Image deblurring is a fundamental task in image restoration (IR) aimed at removing blurring artifacts caused by factors such as defocusing, motions, and others. Since a blurry image could be originated from various sharp images, deblurring is regarded as an ill-posed problem with multiple valid solutions. The evolution of deblurring techniques spans from rule-based algorithms to deep learning-based models. Early research focused on estimating blur kernels using maximum a posteriori (MAP) estimation, but advancements in deep learning have shifted the focus towards directly predicting sharp images by leveraging deep learning techniques such as convolutional neural networks (CNNs), generative adversarial networks (GANs), recurrent neural networks (RNNs), and others. Building on these foundations, recent studies have advanced along two directions: transformer-based architectural innovations and diffusion-based algorithmic advances. This survey provides an in-depth investigation of recent deblurring models and traditional approaches. Furthermore, we conduct a fair re-evaluation under a unified evaluation protocol.
扫码关注我们
求助内容:
应助结果提醒方式:
