首页 > 最新文献

Korean Journal of Physiology & Pharmacology最新文献

英文 中文
Chemopreventive potential of goniothalamin in diethylnitrosamine-induced hepatocellular carcinoma through the suppression of P13K/AKT signalling pathway. 通过抑制P13K/AKT信号通路,补骨脂素对二乙亚硝胺诱导的肝细胞癌具有化学预防潜力
IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 DOI: 10.4196/kjpp.2024.28.6.539
Jie Li, Dong Zhan, Cui Chen, Rongfu Li, Fang-Qing Zhu

Liver cancer is the most lethal form of cancer and carries a high risk of death around the world. Goniothalamin (GTN) is a styryl-lactone that possesses antiproliferative and apoptotic activity. The molecular action of GTN is not yet fully evaluated. Thus, our research has been intended to assess the chemopreventive and apoptotic activities of diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in rats. Rats were separated into 4 groups: control, DEN only, DEN + GTN (30 mg/kg bw), and GTN (30 mg/kg bw) alone. We evaluated body weight, liver weight, tumor incidence, hepatic toxic markers, antioxidants, inflammatory cytokines, histopathology, immunohistochemistry, and Western blot studies. DEN lessened body weight, antioxidants, and apoptosis, whereas it elevated tumor incidence, toxic markers, cytokines, and Bcl-2 expression. GTN treatment maintains body weight, liver weight, and antioxidant levels, and it also prevents tumor incidence, oxidative stress, toxic markers, pro-inflammatory cytokines, and histological changes. It triggers apoptosis by constraining Bcl-2 and elevating caspase-3 levels. GTN also attenuated the P13K/ AKT signaling which enhanced apoptosis. These findings revealed that GTN subdues the P13K/AKT pathway and has auspicious chemopreventive and apoptotic actions in DEN-induced HCC. Therefore, GTN would be suggested as a new medicine in natural remedies for liver cancer.

肝癌是最致命的癌症,在全世界都有很高的死亡风险。Goniothalamin(GTN)是一种苯乙烯内酯,具有抗增殖和细胞凋亡活性。GTN 的分子作用尚未得到充分评估。因此,我们的研究旨在评估二乙基亚硝胺(DEN)诱导的大鼠肝细胞癌(HCC)的化学预防和细胞凋亡活性。大鼠被分为 4 组:对照组、仅 DEN 组、DEN + GTN(30 毫克/千克体重)组和仅 GTN(30 毫克/千克体重)组。我们对大鼠的体重、肝脏重量、肿瘤发病率、肝脏毒性标记物、抗氧化剂、炎症细胞因子、组织病理学、免疫组化和 Western 印迹进行了评估。DEN降低了体重、抗氧化剂和细胞凋亡,而提高了肿瘤发病率、毒性标志物、细胞因子和Bcl-2的表达。GTN 治疗可维持体重、肝脏重量和抗氧化剂水平,还能防止肿瘤发生、氧化应激、毒性标志物、促炎细胞因子和组织学变化。它通过抑制 Bcl-2 和提高 caspase-3 水平来触发细胞凋亡。GTN 还能减弱 P13K/ AKT 信号传导,从而增强细胞凋亡。这些研究结果表明,GTN 可抑制 P13K/AKT 通路,对 DEN 诱导的 HCC 具有良好的化学预防和细胞凋亡作用。因此,GTN可作为肝癌自然疗法的一种新药。
{"title":"Chemopreventive potential of goniothalamin in diethylnitrosamine-induced hepatocellular carcinoma through the suppression of P13K/AKT signalling pathway.","authors":"Jie Li, Dong Zhan, Cui Chen, Rongfu Li, Fang-Qing Zhu","doi":"10.4196/kjpp.2024.28.6.539","DOIUrl":"10.4196/kjpp.2024.28.6.539","url":null,"abstract":"<p><p>Liver cancer is the most lethal form of cancer and carries a high risk of death around the world. Goniothalamin (GTN) is a styryl-lactone that possesses antiproliferative and apoptotic activity. The molecular action of GTN is not yet fully evaluated. Thus, our research has been intended to assess the chemopreventive and apoptotic activities of diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in rats. Rats were separated into 4 groups: control, DEN only, DEN + GTN (30 mg/kg bw), and GTN (30 mg/kg bw) alone. We evaluated body weight, liver weight, tumor incidence, hepatic toxic markers, antioxidants, inflammatory cytokines, histopathology, immunohistochemistry, and Western blot studies. DEN lessened body weight, antioxidants, and apoptosis, whereas it elevated tumor incidence, toxic markers, cytokines, and Bcl-2 expression. GTN treatment maintains body weight, liver weight, and antioxidant levels, and it also prevents tumor incidence, oxidative stress, toxic markers, pro-inflammatory cytokines, and histological changes. It triggers apoptosis by constraining Bcl-2 and elevating caspase-3 levels. GTN also attenuated the P13K/ AKT signaling which enhanced apoptosis. These findings revealed that GTN subdues the P13K/AKT pathway and has auspicious chemopreventive and apoptotic actions in DEN-induced HCC. Therefore, GTN would be suggested as a new medicine in natural remedies for liver cancer.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 6","pages":"539-547"},"PeriodicalIF":1.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519720/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exercise improves muscle mitochondrial dysfunction-associated lipid profile under circadian rhythm disturbance. 在昼夜节律紊乱的情况下,运动可改善肌肉线粒体功能障碍相关的血脂状况。
IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 DOI: 10.4196/kjpp.2024.28.6.515
Yu Gu, Dong-Hun Seong, Wenduo Liu, Zilin Wang, Yong Whi Jeong, Jae-Cheol Kim, Dae Ryong Kang, Rose Ji Eun Lee, Jin-Ho Koh, Sang Hyun Kim

We investigated whether endurance exercise training (EXT) ameliorates circadian rhythm (CR)-induced risk factors by improving skeletal muscle (SKM) mitochondrial biogenesis, reducing oxidative stress, and modulating apoptotic protein expression. We distinguished between regular and shift workers using the National Health and Nutrition Examination Survey (NHANES) and investigated the health problems caused by shift work (CR disturbance) and the potential therapeutic effects of exercise. In our animal study, 36 rats underwent 12 weeks of CR disturbance, divided into regular and irregular CR groups. These groups were further split into EXT (n = 12) and sedentary (n = 12) for an additional 8 weeks. We analyzed SKM tissue to understand the molecular changes induced by CR and EXT. NHANES data were analyzed using SAS 9.4 and Prism 8 software, while experimental animal data were analyzed using Prism 8 software. The statistical procedures used in each experiment are indicated in the figure legends. Our studies showed that CR disturbance increases dyslipidemia, alters circadian clock proteins (BMAL1, PER2), raises apoptotic protein levels, and reduces mitochondrial biogenesis in SKM. EXT improved LDL-C and HDLC levels without affecting muscle BMAL1 expression. It also enhanced mitochondrial biogenesis (AMPK, PGC-1α, Tfam, NADH-UO, COX-I), antioxidant levels (Catalase, SOD1, SOD2), and apoptotic protein (p53, Bax/Bcl2) expression or activity in SKM. We demonstrated that shift work-induced CR disturbance leads to dyslipidemia, diminished mitochondrial biogenesis, and reduced antioxidant capacity in SKM. However, EXT can counteract dyslipidemia under CR disturbance, potentially lowering the risk of cardiovascular disorders.

我们研究了耐力运动训练(EXT)是否能通过改善骨骼肌(SKM)线粒体生物生成、减少氧化应激和调节凋亡蛋白表达来改善昼夜节律(CR)诱发的风险因素。我们利用美国国家健康与营养调查(NHANES)区分了普通工人和轮班工人,并调查了轮班工作(昼夜节律紊乱)导致的健康问题以及运动的潜在治疗效果。在我们的动物研究中,36 只大鼠接受了为期 12 周的 CR 干扰,分为定期 CR 组和不定期 CR 组。这些组又分为EXT组(n = 12)和静坐组(n = 12),共8周。我们对 SKM 组织进行了分析,以了解 CR 和 EXT 引起的分子变化。NHANES 数据使用 SAS 9.4 和 Prism 8 软件进行分析,实验动物数据使用 Prism 8 软件进行分析。每个实验所使用的统计程序均在图例中标明。我们的研究表明,CR 干扰会增加 SKM 的血脂异常、改变昼夜节律钟蛋白(BMAL1、PER2)、提高凋亡蛋白水平并减少线粒体的生物生成。EXT 可改善低密度脂蛋白胆固醇(LDL-C)和高密度脂蛋白胆固醇(HDLC)水平,但不影响肌肉中 BMAL1 的表达。它还增强了 SKM 的线粒体生物生成(AMPK、PGC-1α、Tfam、NADH-UO、COX-I)、抗氧化水平(过氧化氢酶、SOD1、SOD2)和凋亡蛋白(p53、Bax/Bcl2)的表达或活性。我们证明,轮班工作引起的 CR 干扰会导致 SKM 中的血脂异常、线粒体生物生成减弱和抗氧化能力降低。然而,EXT 可以抵消 CR 干扰下的血脂异常,从而降低心血管疾病的风险。
{"title":"Exercise improves muscle mitochondrial dysfunction-associated lipid profile under circadian rhythm disturbance.","authors":"Yu Gu, Dong-Hun Seong, Wenduo Liu, Zilin Wang, Yong Whi Jeong, Jae-Cheol Kim, Dae Ryong Kang, Rose Ji Eun Lee, Jin-Ho Koh, Sang Hyun Kim","doi":"10.4196/kjpp.2024.28.6.515","DOIUrl":"10.4196/kjpp.2024.28.6.515","url":null,"abstract":"<p><p>We investigated whether endurance exercise training (EXT) ameliorates circadian rhythm (CR)-induced risk factors by improving skeletal muscle (SKM) mitochondrial biogenesis, reducing oxidative stress, and modulating apoptotic protein expression. We distinguished between regular and shift workers using the National Health and Nutrition Examination Survey (NHANES) and investigated the health problems caused by shift work (CR disturbance) and the potential therapeutic effects of exercise. In our animal study, 36 rats underwent 12 weeks of CR disturbance, divided into regular and irregular CR groups. These groups were further split into EXT (n = 12) and sedentary (n = 12) for an additional 8 weeks. We analyzed SKM tissue to understand the molecular changes induced by CR and EXT. NHANES data were analyzed using SAS 9.4 and Prism 8 software, while experimental animal data were analyzed using Prism 8 software. The statistical procedures used in each experiment are indicated in the figure legends. Our studies showed that CR disturbance increases dyslipidemia, alters circadian clock proteins (BMAL1, PER2), raises apoptotic protein levels, and reduces mitochondrial biogenesis in SKM. EXT improved LDL-C and HDLC levels without affecting muscle BMAL1 expression. It also enhanced mitochondrial biogenesis (AMPK, PGC-1α, Tfam, NADH-UO, COX-I), antioxidant levels (Catalase, SOD1, SOD2), and apoptotic protein (p53, Bax/Bcl2) expression or activity in SKM. We demonstrated that shift work-induced CR disturbance leads to dyslipidemia, diminished mitochondrial biogenesis, and reduced antioxidant capacity in SKM. However, EXT can counteract dyslipidemia under CR disturbance, potentially lowering the risk of cardiovascular disorders.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 6","pages":"515-526"},"PeriodicalIF":1.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519723/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting antioxidant activity of compounds based on chemical structure using machine learning methods. 利用机器学习方法根据化学结构预测化合物的抗氧化活性。
IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 DOI: 10.4196/kjpp.2024.28.6.527
Jinwoo Jung, Jeon-Ok Moon, Song Ih Ahn, Haeseung Lee

Oxidative stress is a well-established risk factor for numerous chronic diseases, emphasizing the need for efficient identification of potent antioxidants. Conventional methods for assessing antioxidant properties are often time-consuming and resource-intensive, typically relying on laborious biochemical assays. In this study, we investigated the applicability of machine learning (ML) algorithms for predicting the antioxidant activity of compounds based solely on their molecular structure. We evaluated the performance of five ML algorithms, Support Vector Machine (SVM), Logistic Regression (LR), XGBoost, Random Forest (RF), and Deep Neural Network (DNN), using a dataset of over 1,900 compounds with experimentally determined antioxidant activity. Both RF and SVM achieved the best overall performance, exhibiting high accuracy (> 0.9) and effectively distinguishing active and inactive compounds with high structural similarity. External validation using natural product data from the BATMAN database confirmed the generalizability of the RF and SVM models. Our results suggest that ML models serve as powerful tools to expedite the discovery of novel antioxidant candidates, potentially streamlining the development of future therapeutic interventions.

氧化应激是众多慢性疾病的既定风险因素,因此需要有效地识别强效抗氧化剂。评估抗氧化剂特性的传统方法往往耗费时间和资源,通常依赖于费力的生化试验。在本研究中,我们研究了机器学习(ML)算法在仅根据化合物分子结构预测其抗氧化活性方面的适用性。我们使用由 1900 多种经实验确定具有抗氧化活性的化合物组成的数据集,评估了支持向量机(SVM)、逻辑回归(LR)、XGBoost、随机森林(RF)和深度神经网络(DNN)这五种 ML 算法的性能。RF 和 SVM 的总体性能最佳,表现出较高的准确性(> 0.9),并能有效区分结构相似度较高的活性和非活性化合物。利用 BATMAN 数据库中的天然产品数据进行的外部验证证实了 RF 和 SVM 模型的通用性。我们的研究结果表明,ML 模型是加快发现新型抗氧化候选化合物的有力工具,有可能简化未来治疗干预措施的开发。
{"title":"Predicting antioxidant activity of compounds based on chemical structure using machine learning methods.","authors":"Jinwoo Jung, Jeon-Ok Moon, Song Ih Ahn, Haeseung Lee","doi":"10.4196/kjpp.2024.28.6.527","DOIUrl":"10.4196/kjpp.2024.28.6.527","url":null,"abstract":"<p><p>Oxidative stress is a well-established risk factor for numerous chronic diseases, emphasizing the need for efficient identification of potent antioxidants. Conventional methods for assessing antioxidant properties are often time-consuming and resource-intensive, typically relying on laborious biochemical assays. In this study, we investigated the applicability of machine learning (ML) algorithms for predicting the antioxidant activity of compounds based solely on their molecular structure. We evaluated the performance of five ML algorithms, Support Vector Machine (SVM), Logistic Regression (LR), XGBoost, Random Forest (RF), and Deep Neural Network (DNN), using a dataset of over 1,900 compounds with experimentally determined antioxidant activity. Both RF and SVM achieved the best overall performance, exhibiting high accuracy (> 0.9) and effectively distinguishing active and inactive compounds with high structural similarity. External validation using natural product data from the BATMAN database confirmed the generalizability of the RF and SVM models. Our results suggest that ML models serve as powerful tools to expedite the discovery of novel antioxidant candidates, potentially streamlining the development of future therapeutic interventions.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 6","pages":"527-537"},"PeriodicalIF":1.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519722/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hemin attenuates bleomycin-induced lung fibrosis in mice by regulating the TGF-β1/MAPK and AMPK/SIRT1/PGC-1α/HO-1/NF-κB pathways. 血红素通过调节TGF-β1/MAPK和AMPK/SIRT1/PGC-1α/HO-1/NF-κB途径,减轻博莱霉素诱导的小鼠肺纤维化。
IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 DOI: 10.4196/kjpp.2024.28.6.559
Wei Hao, Ting-Ting Yu, Wei Li, Guo-Guang Wang, Hui-Xian Hu, Ping-Ping Zhou

The objective of this study was to investigate the protective effect and potential mechanism of action of hemin on bleomycin-induced pulmonary fibrosis in mice. Male C57BL/6 mice were randomly divided into control, bleomycin and bleomycin + hemin groups. Mice in the bleomycin and bleomycin + hemin groups were injected intratracheally with bleomycin to establish the pulmonary fibrosis model. The bleomycin + hemin group mice were injected intraperitoneally with hemin starting 7 days before modeling until the end of Day 21 after modeling. Pathological changes in lung tissue were assessed by HE and Masson staining. Malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) levels were determined in lung tissue. Immunohistochemistry was performed to assess the expression of α-SMA and collagen I. The serum levels of IL-6 and TNF-α were measured via ELISA. Western blotting was used to determine the expression of TGF-β1, SIRT1, PGC-1α and HO-1 and the phosphorylation levels of p38, ERK1/2, JNK, AMPK and NF-κB p65 in lung tissue. Hemin significantly reduced lung indices, increased terminal body weight. It also significantly increased SOD and CAT activities; decreased MDA, IL-6 and TNF-α levels; reduced the levels of α-SMA and collagen I-positive cells; upregulated SIRT1, PGC-1α and HO-1 expression; promoted AMPK phosphorylation; and downregulated TGF-β1 expression and p38, ERK1/2, JNK and NF-κB p65 phosphorylation. Hemin might attenuate oxidative damage and inflammatory responses and reduces extracellular matrix deposition by regulating the expression and phosphorylation of proteins associated with the TGF-β1/MAPK and AMPK/SIRT1/PGC-1α/HO-1/NF-κB pathways, thereby alleviating bleomycin-induced pulmonary fibrosis.

本研究旨在探讨hemin对博莱霉素诱导的小鼠肺纤维化的保护作用及其潜在作用机制。雄性C57BL/6小鼠被随机分为对照组、博莱霉素组和博莱霉素+海明组。小鼠气管内注射博莱霉素,建立肺纤维化模型。博莱霉素+血清素组小鼠在造模前7天开始腹腔注射血清素,直至造模后第21天结束。通过 HE 和 Masson 染色评估肺组织的病理变化。测定肺组织中丙二醛(MDA)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的水平。免疫组化法评估了α-SMA和胶原蛋白I的表达。用 Western 印迹法测定肺组织中 TGF-β1、SIRT1、PGC-1α 和 HO-1 的表达以及 p38、ERK1/2、JNK、AMPK 和 NF-κB p65 的磷酸化水平。血红素能明显降低肺指数,增加末期体重。它还能明显提高 SOD 和 CAT 活性;降低 MDA、IL-6 和 TNF-α 水平;降低 α-SMA 和胶原 I 阳性细胞水平;上调 SIRT1、PGC-1α 和 HO-1 表达;促进 AMPK 磷酸化;以及下调 TGF-β1 表达和 p38、ERK1/2、JNK 和 NF-κB p65 磷酸化。血红素可通过调节TGF-β1/MAPK和AMPK/SIRT1/PGC-1α/HO-1/NF-κB通路相关蛋白的表达和磷酸化,减轻氧化损伤和炎症反应,减少细胞外基质沉积,从而缓解博莱霉素诱导的肺纤维化。
{"title":"Hemin attenuates bleomycin-induced lung fibrosis in mice by regulating the TGF-β1/MAPK and AMPK/SIRT1/PGC-1α/HO-1/NF-κB pathways.","authors":"Wei Hao, Ting-Ting Yu, Wei Li, Guo-Guang Wang, Hui-Xian Hu, Ping-Ping Zhou","doi":"10.4196/kjpp.2024.28.6.559","DOIUrl":"10.4196/kjpp.2024.28.6.559","url":null,"abstract":"<p><p>The objective of this study was to investigate the protective effect and potential mechanism of action of hemin on bleomycin-induced pulmonary fibrosis in mice. Male C57BL/6 mice were randomly divided into control, bleomycin and bleomycin + hemin groups. Mice in the bleomycin and bleomycin + hemin groups were injected intratracheally with bleomycin to establish the pulmonary fibrosis model. The bleomycin + hemin group mice were injected intraperitoneally with hemin starting 7 days before modeling until the end of Day 21 after modeling. Pathological changes in lung tissue were assessed by HE and Masson staining. Malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) levels were determined in lung tissue. Immunohistochemistry was performed to assess the expression of α-SMA and collagen I. The serum levels of IL-6 and TNF-α were measured via ELISA. Western blotting was used to determine the expression of TGF-β1, SIRT1, PGC-1α and HO-1 and the phosphorylation levels of p38, ERK1/2, JNK, AMPK and NF-κB p65 in lung tissue. Hemin significantly reduced lung indices, increased terminal body weight. It also significantly increased SOD and CAT activities; decreased MDA, IL-6 and TNF-α levels; reduced the levels of α-SMA and collagen I-positive cells; upregulated SIRT1, PGC-1α and HO-1 expression; promoted AMPK phosphorylation; and downregulated TGF-β1 expression and p38, ERK1/2, JNK and NF-κB p65 phosphorylation. Hemin might attenuate oxidative damage and inflammatory responses and reduces extracellular matrix deposition by regulating the expression and phosphorylation of proteins associated with the TGF-β1/MAPK and AMPK/SIRT1/PGC-1α/HO-1/NF-κB pathways, thereby alleviating bleomycin-induced pulmonary fibrosis.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 6","pages":"559-568"},"PeriodicalIF":1.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential expression of ORAI channels and STIM proteins in renal cell carcinoma subtypes: implications for metastasis and therapeutic targeting. 肾细胞癌亚型中 ORAI 通道和 STIM 蛋白的差异表达:对转移和靶向治疗的影响。
IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-31 DOI: 10.4196/kjpp.24.126
Ji-Hee Kim, Kyu-Hee Hwang, Jiyeon Oh, Sung-Eun Kim, Mi-Young Lee, Tae Sic Lee, Seung-Kuy Cha

Renal cell carcinoma (RCC) presents significant clinical challenges, highlighting the importance of understanding its molecular mechanisms. While store-operated Ca2+ entry (SOCE) is known to play an essential role in tumorigenesis and metastasis, its specific implications across various RCC subtypes remain underexplored. This study analyzed SOCE-related mRNA profiles from the KIRC and KIRP projects in The Cancer Genome Atlas (TCGA) database, focusing on differential gene expression and overall survival outcomes. Functional studies in clear cell RCC (Caki-1) and papillary RCC cell lines (pRCC, Caki-2) revealed increased expression of Orai1 and Orai3, along with STIM1, exhibited in both subtypes, with decreased STIM2 and increased Orai2 expression in pRCC. Notably, Orai3 expression had a gender-specific impact on survival, particularly in females with pRCC, where it inversely correlated with STIM2 expression. Functional assays showed Orai3 dominance in Caki-2 and Orai1 in Caki- 1. Interestingly, 2-APB inhibited SOCE in Caki-1 but enhanced it in Caki-2, suggesting Orai3 as the primary SOCE channel in pRCC. Knockdown of Orai1 and Orai3 reduced cell migration and proliferation via regulating focal adhesion kinase (FAK) and Cyclin D1 in both cell lines. These findings highlight the critical roles of Orai1 and Orai3 in RCC metastasis, with Orai3 linked to poorer prognosis in females with pRCC. This study offers valuable insights into RCC diagnostics and potential therapeutic strategies targeting ORAI channels and STIM proteins.

肾细胞癌(RCC)给临床带来了巨大挑战,这凸显了了解其分子机制的重要性。众所周知,贮存操作的 Ca2+ 进入(SOCE)在肿瘤发生和转移中起着至关重要的作用,但它对各种 RCC 亚型的具体影响仍未得到充分探索。本研究分析了癌症基因组图谱(TCGA)数据库中KIRC和KIRP项目中与SOCE相关的mRNA图谱,重点关注差异基因表达和总体生存结果。在透明细胞RCC(Caki-1)和乳头状RCC细胞系(pRCC,Caki-2)中进行的功能研究显示,Orai1和Orai3以及STIM1在这两种亚型中的表达均有所增加,而在pRCC中STIM2表达减少,Orai2表达增加。值得注意的是,Orai3的表达对生存有性别特异性的影响,尤其是在女性pRCC患者中,它与STIM2的表达成反比。有趣的是,2-APB抑制了Caki-1中的SOCE,但增强了Caki-2中的SOCE,这表明Orai3是pRCC中主要的SOCE通道。在这两种细胞系中,敲除 Orai1 和 Orai3 可通过调节病灶粘附激酶(FAK)和细胞周期蛋白 D1 减少细胞迁移和增殖。这些发现突显了Orai1和Orai3在RCC转移中的关键作用,Orai3与女性pRCC患者较差的预后有关。这项研究为 RCC 诊断以及针对 ORAI 通道和 STIM 蛋白的潜在治疗策略提供了宝贵的见解。
{"title":"Differential expression of ORAI channels and STIM proteins in renal cell carcinoma subtypes: implications for metastasis and therapeutic targeting.","authors":"Ji-Hee Kim, Kyu-Hee Hwang, Jiyeon Oh, Sung-Eun Kim, Mi-Young Lee, Tae Sic Lee, Seung-Kuy Cha","doi":"10.4196/kjpp.24.126","DOIUrl":"https://doi.org/10.4196/kjpp.24.126","url":null,"abstract":"<p><p>Renal cell carcinoma (RCC) presents significant clinical challenges, highlighting the importance of understanding its molecular mechanisms. While store-operated Ca<sup>2+</sup> entry (SOCE) is known to play an essential role in tumorigenesis and metastasis, its specific implications across various RCC subtypes remain underexplored. This study analyzed SOCE-related mRNA profiles from the KIRC and KIRP projects in The Cancer Genome Atlas (TCGA) database, focusing on differential gene expression and overall survival outcomes. Functional studies in clear cell RCC (Caki-1) and papillary RCC cell lines (pRCC, Caki-2) revealed increased expression of Orai1 and Orai3, along with STIM1, exhibited in both subtypes, with decreased STIM2 and increased Orai2 expression in pRCC. Notably, Orai3 expression had a gender-specific impact on survival, particularly in females with pRCC, where it inversely correlated with STIM2 expression. Functional assays showed Orai3 dominance in Caki-2 and Orai1 in Caki- 1. Interestingly, 2-APB inhibited SOCE in Caki-1 but enhanced it in Caki-2, suggesting Orai3 as the primary SOCE channel in pRCC. Knockdown of Orai1 and Orai3 reduced cell migration and proliferation <i>via</i> regulating focal adhesion kinase (FAK) and Cyclin D1 in both cell lines. These findings highlight the critical roles of Orai1 and Orai3 in RCC metastasis, with Orai3 linked to poorer prognosis in females with pRCC. This study offers valuable insights into RCC diagnostics and potential therapeutic strategies targeting ORAI channels and STIM proteins.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":"577"},"PeriodicalIF":1.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of PDGF/PDGFR signaling in various organs. PDGF/PDGFR 信号在不同器官中的作用。
IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-31 DOI: 10.4196/kjpp.24.309
Sung-Cherl Jung, Dawon Kang, Eun-A Ko

Platelet-derived growth factors (PDGFs) ligands and their corresponding receptors, PDGF receptor (PDGFR)α and PDGFRβ, play a crucial role in controlling diverse biological functions, including cell growth, viability and migration. These growth factors bind to PDGFRs, which are receptor tyrosine kinases present on the surface of target cells. The interaction between PDGFs and PDGFRs induces receptor dimerization and subsequent activation through auto-phosphorylation, which in turn triggers a cascade of intracellular signaling pathways. PDGF/PDGFR signaling is essential for maintaining normal physiological functions, including tissue regeneration and growth. However, dysregulation of this signaling pathway leads to pathological conditions, including fibrosis, atherosclerosis, and cancer development in various organs. The pathological impact of PDGF/PDGFR signaling primarily stems from its capacity to promote excessive cell proliferation, enhanced migration, and increased extracellular matrix deposition, resulting in tissue overgrowth, scarring, and abnormal vessel formation. These processes are integral to the pathogenesis of fibrotic, neoplastic, and vascular disorders. Therefore, understanding these pathways is crucial for developing targeted treatments designed to inhibit PDGF/PDGFR signaling in these diseases. This review delves into the dual role of PDGF/PDGFR signaling in both physiological and pathophysiological contexts across different organs and provides insights into current pharmacological therapies designed to target the PDGF signaling pathway. INTRODUCTION Platelet-derived growth factors (PDGFs) are key signaling molecules that interact with specific cell to modulate various cellular responses. Upon binding to their receptors (PDGFRs), PDGFs initiate dimerization and tyrosine phosphorylation, which activates downstream signaling pathways. The PDGF signaling network comprises four ligands-PDGF-A, PDGF-B, PDGFC, and PDGF-D, that interact with two receptors, PDGFRα and PDGFRβ [1-6]. PDGFRα exhibits broader ligand specificity, binding to PDGF-A, PDGF-B, PDGF-C homodimers, and PDGFAB heterodimers, whereas PDGFRβ specifically binds to PDGFB and PDGF-D homodimers. Under both physiological and pathol.

血小板衍生生长因子(PDGFs)配体及其相应受体(PDGF 受体(PDGFR)α 和 PDGFRβ)在控制细胞生长、活力和迁移等多种生物功能方面发挥着至关重要的作用。这些生长因子与靶细胞表面的受体酪氨酸激酶 PDGFR 结合。PDGF 与 PDGFR 之间的相互作用会诱导受体二聚化,随后通过自身磷酸化激活,进而引发一连串的细胞内信号通路。PDGF/PDGFR 信号对于维持组织再生和生长等正常生理功能至关重要。然而,这一信号通路的失调会导致病理状况,包括纤维化、动脉粥样硬化和各种器官的癌症发展。PDGF/PDGFR 信号的病理影响主要源于其促进细胞过度增殖、增强迁移和增加细胞外基质沉积的能力,从而导致组织过度生长、瘢痕形成和异常血管形成。这些过程与纤维化、肿瘤和血管疾病的发病机制密不可分。因此,了解这些通路对于开发旨在抑制这些疾病中 PDGF/PDGFR 信号转导的靶向治疗至关重要。本综述深入探讨了 PDGF/PDGFR 信号转导在不同器官的生理和病理生理学环境中的双重作用,并对目前针对 PDGF 信号转导通路的药物疗法进行了深入探讨。引言 血小板衍生生长因子(PDGF)是与特定细胞相互作用的关键信号分子,可调节各种细胞反应。与受体(PDGFRs)结合后,PDGFs 启动二聚化和酪氨酸磷酸化,从而激活下游信号通路。PDGF 信号网络包括四种配体--PDGF-A、PDGF-B、PDGFC 和 PDGF-D,它们与两种受体(PDGFRα 和 PDGFRβ)相互作用 [1-6]。PDGFRα 具有更广泛的配体特异性,能与 PDGF-A、PDGF-B、PDGF-C 同源二聚体和 PDGFAB 异源二聚体结合,而 PDGFRβ 则能与 PDGFB 和 PDGF-D 同源二聚体特异性结合。在生理和病理条件下,PDGFR
{"title":"Roles of PDGF/PDGFR signaling in various organs.","authors":"Sung-Cherl Jung, Dawon Kang, Eun-A Ko","doi":"10.4196/kjpp.24.309","DOIUrl":"https://doi.org/10.4196/kjpp.24.309","url":null,"abstract":"<p><p>Platelet-derived growth factors (PDGFs) ligands and their corresponding receptors, PDGF receptor (PDGFR)α and PDGFRβ, play a crucial role in controlling diverse biological functions, including cell growth, viability and migration. These growth factors bind to PDGFRs, which are receptor tyrosine kinases present on the surface of target cells. The interaction between PDGFs and PDGFRs induces receptor dimerization and subsequent activation through auto-phosphorylation, which in turn triggers a cascade of intracellular signaling pathways. PDGF/PDGFR signaling is essential for maintaining normal physiological functions, including tissue regeneration and growth. However, dysregulation of this signaling pathway leads to pathological conditions, including fibrosis, atherosclerosis, and cancer development in various organs. The pathological impact of PDGF/PDGFR signaling primarily stems from its capacity to promote excessive cell proliferation, enhanced migration, and increased extracellular matrix deposition, resulting in tissue overgrowth, scarring, and abnormal vessel formation. These processes are integral to the pathogenesis of fibrotic, neoplastic, and vascular disorders. Therefore, understanding these pathways is crucial for developing targeted treatments designed to inhibit PDGF/PDGFR signaling in these diseases. This review delves into the dual role of PDGF/PDGFR signaling in both physiological and pathophysiological contexts across different organs and provides insights into current pharmacological therapies designed to target the PDGF signaling pathway. INTRODUCTION Platelet-derived growth factors (PDGFs) are key signaling molecules that interact with specific cell to modulate various cellular responses. Upon binding to their receptors (PDGFRs), PDGFs initiate dimerization and tyrosine phosphorylation, which activates downstream signaling pathways. The PDGF signaling network comprises four ligands-PDGF-A, PDGF-B, PDGFC, and PDGF-D, that interact with two receptors, PDGFRα and PDGFRβ [1-6]. PDGFRα exhibits broader ligand specificity, binding to PDGF-A, PDGF-B, PDGF-C homodimers, and PDGFAB heterodimers, whereas PDGFRβ specifically binds to PDGFB and PDGF-D homodimers. Under both physiological and pathol.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fine particulate matter induces osteoclast-mediated bone loss in mice. 细颗粒物会诱发小鼠破骨细胞介导的骨质流失。
IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-31 DOI: 10.4196/kjpp.24.115
Hye Young Mun, Septika Prismasari, Jeong Hee Hong, Hana Lee, Doyong Kim, Han Sung Kim, Dong Min Shin, Jung Yun Kang

Fine particulate matter (FPM) is a major component of air pollution and has emerged as a significant global health concern owing to its adverse health effects. Previous studies have investigated the correlation between bone health and FPM through cohort or review studies. However, the effects of FPM exposure on bone health are poorly understood. This study aimed to investigate the effects of FPM on bone health and elucidate these effects in vitro and in vivo using mice. Micro-CT analysis in vivo revealed FPM exposure decreased bone mineral density, trabecular bone volume/total volume ratio, and trabecular number in the femurs of mice, while increasing trabecular separation. Histological analysis showed that the FPM-treated group had a reduced trabecular area and an increased number of osteoclasts in the bone tissue. Moreover, in vitro studies revealed that low concentrations of FPM significantly enhanced osteoclast differentiation. These findings further support the notion that short-term FPM exposure negatively impacts bone health, providing a foundation for further research on this topic.

细颗粒物(FPM)是空气污染的主要成分,由于其对健康的不利影响,已成为全球关注的重要健康问题。以往的研究通过队列或回顾性研究调查了骨骼健康与 FPM 之间的相关性。然而,人们对暴露于 FPM 对骨骼健康的影响知之甚少。本研究旨在调查 FPM 对骨骼健康的影响,并利用小鼠在体外和体内阐明这些影响。体内显微 CT 分析显示,暴露于 FPM 会降低小鼠股骨中的骨矿物质密度、骨小梁体积/总体积比和骨小梁数量,同时增加骨小梁分离度。组织学分析表明,FPM 处理组的骨小梁面积减少,骨组织中破骨细胞的数量增加。此外,体外研究显示,低浓度的 FPM 能显著促进破骨细胞的分化。这些发现进一步支持了短期接触 FPM 会对骨骼健康产生负面影响的观点,为进一步研究这一课题奠定了基础。
{"title":"Fine particulate matter induces osteoclast-mediated bone loss in mice.","authors":"Hye Young Mun, Septika Prismasari, Jeong Hee Hong, Hana Lee, Doyong Kim, Han Sung Kim, Dong Min Shin, Jung Yun Kang","doi":"10.4196/kjpp.24.115","DOIUrl":"https://doi.org/10.4196/kjpp.24.115","url":null,"abstract":"<p><p>Fine particulate matter (FPM) is a major component of air pollution and has emerged as a significant global health concern owing to its adverse health effects. Previous studies have investigated the correlation between bone health and FPM through cohort or review studies. However, the effects of FPM exposure on bone health are poorly understood. This study aimed to investigate the effects of FPM on bone health and elucidate these effects <i>in vitro</i> and <i>in vivo</i> using mice. Micro-CT analysis <i>in vivo</i> revealed FPM exposure decreased bone mineral density, trabecular bone volume/total volume ratio, and trabecular number in the femurs of mice, while increasing trabecular separation. Histological analysis showed that the FPM-treated group had a reduced trabecular area and an increased number of osteoclasts in the bone tissue. Moreover, <i>in vitro</i> studies revealed that low concentrations of FPM significantly enhanced osteoclast differentiation. These findings further support the notion that short-term FPM exposure negatively impacts bone health, providing a foundation for further research on this topic.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
p66shc deficiency attenuates high glucose-induced autophagy dysfunction in Schwann cells. p66shc 缺乏症可减轻高糖诱导的许旺细胞自噬功能障碍。
IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-31 DOI: 10.4196/kjpp.24.155
Su-Jeong Choi, Giang-Huong Vu, Harsha Nagar, Seonhee Kim, Ikjun Lee, Shuyu Piao, Byeong Hwa Jeon, Kaikobad Irani, Sang-Ha Oh, Cuk-Seong Kim

Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target.

许旺细胞是周围神经系统中最丰富的细胞,维持着周围神经的发育、功能和再生。这些许旺细胞损伤反应的缺陷可能是糖尿病周围神经病变(DPN)的发病机制之一,而DPN是糖尿病的一种常见并发症。蛋白 p66shc 在调节氧化应激反应、自噬诱导和细胞存活方面至关重要,在 DPN 的发展过程中也至关重要。在本研究中,我们假设 p66shc 介导了高糖诱导的氧化应激和自噬功能障碍。在经高糖处理的许旺细胞中,p66shc 的表达、活性氧水平、自噬功能障碍和早期细胞凋亡均升高。通过 siRNA 抑制 p66shc 基因的表达可逆转高糖诱导的氧化应激、自噬功能障碍和早期细胞凋亡。我们还发现,在链脲佐菌素诱导的糖尿病小鼠坐骨神经中,p66shc的水平升高,而自噬相关蛋白p62和LC3(LC3-II/I)受到抑制。P66shc缺陷小鼠在糖尿病发病后自噬功能受损的情况有所改善。我们的研究结果表明,p66 在许旺细胞功能障碍中起着至关重要的作用,并确定了其作为治疗靶点的潜力。
{"title":"p66shc deficiency attenuates high glucose-induced autophagy dysfunction in Schwann cells.","authors":"Su-Jeong Choi, Giang-Huong Vu, Harsha Nagar, Seonhee Kim, Ikjun Lee, Shuyu Piao, Byeong Hwa Jeon, Kaikobad Irani, Sang-Ha Oh, Cuk-Seong Kim","doi":"10.4196/kjpp.24.155","DOIUrl":"https://doi.org/10.4196/kjpp.24.155","url":null,"abstract":"<p><p>Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":"577"},"PeriodicalIF":1.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-frequency auricular vagus nerve stimulation facilitates cerebrospinal fluid influx by promoting vasomotion. 低频耳迷走神经刺激可通过促进血管运动促进脑脊液流入。
IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-31 DOI: 10.4196/kjpp.24.266
Seunghwan Choi, In Seon Baek, Kyungjoon Lee, Sun Kwang Kim

Auricular vagus nerve stimulation (aVNS) is one of the promising neuromodulation techniques due to its non-invasiveness, convenience, and effectiveness. aVNS has been suggested as a potential treatment for neurodegenerative diseases showing impaired cerebrospinal fluid (CSF) dynamics. Improving CSF flow has been proposed as a key mechanism of the therapeutic effect on neurodegenerative diseases. However, aVNS parameters have been set empirically and the effective parameter that maximize the effect remains elusive. Here we show that 30 minutes of low-frequency aVNS increased arterial vasomotion events and enhanced cortical CSF influx along the branches of middle cerebral arteries. By using in vivo two photon imaging or widefield fluorescence microscopy with plasma and CSF tracers for visualizing blood vessels and perivascular spaces, arterial vasomotion and cortical CSF influx dynamics were acquired. The low-frequency (2 Hz) aVNS, but not middleand high-frequency (40 and 100 Hz) aVNS, significantly increased the number of vasomotion events compared to the sham group. Accordingly, in the CSF imaging, 2 Hz of aVNS markedly enhanced the CSF influx. Our findings demonstrate that lowfrequency aVNS is the effective parameter in respect to modulating vasomotion and CSF influx, resulting in brain clearance effect.

耳廓迷走神经刺激(aVNS)因其无创、方便和有效而成为前景广阔的神经调控技术之一。改善脑脊液流动被认为是治疗神经退行性疾病的关键机制。然而,VNS 参数一直是根据经验设定的,能使疗效最大化的有效参数仍未确定。在这里,我们发现 30 分钟的低频 aVNS 可增加动脉血管运动事件,并增强大脑皮层 CSF 沿大脑中动脉分支的流入。通过使用活体双光子成像或宽场荧光显微镜与血浆和脑脊液示踪剂来观察血管和血管周围空间,获得了动脉血管运动和皮质脑脊液流入的动态。与假组相比,低频(2 Hz)aVNS 能显著增加血管运动事件的数量,而中频和高频(40 Hz 和 100 Hz)aVNS 则不能。相应地,在 CSF 成像中,2 赫兹的 aVNS 能明显增强 CSF 流入。我们的研究结果表明,低频 aVNS 是调节血管运动和 CSF 流入的有效参数,可产生脑清除效应。
{"title":"Low-frequency auricular vagus nerve stimulation facilitates cerebrospinal fluid influx by promoting vasomotion.","authors":"Seunghwan Choi, In Seon Baek, Kyungjoon Lee, Sun Kwang Kim","doi":"10.4196/kjpp.24.266","DOIUrl":"https://doi.org/10.4196/kjpp.24.266","url":null,"abstract":"<p><p>Auricular vagus nerve stimulation (aVNS) is one of the promising neuromodulation techniques due to its non-invasiveness, convenience, and effectiveness. aVNS has been suggested as a potential treatment for neurodegenerative diseases showing impaired cerebrospinal fluid (CSF) dynamics. Improving CSF flow has been proposed as a key mechanism of the therapeutic effect on neurodegenerative diseases. However, aVNS parameters have been set empirically and the effective parameter that maximize the effect remains elusive. Here we show that 30 minutes of low-frequency aVNS increased arterial vasomotion events and enhanced cortical CSF influx along the branches of middle cerebral arteries. By using <i>in vivo</i> two photon imaging or widefield fluorescence microscopy with plasma and CSF tracers for visualizing blood vessels and perivascular spaces, arterial vasomotion and cortical CSF influx dynamics were acquired. The low-frequency (2 Hz) aVNS, but not middleand high-frequency (40 and 100 Hz) aVNS, significantly increased the number of vasomotion events compared to the sham group. Accordingly, in the CSF imaging, 2 Hz of aVNS markedly enhanced the CSF influx. Our findings demonstrate that lowfrequency aVNS is the effective parameter in respect to modulating vasomotion and CSF influx, resulting in brain clearance effect.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of aortic smooth muscle BK channels on mediating chronic intermittent hypoxia-induced vascular dysfunction. 主动脉平滑肌 BK 通道对介导慢性间歇性缺氧引起的血管功能障碍的影响
IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-01 DOI: 10.4196/kjpp.2024.28.5.469
Ping Zhang, Pengtao Zou, Xiao Huang, Xianghui Zeng, Songtao Liu, Yuanyuan Liu, Liang Shao

Chronic intermittent hypoxia (CIH) can lead to vascular dysfunction and increase the risk of cardiovascular diseases, cerebrovascular diseases, and arterial diseases. Nevertheless, mechanisms underlying CIH-induced vascular dysfunction remain unclear. Herein, this study analyzed the role of aortic smooth muscle calciumactivated potassium (BK) channels in CIH-induced vascular dysfunction. CIH models were established in rats and rat aortic smooth muscle cells (RASMCs). Hemodynamic parameters such as mean blood pressure (MBP), diastolic blood pressure (DBP), and systolic blood pressure (SBP) were measured in rats, along with an assessment of vascular tone. NO and ET-1 levels were detected in rat serum, and the levels of ET-1, NO, eNOS, p-eNOS, oxidative stress markers (ROS and MDA), and inflammatory factors (IL-6 and TNF-α) were tested in aortic tissues. The Ca2+ concentration in RASMCs was investigated. The activity of BK channels (BKα and BKβ) was evaluated in aortic tissues and RASMCs. SBP, DBP, and MBP were elevated in CIH-treated rats, along with endothelial dysfunction, cellular edema and partial detachment of endothelial cells. BK channel activity was decreased in CIH-treated rats and RASMCs. BK channel activation increased eNOS, p-eNOS, and NO levels while lowering ET-1, ROS, MDA, IL-6, and TNF-α levels in CIH-treated rats. Ca2+ concentration increased in RASMCs following CIH modeling, which was reversed by BK channel activation. BK channel inhibitor (Iberiotoxin) exacerbated CIH-induced vascular disorders and endothelial dysfunction. BK channel activation promoted vasorelaxation while suppressing vascular endothelial dysfunction, inflammation, and oxidative stress, thereby indirectly improving CIH-induced vascular dysfunction.

慢性间歇性缺氧(CIH)可导致血管功能障碍,并增加罹患心血管疾病、脑血管疾病和动脉疾病的风险。然而,CIH 诱导血管功能障碍的机制仍不清楚。在此,本研究分析了主动脉平滑肌钙激活钾(BK)通道在 CIH 诱导的血管功能障碍中的作用。研究人员在大鼠和大鼠主动脉平滑肌细胞(RASMCs)中建立了 CIH 模型。测量了大鼠的血液动力学参数,如平均血压(MBP)、舒张压(DBP)和收缩压(SBP),并评估了血管张力。检测了大鼠血清中的 NO 和 ET-1 水平,并检测了主动脉组织中的 ET-1、NO、eNOS、p-eNOS、氧化应激标志物(ROS 和 MDA)和炎症因子(IL-6 和 TNF-α)的水平。研究了 RASMCs 中的 Ca2+ 浓度。评估了主动脉组织和 RASMCs 中 BK 通道(BKα 和 BKβ)的活性。经 CIH 处理的大鼠 SBP、DBP 和 MBP 升高,同时伴有内皮功能障碍、细胞水肿和部分内皮细胞脱落。CIH 处理的大鼠和 RASMC 的 BK 通道活性降低。BK 通道激活增加了 eNOS、p-eNOS 和 NO 的水平,同时降低了 CIH 处理大鼠体内 ET-1、ROS、MDA、IL-6 和 TNF-α 的水平。CIH 建模后,RASMC 中 Ca2+ 浓度增加,BK 通道激活可逆转这种情况。BK 通道抑制剂(Iberiotoxin)加剧了 CIH 诱导的血管紊乱和内皮功能障碍。BK 通道激活可促进血管舒张,同时抑制血管内皮功能障碍、炎症和氧化应激,从而间接改善 CIH 诱导的血管功能障碍。
{"title":"Effect of aortic smooth muscle BK channels on mediating chronic intermittent hypoxia-induced vascular dysfunction.","authors":"Ping Zhang, Pengtao Zou, Xiao Huang, Xianghui Zeng, Songtao Liu, Yuanyuan Liu, Liang Shao","doi":"10.4196/kjpp.2024.28.5.469","DOIUrl":"10.4196/kjpp.2024.28.5.469","url":null,"abstract":"<p><p>Chronic intermittent hypoxia (CIH) can lead to vascular dysfunction and increase the risk of cardiovascular diseases, cerebrovascular diseases, and arterial diseases. Nevertheless, mechanisms underlying CIH-induced vascular dysfunction remain unclear. Herein, this study analyzed the role of aortic smooth muscle calciumactivated potassium (BK) channels in CIH-induced vascular dysfunction. CIH models were established in rats and rat aortic smooth muscle cells (RASMCs). Hemodynamic parameters such as mean blood pressure (MBP), diastolic blood pressure (DBP), and systolic blood pressure (SBP) were measured in rats, along with an assessment of vascular tone. NO and ET-1 levels were detected in rat serum, and the levels of ET-1, NO, eNOS, p-eNOS, oxidative stress markers (ROS and MDA), and inflammatory factors (IL-6 and TNF-α) were tested in aortic tissues. The Ca<sup>2+</sup> concentration in RASMCs was investigated. The activity of BK channels (BKα and BKβ) was evaluated in aortic tissues and RASMCs. SBP, DBP, and MBP were elevated in CIH-treated rats, along with endothelial dysfunction, cellular edema and partial detachment of endothelial cells. BK channel activity was decreased in CIH-treated rats and RASMCs. BK channel activation increased eNOS, p-eNOS, and NO levels while lowering ET-1, ROS, MDA, IL-6, and TNF-α levels in CIH-treated rats. Ca<sup>2+</sup> concentration increased in RASMCs following CIH modeling, which was reversed by BK channel activation. BK channel inhibitor (Iberiotoxin) exacerbated CIH-induced vascular disorders and endothelial dysfunction. BK channel activation promoted vasorelaxation while suppressing vascular endothelial dysfunction, inflammation, and oxidative stress, thereby indirectly improving CIH-induced vascular dysfunction.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 5","pages":"469-478"},"PeriodicalIF":1.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361999/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142094165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Korean Journal of Physiology & Pharmacology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1