Pub Date : 2023-11-01DOI: 10.1061/jhyeff.heeng-5951
Huali Chen, Long Zhang, Gang Chen, Maoze Shao, Xianwu Zheng, Huijun Liu, Ting Wang, Cheng Hu
The use of a natural and low-impact way of managing surface water and groundwater in a sunken plaza is meaningful for urban ecological development. To achieve water storage, purification, and recycling, this study investigated a water circulation system in a sunken plaza based on the groundwater and surface water transformation and combination. A joint water-stop curtain system was constructed with underground continuous walls, RC wall, building main structure, adjacent support structure, and waterproof stratum at the bottom of the main structure. On the basis of the stratum data and parameters of the study area, a three-dimensional (3D) groundwater model was built using FEFLOW 7.5 comparing the actual groundwater level monitoring data from the field pumping test with the simulation data, the accuracy of the model was verified, and the water volume change of the sunken plaza was calculated. The low permeability of the curtain system calculated by a field test and the numerical model proved that the pumping activities in the sunken plaza had extremely low impact on the groundwater level outside the plaza. On the basis of this result, the pumping and seepage wells and water quality and quantity observation wells were designed scientifically and rationally. The purification and circulation control of water were realized in combination with rainwater, drainage, landscape, paving, and other facilities. According to the circulation system designed in this study, the annual water recycling capacity of the sunken plaza can reach more than 60,000 m3, and the total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) indicators in the rainwater can be reduced by more than 15% on average. The sunken plaza area forms a small spongy body that realizes water circulation, economic benefits, and ecological functions for the first time using groundwater storage. The developed method can be used for the water circulation and ecological construction of sunken plazas with similar geological environments.
{"title":"Water Circulation System of a Sunken Plaza Based on the Concept of a Sponge City Utilizing Groundwater","authors":"Huali Chen, Long Zhang, Gang Chen, Maoze Shao, Xianwu Zheng, Huijun Liu, Ting Wang, Cheng Hu","doi":"10.1061/jhyeff.heeng-5951","DOIUrl":"https://doi.org/10.1061/jhyeff.heeng-5951","url":null,"abstract":"The use of a natural and low-impact way of managing surface water and groundwater in a sunken plaza is meaningful for urban ecological development. To achieve water storage, purification, and recycling, this study investigated a water circulation system in a sunken plaza based on the groundwater and surface water transformation and combination. A joint water-stop curtain system was constructed with underground continuous walls, RC wall, building main structure, adjacent support structure, and waterproof stratum at the bottom of the main structure. On the basis of the stratum data and parameters of the study area, a three-dimensional (3D) groundwater model was built using FEFLOW 7.5 comparing the actual groundwater level monitoring data from the field pumping test with the simulation data, the accuracy of the model was verified, and the water volume change of the sunken plaza was calculated. The low permeability of the curtain system calculated by a field test and the numerical model proved that the pumping activities in the sunken plaza had extremely low impact on the groundwater level outside the plaza. On the basis of this result, the pumping and seepage wells and water quality and quantity observation wells were designed scientifically and rationally. The purification and circulation control of water were realized in combination with rainwater, drainage, landscape, paving, and other facilities. According to the circulation system designed in this study, the annual water recycling capacity of the sunken plaza can reach more than 60,000 m3, and the total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) indicators in the rainwater can be reduced by more than 15% on average. The sunken plaza area forms a small spongy body that realizes water circulation, economic benefits, and ecological functions for the first time using groundwater storage. The developed method can be used for the water circulation and ecological construction of sunken plazas with similar geological environments.","PeriodicalId":54800,"journal":{"name":"Journal of Hydrologic Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134956958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1061/jhyeff.heeng-6012
Shan Zheng, Juan He, Baosheng Wu
{"title":"Water and Sediment Regulation by Cascade Dams at the Yellow River, China","authors":"Shan Zheng, Juan He, Baosheng Wu","doi":"10.1061/jhyeff.heeng-6012","DOIUrl":"https://doi.org/10.1061/jhyeff.heeng-6012","url":null,"abstract":"","PeriodicalId":54800,"journal":{"name":"Journal of Hydrologic Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46399283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1061/jhyeff.heeng-5966
Li Yao, Xinqin Gu, Lifeng Wu
Numerical weather prediction (NWP) can provide vital information for pan evaporation (Ep) forecasts for the 16 days ahead, which is of great help to water resources management. However, the information for forecasting Ep usually requires bias corrections. This study was based on three bias correction methods [the equidistant cumulative distribution function method (EDCDFm; M1), XGBoost (XGB) with a single meteorological factor input (M2), and XGB with multiple meteorological factor input (M3)] and the meteorological data from 18 weather stations in southern China, the bias correction of meteorological factors forecasted by the second-generation Global Ensemble Forecast System (GEFSv2) was carried out. The results indicated the bias correction ability of the M3 method for GEFSv2 outputs was better than that of the M1 and M2 methods. It was a model-data error between GEFSv2 outputs and the corresponding observation data. Solar radiation exhibited the lowest error, whereas minimum temperature exhibited the highest. However, the M3 method decreased the forecast model-data error. In addition, this study compared the ability of three tree-based models to forecast Ep, namely, M5Tree (M5T), random forest (RF), and XGB. The XGB model had the highest forecasting accuracy for Ep. When the NWP outputs corrected by M1, M2, and M3 methods were used as the input of the XGB model, the averages of mean absolute errors (MAEs) at the 18 stations during the 1–16 day period ranged at 0.99–1.69, 0.78–1.14, and 0.78–1.07 mm/day, respectively. EP forecast showed the most significant error in the summer. Further, the relative humidity contributed the most to the Ep forecasting error. By addressing the issue of NWP outputs applied to Ep forecast, this study improves understanding of the bias correction method of NWP outputs and tree-based models to forecast Ep. It also improves understanding of the seasonal performance of Ep forecast and the impact of meteorological factors on forecast error that can inform future studies and models.
{"title":"Short-Term Forecasting of Daily Pan Evaporation Using Corrected Numerical Weather Forecasts Products","authors":"Li Yao, Xinqin Gu, Lifeng Wu","doi":"10.1061/jhyeff.heeng-5966","DOIUrl":"https://doi.org/10.1061/jhyeff.heeng-5966","url":null,"abstract":"Numerical weather prediction (NWP) can provide vital information for pan evaporation (Ep) forecasts for the 16 days ahead, which is of great help to water resources management. However, the information for forecasting Ep usually requires bias corrections. This study was based on three bias correction methods [the equidistant cumulative distribution function method (EDCDFm; M1), XGBoost (XGB) with a single meteorological factor input (M2), and XGB with multiple meteorological factor input (M3)] and the meteorological data from 18 weather stations in southern China, the bias correction of meteorological factors forecasted by the second-generation Global Ensemble Forecast System (GEFSv2) was carried out. The results indicated the bias correction ability of the M3 method for GEFSv2 outputs was better than that of the M1 and M2 methods. It was a model-data error between GEFSv2 outputs and the corresponding observation data. Solar radiation exhibited the lowest error, whereas minimum temperature exhibited the highest. However, the M3 method decreased the forecast model-data error. In addition, this study compared the ability of three tree-based models to forecast Ep, namely, M5Tree (M5T), random forest (RF), and XGB. The XGB model had the highest forecasting accuracy for Ep. When the NWP outputs corrected by M1, M2, and M3 methods were used as the input of the XGB model, the averages of mean absolute errors (MAEs) at the 18 stations during the 1–16 day period ranged at 0.99–1.69, 0.78–1.14, and 0.78–1.07 mm/day, respectively. EP forecast showed the most significant error in the summer. Further, the relative humidity contributed the most to the Ep forecasting error. By addressing the issue of NWP outputs applied to Ep forecast, this study improves understanding of the bias correction method of NWP outputs and tree-based models to forecast Ep. It also improves understanding of the seasonal performance of Ep forecast and the impact of meteorological factors on forecast error that can inform future studies and models.","PeriodicalId":54800,"journal":{"name":"Journal of Hydrologic Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134957401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1061/jhyeff.heeng-5937
Honglin Xiao, Jinping Zhang, Min Xu
{"title":"Study on Temporal Variability of Hydrological Elements in the Daqing River Basin, China","authors":"Honglin Xiao, Jinping Zhang, Min Xu","doi":"10.1061/jhyeff.heeng-5937","DOIUrl":"https://doi.org/10.1061/jhyeff.heeng-5937","url":null,"abstract":"","PeriodicalId":54800,"journal":{"name":"Journal of Hydrologic Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46877885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1061/jhyeff.heeng-6050
Dipsikha Devi, Arup Kumar Sarma
Hydropower dams can induce flash floods, leading to a severe cataclysm in flood-prone areas at downstream regions. On the catchment scale, flooding is not contributed solely by the reservoir releases, and there can be significant flow contributions from tributaries downstream of the dam. The major challenge in estimating the lateral flow contribution is that most tributaries are ungauged and situated in inaccessible areas. To overcome this inconsistency and to increase the precision of downstream flood warnings, a modeling framework was developed to quantify the flow contribution by ungauged tributaries to the mainstream using the drainage area ratio (DAR) method. The model parameters were estimated using optimization algorithms, and the best parameters were selected based on the error metrics. The modeling framework constitutes a reservoir operation model and hydrodynamic model developed in MATLAB version 2020b environment with the ease of coupling the two models. The estimated flow from the lateral tributaries based on the optimal model parameters of DAR and hourly inflow hydrographs were incorporated into the model. Two scenarios were analysed with and without lateral flow from ungauged tributaries. Results impart that the flood peaks have increased by more than 75% with the incorporation of the lateral flow. The model was validated with downstream stage and discharge data. The results indicated that the magnitude of the model generated and actual flow data were in the same range.Practical ApplicationsFlooding downstream due to sudden release from a hydropower dam is a matter of serious concern worldwide. To evaluate the potential flooding situation downstream, a dam release is generally routed by a hydrodynamic model. However, because hydropower dams are mostly located in remote areas, the tributaries located at inaccessible downstream areas remain ungauged and, therefore, obtaining precipitation/streamflow data of such tributaries become difficult. In absence of downstream flow contribution, the water level obtained by routing the reservoir release underestimates flood magnitude. The dam release flood falls in the high-hazard category because of its suddenness characteristics and, therefore, adverse consequences of underestimation cannot be overemphasized. This paper presents a framework that couples a reservoir operation model, a hydrodynamic model, and a simplified area–proportionate model to estimate downstream tributary contribution, so that a more reliable estimation of the downstream flood situation can be made. The modeling framework has been tested in the Ranganadi Hydropower Project situated in northeastern part of India. The coupled model can be applied to any reservoir with proper calibration of model parameters. By applying this model, a disaster manager would be in a position to disseminate in advance a more reliable downstream flood warning.
{"title":"Flow Assessment Downstream of a Hydroelectric Project in an Ungauged Area","authors":"Dipsikha Devi, Arup Kumar Sarma","doi":"10.1061/jhyeff.heeng-6050","DOIUrl":"https://doi.org/10.1061/jhyeff.heeng-6050","url":null,"abstract":"Hydropower dams can induce flash floods, leading to a severe cataclysm in flood-prone areas at downstream regions. On the catchment scale, flooding is not contributed solely by the reservoir releases, and there can be significant flow contributions from tributaries downstream of the dam. The major challenge in estimating the lateral flow contribution is that most tributaries are ungauged and situated in inaccessible areas. To overcome this inconsistency and to increase the precision of downstream flood warnings, a modeling framework was developed to quantify the flow contribution by ungauged tributaries to the mainstream using the drainage area ratio (DAR) method. The model parameters were estimated using optimization algorithms, and the best parameters were selected based on the error metrics. The modeling framework constitutes a reservoir operation model and hydrodynamic model developed in MATLAB version 2020b environment with the ease of coupling the two models. The estimated flow from the lateral tributaries based on the optimal model parameters of DAR and hourly inflow hydrographs were incorporated into the model. Two scenarios were analysed with and without lateral flow from ungauged tributaries. Results impart that the flood peaks have increased by more than 75% with the incorporation of the lateral flow. The model was validated with downstream stage and discharge data. The results indicated that the magnitude of the model generated and actual flow data were in the same range.Practical ApplicationsFlooding downstream due to sudden release from a hydropower dam is a matter of serious concern worldwide. To evaluate the potential flooding situation downstream, a dam release is generally routed by a hydrodynamic model. However, because hydropower dams are mostly located in remote areas, the tributaries located at inaccessible downstream areas remain ungauged and, therefore, obtaining precipitation/streamflow data of such tributaries become difficult. In absence of downstream flow contribution, the water level obtained by routing the reservoir release underestimates flood magnitude. The dam release flood falls in the high-hazard category because of its suddenness characteristics and, therefore, adverse consequences of underestimation cannot be overemphasized. This paper presents a framework that couples a reservoir operation model, a hydrodynamic model, and a simplified area–proportionate model to estimate downstream tributary contribution, so that a more reliable estimation of the downstream flood situation can be made. The modeling framework has been tested in the Ranganadi Hydropower Project situated in northeastern part of India. The coupled model can be applied to any reservoir with proper calibration of model parameters. By applying this model, a disaster manager would be in a position to disseminate in advance a more reliable downstream flood warning.","PeriodicalId":54800,"journal":{"name":"Journal of Hydrologic Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134957400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1061/jhyeff.heeng-5906
Xiaopei Ju, Dong Wang, Yuankun Wang, Vijay P. Singh, Along Zhang, Pengcheng Xu, Jichun Wu, Tao Ma, Jiufu Liu, Jianyun Zhang
This study develops a four-module-based multimodel framework, coupled with the projections of general circulation models (GCMs), a hydrological model (SWAT), and two sets of evaluation indicators [Indicators of Hydrologic Alteration (IHA) and River Regime Index (RRI)], to systematically quantify the response of ecohydrological regimes to climatic change. The Jinsha River Basin (JRB) was selected as a target area for both framework verification and application analysis because of its precious natural conditions, privileged abundant hydropower, and extremely rich fish resources. Results revealed that: (1) temperature and precipitation in the JRB would show increasing trends to varying degrees in the future. The increase in temperature would be much higher than that in precipitation, and the increment would be more significant during the end of the century (2068–2097). (2) The future runoff in the JRB may face an overall decreasing trend, leading to more and more frequent drought disasters. (3) The disturbances in the ecohydrological regime would result in more concentrated runoff and smoother hydrological pulse fluctuations in the JRB, meaning human-assisted participation would be required for the conservation of reproduction and development of ecological resources like Coreius guichenoti. Our findings suggest that effective management of future watershed resources can only be accomplished if an in-depth and comprehensive hydrological evaluation of changing climate is made, and the protection and sustainable development of ecological resources of the JRB in the future will require the participation of stakeholders. Figuring out the alteration in ecohydrological regimes under natural variation and its potential hazards may guide the degree of human participation in futural river protection.
{"title":"Climate-Induced Annual and Interannual Processual Shifts in Ecohydrological Regimes and Their Evaluations in Jinsha River Basin, China","authors":"Xiaopei Ju, Dong Wang, Yuankun Wang, Vijay P. Singh, Along Zhang, Pengcheng Xu, Jichun Wu, Tao Ma, Jiufu Liu, Jianyun Zhang","doi":"10.1061/jhyeff.heeng-5906","DOIUrl":"https://doi.org/10.1061/jhyeff.heeng-5906","url":null,"abstract":"This study develops a four-module-based multimodel framework, coupled with the projections of general circulation models (GCMs), a hydrological model (SWAT), and two sets of evaluation indicators [Indicators of Hydrologic Alteration (IHA) and River Regime Index (RRI)], to systematically quantify the response of ecohydrological regimes to climatic change. The Jinsha River Basin (JRB) was selected as a target area for both framework verification and application analysis because of its precious natural conditions, privileged abundant hydropower, and extremely rich fish resources. Results revealed that: (1) temperature and precipitation in the JRB would show increasing trends to varying degrees in the future. The increase in temperature would be much higher than that in precipitation, and the increment would be more significant during the end of the century (2068–2097). (2) The future runoff in the JRB may face an overall decreasing trend, leading to more and more frequent drought disasters. (3) The disturbances in the ecohydrological regime would result in more concentrated runoff and smoother hydrological pulse fluctuations in the JRB, meaning human-assisted participation would be required for the conservation of reproduction and development of ecological resources like Coreius guichenoti. Our findings suggest that effective management of future watershed resources can only be accomplished if an in-depth and comprehensive hydrological evaluation of changing climate is made, and the protection and sustainable development of ecological resources of the JRB in the future will require the participation of stakeholders. Figuring out the alteration in ecohydrological regimes under natural variation and its potential hazards may guide the degree of human participation in futural river protection.","PeriodicalId":54800,"journal":{"name":"Journal of Hydrologic Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134957519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1061/jhyeff.heeng-5921
Vijay Singh, Anuj Kumar Dwivedi
{"title":"Analytical Solution of Kinematic Wave Equation for Overland Flow due to Storms Moving at a Velocity Lower than Flow Velocity","authors":"Vijay Singh, Anuj Kumar Dwivedi","doi":"10.1061/jhyeff.heeng-5921","DOIUrl":"https://doi.org/10.1061/jhyeff.heeng-5921","url":null,"abstract":"","PeriodicalId":54800,"journal":{"name":"Journal of Hydrologic Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49185769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1061/jhyeff.heeng-6011
Arya Sajeev, Subrahmanya Kundapura
{"title":"Temporal Assessment of Meteorological Drought Events Using Stationary and Nonstationary Drought Indices for Two Climate Regions in India","authors":"Arya Sajeev, Subrahmanya Kundapura","doi":"10.1061/jhyeff.heeng-6011","DOIUrl":"https://doi.org/10.1061/jhyeff.heeng-6011","url":null,"abstract":"","PeriodicalId":54800,"journal":{"name":"Journal of Hydrologic Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43279035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1061/jhyeff.heeng-5936
Seyedbamdad Ghafourian, B. Aminnejad, H. Ebrahimi
{"title":"Evaluating Direct Assimilation of Satellite-Based Potential Evapotranspiration into SWAT for Improving Hydrological Modeling","authors":"Seyedbamdad Ghafourian, B. Aminnejad, H. Ebrahimi","doi":"10.1061/jhyeff.heeng-5936","DOIUrl":"https://doi.org/10.1061/jhyeff.heeng-5936","url":null,"abstract":"","PeriodicalId":54800,"journal":{"name":"Journal of Hydrologic Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48340941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}