Pub Date : 2023-11-01DOI: 10.1061/jhyeff.heeng-5995
Joy Sanyal, Anuva Chowdhury
Remote sensing is widely used for monitoring reservoir capacities. The relationship between two water levels (WLs) and the corresponding satellite-derived water spread areas provides the reservoir volume between the two WLs. However, the accuracy of this method depends on the ability to capture the water spread areas at fine increments of WLs so that the cross section of a reservoir is represented in adequate detail. In a monsoon climate, persistent cloud cover during the rainy season limits the number of usable optical satellite images. Hence, the time interval between two successive WLs for which cloud-free images are available is generally large. Using only a few WLs increases the likelihood of missing a significant break of slope in the reservoirs that may lead to gross error in the storage measurement. We showed that the combination of freely available optical (e.g., Landsat 8) and cloud-penetrating microwave [e.g., European Space Agency (ESA) Sentinel-1] images may improve storage estimation and mitigate the inherent uncertainty of using remote sensing data for monitoring reservoir sedimentation. Three reservoirs in the Upper Godavari Basin in India constituted the study area. Findings show that the average annual sedimentation rate was overestimated by ∼10% when using only Landsat-8 images compared to combined radar and optical remote sensing databases (2016 and 2017). The suggested method made significant improvements in the estimation of reservoir capacities for narrow-bottomed and convex-edged reservoirs.Practical ApplicationsThe capacity of a reservoir is typically monitored on a periodic basis as a means of determining the reservoir’s overall health. This is a common application of satellite imagery. Satellite images are used to determine the volume of water stored in a reservoir by analyzing the relationship between two water levels and the area covered by the water. The greater the difference between the two water levels, the less precise this measurement will be. Under monsoon climate, cloud cover prevents the use of optical images during the rainy season when reservoir levels fluctuate greatly. Because there are fewer water levels to choose from due to the lack of images, the accuracy of the estimate suffers. Using three reservoirs in the monsoon region of peninsular India, this study shows that combining optical data from satellites like Landsat-8 with publicly available cloud-penetrating Sentinel-1 radar images greatly increases the number of water spread area–water level data points and decreases the error and uncertainty in the storage estimation. Based on our findings, it appears that the reported rate of capacity loss, derived from limited optical images, is likely to be inaccurate. The authors also found that the storage estimates of the narrow-bottomed conical-shaped reservoirs will be greatly improved by increasing the number of water levels in volume calculation.
{"title":"Reassessment of Reservoir Sedimentation Rates under a Monsoon Climate with Combined Optical and Microwave Remote Sensing: A Case Study of Three Reservoirs in the Upper Godavari Basin, India","authors":"Joy Sanyal, Anuva Chowdhury","doi":"10.1061/jhyeff.heeng-5995","DOIUrl":"https://doi.org/10.1061/jhyeff.heeng-5995","url":null,"abstract":"Remote sensing is widely used for monitoring reservoir capacities. The relationship between two water levels (WLs) and the corresponding satellite-derived water spread areas provides the reservoir volume between the two WLs. However, the accuracy of this method depends on the ability to capture the water spread areas at fine increments of WLs so that the cross section of a reservoir is represented in adequate detail. In a monsoon climate, persistent cloud cover during the rainy season limits the number of usable optical satellite images. Hence, the time interval between two successive WLs for which cloud-free images are available is generally large. Using only a few WLs increases the likelihood of missing a significant break of slope in the reservoirs that may lead to gross error in the storage measurement. We showed that the combination of freely available optical (e.g., Landsat 8) and cloud-penetrating microwave [e.g., European Space Agency (ESA) Sentinel-1] images may improve storage estimation and mitigate the inherent uncertainty of using remote sensing data for monitoring reservoir sedimentation. Three reservoirs in the Upper Godavari Basin in India constituted the study area. Findings show that the average annual sedimentation rate was overestimated by ∼10% when using only Landsat-8 images compared to combined radar and optical remote sensing databases (2016 and 2017). The suggested method made significant improvements in the estimation of reservoir capacities for narrow-bottomed and convex-edged reservoirs.Practical ApplicationsThe capacity of a reservoir is typically monitored on a periodic basis as a means of determining the reservoir’s overall health. This is a common application of satellite imagery. Satellite images are used to determine the volume of water stored in a reservoir by analyzing the relationship between two water levels and the area covered by the water. The greater the difference between the two water levels, the less precise this measurement will be. Under monsoon climate, cloud cover prevents the use of optical images during the rainy season when reservoir levels fluctuate greatly. Because there are fewer water levels to choose from due to the lack of images, the accuracy of the estimate suffers. Using three reservoirs in the monsoon region of peninsular India, this study shows that combining optical data from satellites like Landsat-8 with publicly available cloud-penetrating Sentinel-1 radar images greatly increases the number of water spread area–water level data points and decreases the error and uncertainty in the storage estimation. Based on our findings, it appears that the reported rate of capacity loss, derived from limited optical images, is likely to be inaccurate. The authors also found that the storage estimates of the narrow-bottomed conical-shaped reservoirs will be greatly improved by increasing the number of water levels in volume calculation.","PeriodicalId":54800,"journal":{"name":"Journal of Hydrologic Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134956960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1061/jhyeff.heeng-6005
Riley Post, F. Quintero, W. Krajewski
{"title":"Evaluating the Efficacy of Actively Managed Distributed Storage Systems for Peak Flow Reduction Using Spatially Uniform Design Storms","authors":"Riley Post, F. Quintero, W. Krajewski","doi":"10.1061/jhyeff.heeng-6005","DOIUrl":"https://doi.org/10.1061/jhyeff.heeng-6005","url":null,"abstract":"","PeriodicalId":54800,"journal":{"name":"Journal of Hydrologic Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49418607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1061/jhyeff.heeng-5978
Manotosh Kumbhakar, Christina W. Tsai, Vijay P. Singh
{"title":"Improved Velocity Profile in Open Channels Using Incomplete Information–Based Entropy Theory","authors":"Manotosh Kumbhakar, Christina W. Tsai, Vijay P. Singh","doi":"10.1061/jhyeff.heeng-5978","DOIUrl":"https://doi.org/10.1061/jhyeff.heeng-5978","url":null,"abstract":"","PeriodicalId":54800,"journal":{"name":"Journal of Hydrologic Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43039881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1061/jhyeff.heeng-5888
Alok Kumar, Gourabananda Pahar
{"title":"Applicability of Dynamic, Local, and Diffusive Wave Models for Unified Depth-Averaged Fluid Flow Interaction with Porous Media","authors":"Alok Kumar, Gourabananda Pahar","doi":"10.1061/jhyeff.heeng-5888","DOIUrl":"https://doi.org/10.1061/jhyeff.heeng-5888","url":null,"abstract":"","PeriodicalId":54800,"journal":{"name":"Journal of Hydrologic Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45062086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1061/jhyeff.heeng-6027
Xianmeng Meng, Qi Zhao, Zhiqiang Cai, Maosheng Yin, Dengfeng Liu
{"title":"Lithologic Controls on Parameters of Conceptual Rainfall–Runoff Model and Runoff Characteristics: A Case Study of the Xinanjiang Model","authors":"Xianmeng Meng, Qi Zhao, Zhiqiang Cai, Maosheng Yin, Dengfeng Liu","doi":"10.1061/jhyeff.heeng-6027","DOIUrl":"https://doi.org/10.1061/jhyeff.heeng-6027","url":null,"abstract":"","PeriodicalId":54800,"journal":{"name":"Journal of Hydrologic Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48563882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1061/jhyeff.heeng-6002
Yan Ju, Xing Yang, Dongmei Wang, Yihong Wang, Ran Tao
{"title":"Spatiotemporal Variation of Extreme Precipitation in the Lixia River Basin, China, between 1960 and 2019 under Global Warming, Atmospheric Circulation, and Local Effects","authors":"Yan Ju, Xing Yang, Dongmei Wang, Yihong Wang, Ran Tao","doi":"10.1061/jhyeff.heeng-6002","DOIUrl":"https://doi.org/10.1061/jhyeff.heeng-6002","url":null,"abstract":"","PeriodicalId":54800,"journal":{"name":"Journal of Hydrologic Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43422326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1061/jhyeff.heeng-5954
Guan-jun Lei, Jun-xian Yin, Wenchuan Wang, Hao Wang, Changshun Liu
{"title":"Hydrological Frequency Analysis in Changing Environments Based on Empirical Mode Decomposition and Metropolis-Hastings Sampling Bayesian Models","authors":"Guan-jun Lei, Jun-xian Yin, Wenchuan Wang, Hao Wang, Changshun Liu","doi":"10.1061/jhyeff.heeng-5954","DOIUrl":"https://doi.org/10.1061/jhyeff.heeng-5954","url":null,"abstract":"","PeriodicalId":54800,"journal":{"name":"Journal of Hydrologic Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43808801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1061/jhyeff.heeng-5777
Nizamuddin Ahamed, S. Kundu
{"title":"A Generalized Approach to Model One-Dimensional Nonmonotonous Distributions Using Renyi Entropy Theory with Applications to Open-Channel Turbulent Flows","authors":"Nizamuddin Ahamed, S. Kundu","doi":"10.1061/jhyeff.heeng-5777","DOIUrl":"https://doi.org/10.1061/jhyeff.heeng-5777","url":null,"abstract":"","PeriodicalId":54800,"journal":{"name":"Journal of Hydrologic Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44735886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1061/jhyeff.heeng-5950
Z. Yao, Guoru Huang, Zhiwei Chen
{"title":"Effect of Land-Use Changes in Different Urbanization Periods on Flooding in Qianshan River Basin, South China","authors":"Z. Yao, Guoru Huang, Zhiwei Chen","doi":"10.1061/jhyeff.heeng-5950","DOIUrl":"https://doi.org/10.1061/jhyeff.heeng-5950","url":null,"abstract":"","PeriodicalId":54800,"journal":{"name":"Journal of Hydrologic Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46091712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1061/jhyeff.heeng-5956
Xulei Guo, Kun Huang, Jingwen Li, Ye Kuang, Yifan Chen, Cong Jiang, Mingming Luo, Hong Zhou
{"title":"Rainfall–Runoff Process Simulation in the Karst Spring Basins Using a SAC–Tank Model","authors":"Xulei Guo, Kun Huang, Jingwen Li, Ye Kuang, Yifan Chen, Cong Jiang, Mingming Luo, Hong Zhou","doi":"10.1061/jhyeff.heeng-5956","DOIUrl":"https://doi.org/10.1061/jhyeff.heeng-5956","url":null,"abstract":"","PeriodicalId":54800,"journal":{"name":"Journal of Hydrologic Engineering","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46245892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}