Pub Date : 2024-11-01DOI: 10.4196/kjpp.2024.28.6.539
Jie Li, Dong Zhan, Cui Chen, Rongfu Li, Fang-Qing Zhu
Liver cancer is the most lethal form of cancer and carries a high risk of death around the world. Goniothalamin (GTN) is a styryl-lactone that possesses antiproliferative and apoptotic activity. The molecular action of GTN is not yet fully evaluated. Thus, our research has been intended to assess the chemopreventive and apoptotic activities of diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in rats. Rats were separated into 4 groups: control, DEN only, DEN + GTN (30 mg/kg bw), and GTN (30 mg/kg bw) alone. We evaluated body weight, liver weight, tumor incidence, hepatic toxic markers, antioxidants, inflammatory cytokines, histopathology, immunohistochemistry, and Western blot studies. DEN lessened body weight, antioxidants, and apoptosis, whereas it elevated tumor incidence, toxic markers, cytokines, and Bcl-2 expression. GTN treatment maintains body weight, liver weight, and antioxidant levels, and it also prevents tumor incidence, oxidative stress, toxic markers, pro-inflammatory cytokines, and histological changes. It triggers apoptosis by constraining Bcl-2 and elevating caspase-3 levels. GTN also attenuated the P13K/ AKT signaling which enhanced apoptosis. These findings revealed that GTN subdues the P13K/AKT pathway and has auspicious chemopreventive and apoptotic actions in DEN-induced HCC. Therefore, GTN would be suggested as a new medicine in natural remedies for liver cancer.
肝癌是最致命的癌症,在全世界都有很高的死亡风险。Goniothalamin(GTN)是一种苯乙烯内酯,具有抗增殖和细胞凋亡活性。GTN 的分子作用尚未得到充分评估。因此,我们的研究旨在评估二乙基亚硝胺(DEN)诱导的大鼠肝细胞癌(HCC)的化学预防和细胞凋亡活性。大鼠被分为 4 组:对照组、仅 DEN 组、DEN + GTN(30 毫克/千克体重)组和仅 GTN(30 毫克/千克体重)组。我们对大鼠的体重、肝脏重量、肿瘤发病率、肝脏毒性标记物、抗氧化剂、炎症细胞因子、组织病理学、免疫组化和 Western 印迹进行了评估。DEN降低了体重、抗氧化剂和细胞凋亡,而提高了肿瘤发病率、毒性标志物、细胞因子和Bcl-2的表达。GTN 治疗可维持体重、肝脏重量和抗氧化剂水平,还能防止肿瘤发生、氧化应激、毒性标志物、促炎细胞因子和组织学变化。它通过抑制 Bcl-2 和提高 caspase-3 水平来触发细胞凋亡。GTN 还能减弱 P13K/ AKT 信号传导,从而增强细胞凋亡。这些研究结果表明,GTN 可抑制 P13K/AKT 通路,对 DEN 诱导的 HCC 具有良好的化学预防和细胞凋亡作用。因此,GTN可作为肝癌自然疗法的一种新药。
{"title":"Chemopreventive potential of goniothalamin in diethylnitrosamine-induced hepatocellular carcinoma through the suppression of P13K/AKT signalling pathway.","authors":"Jie Li, Dong Zhan, Cui Chen, Rongfu Li, Fang-Qing Zhu","doi":"10.4196/kjpp.2024.28.6.539","DOIUrl":"10.4196/kjpp.2024.28.6.539","url":null,"abstract":"<p><p>Liver cancer is the most lethal form of cancer and carries a high risk of death around the world. Goniothalamin (GTN) is a styryl-lactone that possesses antiproliferative and apoptotic activity. The molecular action of GTN is not yet fully evaluated. Thus, our research has been intended to assess the chemopreventive and apoptotic activities of diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in rats. Rats were separated into 4 groups: control, DEN only, DEN + GTN (30 mg/kg bw), and GTN (30 mg/kg bw) alone. We evaluated body weight, liver weight, tumor incidence, hepatic toxic markers, antioxidants, inflammatory cytokines, histopathology, immunohistochemistry, and Western blot studies. DEN lessened body weight, antioxidants, and apoptosis, whereas it elevated tumor incidence, toxic markers, cytokines, and Bcl-2 expression. GTN treatment maintains body weight, liver weight, and antioxidant levels, and it also prevents tumor incidence, oxidative stress, toxic markers, pro-inflammatory cytokines, and histological changes. It triggers apoptosis by constraining Bcl-2 and elevating caspase-3 levels. GTN also attenuated the P13K/ AKT signaling which enhanced apoptosis. These findings revealed that GTN subdues the P13K/AKT pathway and has auspicious chemopreventive and apoptotic actions in DEN-induced HCC. Therefore, GTN would be suggested as a new medicine in natural remedies for liver cancer.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 6","pages":"539-547"},"PeriodicalIF":1.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519720/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.4196/kjpp.2024.28.6.515
Yu Gu, Dong-Hun Seong, Wenduo Liu, Zilin Wang, Yong Whi Jeong, Jae-Cheol Kim, Dae Ryong Kang, Rose Ji Eun Lee, Jin-Ho Koh, Sang Hyun Kim
We investigated whether endurance exercise training (EXT) ameliorates circadian rhythm (CR)-induced risk factors by improving skeletal muscle (SKM) mitochondrial biogenesis, reducing oxidative stress, and modulating apoptotic protein expression. We distinguished between regular and shift workers using the National Health and Nutrition Examination Survey (NHANES) and investigated the health problems caused by shift work (CR disturbance) and the potential therapeutic effects of exercise. In our animal study, 36 rats underwent 12 weeks of CR disturbance, divided into regular and irregular CR groups. These groups were further split into EXT (n = 12) and sedentary (n = 12) for an additional 8 weeks. We analyzed SKM tissue to understand the molecular changes induced by CR and EXT. NHANES data were analyzed using SAS 9.4 and Prism 8 software, while experimental animal data were analyzed using Prism 8 software. The statistical procedures used in each experiment are indicated in the figure legends. Our studies showed that CR disturbance increases dyslipidemia, alters circadian clock proteins (BMAL1, PER2), raises apoptotic protein levels, and reduces mitochondrial biogenesis in SKM. EXT improved LDL-C and HDLC levels without affecting muscle BMAL1 expression. It also enhanced mitochondrial biogenesis (AMPK, PGC-1α, Tfam, NADH-UO, COX-I), antioxidant levels (Catalase, SOD1, SOD2), and apoptotic protein (p53, Bax/Bcl2) expression or activity in SKM. We demonstrated that shift work-induced CR disturbance leads to dyslipidemia, diminished mitochondrial biogenesis, and reduced antioxidant capacity in SKM. However, EXT can counteract dyslipidemia under CR disturbance, potentially lowering the risk of cardiovascular disorders.
{"title":"Exercise improves muscle mitochondrial dysfunction-associated lipid profile under circadian rhythm disturbance.","authors":"Yu Gu, Dong-Hun Seong, Wenduo Liu, Zilin Wang, Yong Whi Jeong, Jae-Cheol Kim, Dae Ryong Kang, Rose Ji Eun Lee, Jin-Ho Koh, Sang Hyun Kim","doi":"10.4196/kjpp.2024.28.6.515","DOIUrl":"10.4196/kjpp.2024.28.6.515","url":null,"abstract":"<p><p>We investigated whether endurance exercise training (EXT) ameliorates circadian rhythm (CR)-induced risk factors by improving skeletal muscle (SKM) mitochondrial biogenesis, reducing oxidative stress, and modulating apoptotic protein expression. We distinguished between regular and shift workers using the National Health and Nutrition Examination Survey (NHANES) and investigated the health problems caused by shift work (CR disturbance) and the potential therapeutic effects of exercise. In our animal study, 36 rats underwent 12 weeks of CR disturbance, divided into regular and irregular CR groups. These groups were further split into EXT (n = 12) and sedentary (n = 12) for an additional 8 weeks. We analyzed SKM tissue to understand the molecular changes induced by CR and EXT. NHANES data were analyzed using SAS 9.4 and Prism 8 software, while experimental animal data were analyzed using Prism 8 software. The statistical procedures used in each experiment are indicated in the figure legends. Our studies showed that CR disturbance increases dyslipidemia, alters circadian clock proteins (BMAL1, PER2), raises apoptotic protein levels, and reduces mitochondrial biogenesis in SKM. EXT improved LDL-C and HDLC levels without affecting muscle BMAL1 expression. It also enhanced mitochondrial biogenesis (AMPK, PGC-1α, Tfam, NADH-UO, COX-I), antioxidant levels (Catalase, SOD1, SOD2), and apoptotic protein (p53, Bax/Bcl2) expression or activity in SKM. We demonstrated that shift work-induced CR disturbance leads to dyslipidemia, diminished mitochondrial biogenesis, and reduced antioxidant capacity in SKM. However, EXT can counteract dyslipidemia under CR disturbance, potentially lowering the risk of cardiovascular disorders.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 6","pages":"515-526"},"PeriodicalIF":1.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519723/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.4196/kjpp.2024.28.6.527
Jinwoo Jung, Jeon-Ok Moon, Song Ih Ahn, Haeseung Lee
Oxidative stress is a well-established risk factor for numerous chronic diseases, emphasizing the need for efficient identification of potent antioxidants. Conventional methods for assessing antioxidant properties are often time-consuming and resource-intensive, typically relying on laborious biochemical assays. In this study, we investigated the applicability of machine learning (ML) algorithms for predicting the antioxidant activity of compounds based solely on their molecular structure. We evaluated the performance of five ML algorithms, Support Vector Machine (SVM), Logistic Regression (LR), XGBoost, Random Forest (RF), and Deep Neural Network (DNN), using a dataset of over 1,900 compounds with experimentally determined antioxidant activity. Both RF and SVM achieved the best overall performance, exhibiting high accuracy (> 0.9) and effectively distinguishing active and inactive compounds with high structural similarity. External validation using natural product data from the BATMAN database confirmed the generalizability of the RF and SVM models. Our results suggest that ML models serve as powerful tools to expedite the discovery of novel antioxidant candidates, potentially streamlining the development of future therapeutic interventions.
氧化应激是众多慢性疾病的既定风险因素,因此需要有效地识别强效抗氧化剂。评估抗氧化剂特性的传统方法往往耗费时间和资源,通常依赖于费力的生化试验。在本研究中,我们研究了机器学习(ML)算法在仅根据化合物分子结构预测其抗氧化活性方面的适用性。我们使用由 1900 多种经实验确定具有抗氧化活性的化合物组成的数据集,评估了支持向量机(SVM)、逻辑回归(LR)、XGBoost、随机森林(RF)和深度神经网络(DNN)这五种 ML 算法的性能。RF 和 SVM 的总体性能最佳,表现出较高的准确性(> 0.9),并能有效区分结构相似度较高的活性和非活性化合物。利用 BATMAN 数据库中的天然产品数据进行的外部验证证实了 RF 和 SVM 模型的通用性。我们的研究结果表明,ML 模型是加快发现新型抗氧化候选化合物的有力工具,有可能简化未来治疗干预措施的开发。
{"title":"Predicting antioxidant activity of compounds based on chemical structure using machine learning methods.","authors":"Jinwoo Jung, Jeon-Ok Moon, Song Ih Ahn, Haeseung Lee","doi":"10.4196/kjpp.2024.28.6.527","DOIUrl":"10.4196/kjpp.2024.28.6.527","url":null,"abstract":"<p><p>Oxidative stress is a well-established risk factor for numerous chronic diseases, emphasizing the need for efficient identification of potent antioxidants. Conventional methods for assessing antioxidant properties are often time-consuming and resource-intensive, typically relying on laborious biochemical assays. In this study, we investigated the applicability of machine learning (ML) algorithms for predicting the antioxidant activity of compounds based solely on their molecular structure. We evaluated the performance of five ML algorithms, Support Vector Machine (SVM), Logistic Regression (LR), XGBoost, Random Forest (RF), and Deep Neural Network (DNN), using a dataset of over 1,900 compounds with experimentally determined antioxidant activity. Both RF and SVM achieved the best overall performance, exhibiting high accuracy (> 0.9) and effectively distinguishing active and inactive compounds with high structural similarity. External validation using natural product data from the BATMAN database confirmed the generalizability of the RF and SVM models. Our results suggest that ML models serve as powerful tools to expedite the discovery of novel antioxidant candidates, potentially streamlining the development of future therapeutic interventions.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 6","pages":"527-537"},"PeriodicalIF":1.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519722/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The objective of this study was to investigate the protective effect and potential mechanism of action of hemin on bleomycin-induced pulmonary fibrosis in mice. Male C57BL/6 mice were randomly divided into control, bleomycin and bleomycin + hemin groups. Mice in the bleomycin and bleomycin + hemin groups were injected intratracheally with bleomycin to establish the pulmonary fibrosis model. The bleomycin + hemin group mice were injected intraperitoneally with hemin starting 7 days before modeling until the end of Day 21 after modeling. Pathological changes in lung tissue were assessed by HE and Masson staining. Malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) levels were determined in lung tissue. Immunohistochemistry was performed to assess the expression of α-SMA and collagen I. The serum levels of IL-6 and TNF-α were measured via ELISA. Western blotting was used to determine the expression of TGF-β1, SIRT1, PGC-1α and HO-1 and the phosphorylation levels of p38, ERK1/2, JNK, AMPK and NF-κB p65 in lung tissue. Hemin significantly reduced lung indices, increased terminal body weight. It also significantly increased SOD and CAT activities; decreased MDA, IL-6 and TNF-α levels; reduced the levels of α-SMA and collagen I-positive cells; upregulated SIRT1, PGC-1α and HO-1 expression; promoted AMPK phosphorylation; and downregulated TGF-β1 expression and p38, ERK1/2, JNK and NF-κB p65 phosphorylation. Hemin might attenuate oxidative damage and inflammatory responses and reduces extracellular matrix deposition by regulating the expression and phosphorylation of proteins associated with the TGF-β1/MAPK and AMPK/SIRT1/PGC-1α/HO-1/NF-κB pathways, thereby alleviating bleomycin-induced pulmonary fibrosis.
{"title":"Hemin attenuates bleomycin-induced lung fibrosis in mice by regulating the TGF-β1/MAPK and AMPK/SIRT1/PGC-1α/HO-1/NF-κB pathways.","authors":"Wei Hao, Ting-Ting Yu, Wei Li, Guo-Guang Wang, Hui-Xian Hu, Ping-Ping Zhou","doi":"10.4196/kjpp.2024.28.6.559","DOIUrl":"10.4196/kjpp.2024.28.6.559","url":null,"abstract":"<p><p>The objective of this study was to investigate the protective effect and potential mechanism of action of hemin on bleomycin-induced pulmonary fibrosis in mice. Male C57BL/6 mice were randomly divided into control, bleomycin and bleomycin + hemin groups. Mice in the bleomycin and bleomycin + hemin groups were injected intratracheally with bleomycin to establish the pulmonary fibrosis model. The bleomycin + hemin group mice were injected intraperitoneally with hemin starting 7 days before modeling until the end of Day 21 after modeling. Pathological changes in lung tissue were assessed by HE and Masson staining. Malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) levels were determined in lung tissue. Immunohistochemistry was performed to assess the expression of α-SMA and collagen I. The serum levels of IL-6 and TNF-α were measured via ELISA. Western blotting was used to determine the expression of TGF-β1, SIRT1, PGC-1α and HO-1 and the phosphorylation levels of p38, ERK1/2, JNK, AMPK and NF-κB p65 in lung tissue. Hemin significantly reduced lung indices, increased terminal body weight. It also significantly increased SOD and CAT activities; decreased MDA, IL-6 and TNF-α levels; reduced the levels of α-SMA and collagen I-positive cells; upregulated SIRT1, PGC-1α and HO-1 expression; promoted AMPK phosphorylation; and downregulated TGF-β1 expression and p38, ERK1/2, JNK and NF-κB p65 phosphorylation. Hemin might attenuate oxidative damage and inflammatory responses and reduces extracellular matrix deposition by regulating the expression and phosphorylation of proteins associated with the TGF-β1/MAPK and AMPK/SIRT1/PGC-1α/HO-1/NF-κB pathways, thereby alleviating bleomycin-induced pulmonary fibrosis.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 6","pages":"559-568"},"PeriodicalIF":1.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ji-Hee Kim, Kyu-Hee Hwang, Jiyeon Oh, Sung-Eun Kim, Mi-Young Lee, Tae Sic Lee, Seung-Kuy Cha
Renal cell carcinoma (RCC) presents significant clinical challenges, highlighting the importance of understanding its molecular mechanisms. While store-operated Ca2+ entry (SOCE) is known to play an essential role in tumorigenesis and metastasis, its specific implications across various RCC subtypes remain underexplored. This study analyzed SOCE-related mRNA profiles from the KIRC and KIRP projects in The Cancer Genome Atlas (TCGA) database, focusing on differential gene expression and overall survival outcomes. Functional studies in clear cell RCC (Caki-1) and papillary RCC cell lines (pRCC, Caki-2) revealed increased expression of Orai1 and Orai3, along with STIM1, exhibited in both subtypes, with decreased STIM2 and increased Orai2 expression in pRCC. Notably, Orai3 expression had a gender-specific impact on survival, particularly in females with pRCC, where it inversely correlated with STIM2 expression. Functional assays showed Orai3 dominance in Caki-2 and Orai1 in Caki- 1. Interestingly, 2-APB inhibited SOCE in Caki-1 but enhanced it in Caki-2, suggesting Orai3 as the primary SOCE channel in pRCC. Knockdown of Orai1 and Orai3 reduced cell migration and proliferation via regulating focal adhesion kinase (FAK) and Cyclin D1 in both cell lines. These findings highlight the critical roles of Orai1 and Orai3 in RCC metastasis, with Orai3 linked to poorer prognosis in females with pRCC. This study offers valuable insights into RCC diagnostics and potential therapeutic strategies targeting ORAI channels and STIM proteins.
{"title":"Differential expression of ORAI channels and STIM proteins in renal cell carcinoma subtypes: implications for metastasis and therapeutic targeting.","authors":"Ji-Hee Kim, Kyu-Hee Hwang, Jiyeon Oh, Sung-Eun Kim, Mi-Young Lee, Tae Sic Lee, Seung-Kuy Cha","doi":"10.4196/kjpp.24.126","DOIUrl":"https://doi.org/10.4196/kjpp.24.126","url":null,"abstract":"<p><p>Renal cell carcinoma (RCC) presents significant clinical challenges, highlighting the importance of understanding its molecular mechanisms. While store-operated Ca<sup>2+</sup> entry (SOCE) is known to play an essential role in tumorigenesis and metastasis, its specific implications across various RCC subtypes remain underexplored. This study analyzed SOCE-related mRNA profiles from the KIRC and KIRP projects in The Cancer Genome Atlas (TCGA) database, focusing on differential gene expression and overall survival outcomes. Functional studies in clear cell RCC (Caki-1) and papillary RCC cell lines (pRCC, Caki-2) revealed increased expression of Orai1 and Orai3, along with STIM1, exhibited in both subtypes, with decreased STIM2 and increased Orai2 expression in pRCC. Notably, Orai3 expression had a gender-specific impact on survival, particularly in females with pRCC, where it inversely correlated with STIM2 expression. Functional assays showed Orai3 dominance in Caki-2 and Orai1 in Caki- 1. Interestingly, 2-APB inhibited SOCE in Caki-1 but enhanced it in Caki-2, suggesting Orai3 as the primary SOCE channel in pRCC. Knockdown of Orai1 and Orai3 reduced cell migration and proliferation <i>via</i> regulating focal adhesion kinase (FAK) and Cyclin D1 in both cell lines. These findings highlight the critical roles of Orai1 and Orai3 in RCC metastasis, with Orai3 linked to poorer prognosis in females with pRCC. This study offers valuable insights into RCC diagnostics and potential therapeutic strategies targeting ORAI channels and STIM proteins.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":"577"},"PeriodicalIF":1.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Platelet-derived growth factors (PDGFs) ligands and their corresponding receptors, PDGF receptor (PDGFR)α and PDGFRβ, play a crucial role in controlling diverse biological functions, including cell growth, viability and migration. These growth factors bind to PDGFRs, which are receptor tyrosine kinases present on the surface of target cells. The interaction between PDGFs and PDGFRs induces receptor dimerization and subsequent activation through auto-phosphorylation, which in turn triggers a cascade of intracellular signaling pathways. PDGF/PDGFR signaling is essential for maintaining normal physiological functions, including tissue regeneration and growth. However, dysregulation of this signaling pathway leads to pathological conditions, including fibrosis, atherosclerosis, and cancer development in various organs. The pathological impact of PDGF/PDGFR signaling primarily stems from its capacity to promote excessive cell proliferation, enhanced migration, and increased extracellular matrix deposition, resulting in tissue overgrowth, scarring, and abnormal vessel formation. These processes are integral to the pathogenesis of fibrotic, neoplastic, and vascular disorders. Therefore, understanding these pathways is crucial for developing targeted treatments designed to inhibit PDGF/PDGFR signaling in these diseases. This review delves into the dual role of PDGF/PDGFR signaling in both physiological and pathophysiological contexts across different organs and provides insights into current pharmacological therapies designed to target the PDGF signaling pathway. INTRODUCTION Platelet-derived growth factors (PDGFs) are key signaling molecules that interact with specific cell to modulate various cellular responses. Upon binding to their receptors (PDGFRs), PDGFs initiate dimerization and tyrosine phosphorylation, which activates downstream signaling pathways. The PDGF signaling network comprises four ligands-PDGF-A, PDGF-B, PDGFC, and PDGF-D, that interact with two receptors, PDGFRα and PDGFRβ [1-6]. PDGFRα exhibits broader ligand specificity, binding to PDGF-A, PDGF-B, PDGF-C homodimers, and PDGFAB heterodimers, whereas PDGFRβ specifically binds to PDGFB and PDGF-D homodimers. Under both physiological and pathol.
{"title":"Roles of PDGF/PDGFR signaling in various organs.","authors":"Sung-Cherl Jung, Dawon Kang, Eun-A Ko","doi":"10.4196/kjpp.24.309","DOIUrl":"https://doi.org/10.4196/kjpp.24.309","url":null,"abstract":"<p><p>Platelet-derived growth factors (PDGFs) ligands and their corresponding receptors, PDGF receptor (PDGFR)α and PDGFRβ, play a crucial role in controlling diverse biological functions, including cell growth, viability and migration. These growth factors bind to PDGFRs, which are receptor tyrosine kinases present on the surface of target cells. The interaction between PDGFs and PDGFRs induces receptor dimerization and subsequent activation through auto-phosphorylation, which in turn triggers a cascade of intracellular signaling pathways. PDGF/PDGFR signaling is essential for maintaining normal physiological functions, including tissue regeneration and growth. However, dysregulation of this signaling pathway leads to pathological conditions, including fibrosis, atherosclerosis, and cancer development in various organs. The pathological impact of PDGF/PDGFR signaling primarily stems from its capacity to promote excessive cell proliferation, enhanced migration, and increased extracellular matrix deposition, resulting in tissue overgrowth, scarring, and abnormal vessel formation. These processes are integral to the pathogenesis of fibrotic, neoplastic, and vascular disorders. Therefore, understanding these pathways is crucial for developing targeted treatments designed to inhibit PDGF/PDGFR signaling in these diseases. This review delves into the dual role of PDGF/PDGFR signaling in both physiological and pathophysiological contexts across different organs and provides insights into current pharmacological therapies designed to target the PDGF signaling pathway. INTRODUCTION Platelet-derived growth factors (PDGFs) are key signaling molecules that interact with specific cell to modulate various cellular responses. Upon binding to their receptors (PDGFRs), PDGFs initiate dimerization and tyrosine phosphorylation, which activates downstream signaling pathways. The PDGF signaling network comprises four ligands-PDGF-A, PDGF-B, PDGFC, and PDGF-D, that interact with two receptors, PDGFRα and PDGFRβ [1-6]. PDGFRα exhibits broader ligand specificity, binding to PDGF-A, PDGF-B, PDGF-C homodimers, and PDGFAB heterodimers, whereas PDGFRβ specifically binds to PDGFB and PDGF-D homodimers. Under both physiological and pathol.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hye Young Mun, Septika Prismasari, Jeong Hee Hong, Hana Lee, Doyong Kim, Han Sung Kim, Dong Min Shin, Jung Yun Kang
Fine particulate matter (FPM) is a major component of air pollution and has emerged as a significant global health concern owing to its adverse health effects. Previous studies have investigated the correlation between bone health and FPM through cohort or review studies. However, the effects of FPM exposure on bone health are poorly understood. This study aimed to investigate the effects of FPM on bone health and elucidate these effects in vitro and in vivo using mice. Micro-CT analysis in vivo revealed FPM exposure decreased bone mineral density, trabecular bone volume/total volume ratio, and trabecular number in the femurs of mice, while increasing trabecular separation. Histological analysis showed that the FPM-treated group had a reduced trabecular area and an increased number of osteoclasts in the bone tissue. Moreover, in vitro studies revealed that low concentrations of FPM significantly enhanced osteoclast differentiation. These findings further support the notion that short-term FPM exposure negatively impacts bone health, providing a foundation for further research on this topic.
{"title":"Fine particulate matter induces osteoclast-mediated bone loss in mice.","authors":"Hye Young Mun, Septika Prismasari, Jeong Hee Hong, Hana Lee, Doyong Kim, Han Sung Kim, Dong Min Shin, Jung Yun Kang","doi":"10.4196/kjpp.24.115","DOIUrl":"https://doi.org/10.4196/kjpp.24.115","url":null,"abstract":"<p><p>Fine particulate matter (FPM) is a major component of air pollution and has emerged as a significant global health concern owing to its adverse health effects. Previous studies have investigated the correlation between bone health and FPM through cohort or review studies. However, the effects of FPM exposure on bone health are poorly understood. This study aimed to investigate the effects of FPM on bone health and elucidate these effects <i>in vitro</i> and <i>in vivo</i> using mice. Micro-CT analysis <i>in vivo</i> revealed FPM exposure decreased bone mineral density, trabecular bone volume/total volume ratio, and trabecular number in the femurs of mice, while increasing trabecular separation. Histological analysis showed that the FPM-treated group had a reduced trabecular area and an increased number of osteoclasts in the bone tissue. Moreover, <i>in vitro</i> studies revealed that low concentrations of FPM significantly enhanced osteoclast differentiation. These findings further support the notion that short-term FPM exposure negatively impacts bone health, providing a foundation for further research on this topic.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target.
{"title":"p66shc deficiency attenuates high glucose-induced autophagy dysfunction in Schwann cells.","authors":"Su-Jeong Choi, Giang-Huong Vu, Harsha Nagar, Seonhee Kim, Ikjun Lee, Shuyu Piao, Byeong Hwa Jeon, Kaikobad Irani, Sang-Ha Oh, Cuk-Seong Kim","doi":"10.4196/kjpp.24.155","DOIUrl":"https://doi.org/10.4196/kjpp.24.155","url":null,"abstract":"<p><p>Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":"577"},"PeriodicalIF":1.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seunghwan Choi, In Seon Baek, Kyungjoon Lee, Sun Kwang Kim
Auricular vagus nerve stimulation (aVNS) is one of the promising neuromodulation techniques due to its non-invasiveness, convenience, and effectiveness. aVNS has been suggested as a potential treatment for neurodegenerative diseases showing impaired cerebrospinal fluid (CSF) dynamics. Improving CSF flow has been proposed as a key mechanism of the therapeutic effect on neurodegenerative diseases. However, aVNS parameters have been set empirically and the effective parameter that maximize the effect remains elusive. Here we show that 30 minutes of low-frequency aVNS increased arterial vasomotion events and enhanced cortical CSF influx along the branches of middle cerebral arteries. By using in vivo two photon imaging or widefield fluorescence microscopy with plasma and CSF tracers for visualizing blood vessels and perivascular spaces, arterial vasomotion and cortical CSF influx dynamics were acquired. The low-frequency (2 Hz) aVNS, but not middleand high-frequency (40 and 100 Hz) aVNS, significantly increased the number of vasomotion events compared to the sham group. Accordingly, in the CSF imaging, 2 Hz of aVNS markedly enhanced the CSF influx. Our findings demonstrate that lowfrequency aVNS is the effective parameter in respect to modulating vasomotion and CSF influx, resulting in brain clearance effect.
{"title":"Low-frequency auricular vagus nerve stimulation facilitates cerebrospinal fluid influx by promoting vasomotion.","authors":"Seunghwan Choi, In Seon Baek, Kyungjoon Lee, Sun Kwang Kim","doi":"10.4196/kjpp.24.266","DOIUrl":"https://doi.org/10.4196/kjpp.24.266","url":null,"abstract":"<p><p>Auricular vagus nerve stimulation (aVNS) is one of the promising neuromodulation techniques due to its non-invasiveness, convenience, and effectiveness. aVNS has been suggested as a potential treatment for neurodegenerative diseases showing impaired cerebrospinal fluid (CSF) dynamics. Improving CSF flow has been proposed as a key mechanism of the therapeutic effect on neurodegenerative diseases. However, aVNS parameters have been set empirically and the effective parameter that maximize the effect remains elusive. Here we show that 30 minutes of low-frequency aVNS increased arterial vasomotion events and enhanced cortical CSF influx along the branches of middle cerebral arteries. By using <i>in vivo</i> two photon imaging or widefield fluorescence microscopy with plasma and CSF tracers for visualizing blood vessels and perivascular spaces, arterial vasomotion and cortical CSF influx dynamics were acquired. The low-frequency (2 Hz) aVNS, but not middleand high-frequency (40 and 100 Hz) aVNS, significantly increased the number of vasomotion events compared to the sham group. Accordingly, in the CSF imaging, 2 Hz of aVNS markedly enhanced the CSF influx. Our findings demonstrate that lowfrequency aVNS is the effective parameter in respect to modulating vasomotion and CSF influx, resulting in brain clearance effect.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chronic intermittent hypoxia (CIH) can lead to vascular dysfunction and increase the risk of cardiovascular diseases, cerebrovascular diseases, and arterial diseases. Nevertheless, mechanisms underlying CIH-induced vascular dysfunction remain unclear. Herein, this study analyzed the role of aortic smooth muscle calciumactivated potassium (BK) channels in CIH-induced vascular dysfunction. CIH models were established in rats and rat aortic smooth muscle cells (RASMCs). Hemodynamic parameters such as mean blood pressure (MBP), diastolic blood pressure (DBP), and systolic blood pressure (SBP) were measured in rats, along with an assessment of vascular tone. NO and ET-1 levels were detected in rat serum, and the levels of ET-1, NO, eNOS, p-eNOS, oxidative stress markers (ROS and MDA), and inflammatory factors (IL-6 and TNF-α) were tested in aortic tissues. The Ca2+ concentration in RASMCs was investigated. The activity of BK channels (BKα and BKβ) was evaluated in aortic tissues and RASMCs. SBP, DBP, and MBP were elevated in CIH-treated rats, along with endothelial dysfunction, cellular edema and partial detachment of endothelial cells. BK channel activity was decreased in CIH-treated rats and RASMCs. BK channel activation increased eNOS, p-eNOS, and NO levels while lowering ET-1, ROS, MDA, IL-6, and TNF-α levels in CIH-treated rats. Ca2+ concentration increased in RASMCs following CIH modeling, which was reversed by BK channel activation. BK channel inhibitor (Iberiotoxin) exacerbated CIH-induced vascular disorders and endothelial dysfunction. BK channel activation promoted vasorelaxation while suppressing vascular endothelial dysfunction, inflammation, and oxidative stress, thereby indirectly improving CIH-induced vascular dysfunction.
慢性间歇性缺氧(CIH)可导致血管功能障碍,并增加罹患心血管疾病、脑血管疾病和动脉疾病的风险。然而,CIH 诱导血管功能障碍的机制仍不清楚。在此,本研究分析了主动脉平滑肌钙激活钾(BK)通道在 CIH 诱导的血管功能障碍中的作用。研究人员在大鼠和大鼠主动脉平滑肌细胞(RASMCs)中建立了 CIH 模型。测量了大鼠的血液动力学参数,如平均血压(MBP)、舒张压(DBP)和收缩压(SBP),并评估了血管张力。检测了大鼠血清中的 NO 和 ET-1 水平,并检测了主动脉组织中的 ET-1、NO、eNOS、p-eNOS、氧化应激标志物(ROS 和 MDA)和炎症因子(IL-6 和 TNF-α)的水平。研究了 RASMCs 中的 Ca2+ 浓度。评估了主动脉组织和 RASMCs 中 BK 通道(BKα 和 BKβ)的活性。经 CIH 处理的大鼠 SBP、DBP 和 MBP 升高,同时伴有内皮功能障碍、细胞水肿和部分内皮细胞脱落。CIH 处理的大鼠和 RASMC 的 BK 通道活性降低。BK 通道激活增加了 eNOS、p-eNOS 和 NO 的水平,同时降低了 CIH 处理大鼠体内 ET-1、ROS、MDA、IL-6 和 TNF-α 的水平。CIH 建模后,RASMC 中 Ca2+ 浓度增加,BK 通道激活可逆转这种情况。BK 通道抑制剂(Iberiotoxin)加剧了 CIH 诱导的血管紊乱和内皮功能障碍。BK 通道激活可促进血管舒张,同时抑制血管内皮功能障碍、炎症和氧化应激,从而间接改善 CIH 诱导的血管功能障碍。
{"title":"Effect of aortic smooth muscle BK channels on mediating chronic intermittent hypoxia-induced vascular dysfunction.","authors":"Ping Zhang, Pengtao Zou, Xiao Huang, Xianghui Zeng, Songtao Liu, Yuanyuan Liu, Liang Shao","doi":"10.4196/kjpp.2024.28.5.469","DOIUrl":"10.4196/kjpp.2024.28.5.469","url":null,"abstract":"<p><p>Chronic intermittent hypoxia (CIH) can lead to vascular dysfunction and increase the risk of cardiovascular diseases, cerebrovascular diseases, and arterial diseases. Nevertheless, mechanisms underlying CIH-induced vascular dysfunction remain unclear. Herein, this study analyzed the role of aortic smooth muscle calciumactivated potassium (BK) channels in CIH-induced vascular dysfunction. CIH models were established in rats and rat aortic smooth muscle cells (RASMCs). Hemodynamic parameters such as mean blood pressure (MBP), diastolic blood pressure (DBP), and systolic blood pressure (SBP) were measured in rats, along with an assessment of vascular tone. NO and ET-1 levels were detected in rat serum, and the levels of ET-1, NO, eNOS, p-eNOS, oxidative stress markers (ROS and MDA), and inflammatory factors (IL-6 and TNF-α) were tested in aortic tissues. The Ca<sup>2+</sup> concentration in RASMCs was investigated. The activity of BK channels (BKα and BKβ) was evaluated in aortic tissues and RASMCs. SBP, DBP, and MBP were elevated in CIH-treated rats, along with endothelial dysfunction, cellular edema and partial detachment of endothelial cells. BK channel activity was decreased in CIH-treated rats and RASMCs. BK channel activation increased eNOS, p-eNOS, and NO levels while lowering ET-1, ROS, MDA, IL-6, and TNF-α levels in CIH-treated rats. Ca<sup>2+</sup> concentration increased in RASMCs following CIH modeling, which was reversed by BK channel activation. BK channel inhibitor (Iberiotoxin) exacerbated CIH-induced vascular disorders and endothelial dysfunction. BK channel activation promoted vasorelaxation while suppressing vascular endothelial dysfunction, inflammation, and oxidative stress, thereby indirectly improving CIH-induced vascular dysfunction.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 5","pages":"469-478"},"PeriodicalIF":1.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361999/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142094165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}