endoplasmic reticulum stress (ERS), apoptosis, changes in endogenous SO<sub>2</sub>, and Hippo pathways from <i>in vitro</i> and <i>in vivo</i> experiments. The study results indicated that the hyperthyroidism-induced myocardial fibrosis was accompanied by decreased cardiac function, and down-regulated ERS, apoptosis, and endogenous SO<sub>2</sub>-producing enzyme aspartate aminotransferase (AAT)1/2 in cardiac myocytes. In contrast, exogenous SO<sub>2</sub> donors improved cardiac function, reduced myocardial interstitial collagen deposition, up-regulated AAT1/2, antagonized ERS and apoptosis, and inhibited excessive activation of Hippo pathway in hyperthyroid rats. In conclusion, the results herein suggested that SO<sub>2</sub> inhibited the overactivation of the Hippo pathway, antagonized ERS and apoptosis, and alleviated myocardial fibrosis in hyperthyroid rats. Therefore, this study was expected to identify intervention targets and new strategies for prevention and treatment of HTC.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 2","pages":"129-143"},"PeriodicalIF":2.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902587/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139984541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}