The schizothoracine fishes, widely distributed in the Qinghai-Tibetan Plateau and its adjacent areas, are considered as ideal models for investigation of high-altitude adaptation. Schizophygopsis are one group of the highly specialized schizothoracine fishes, and the genetic basis for their high-altitude adaptation is poorly understood. In this study, we performed comparative genomics analyses to investigate the potential genetic mechanisms for high-altitude adaptation of Schizopygopsis malacanthus and Schizopygopsis pylzovi based on the chromosome-level genomes. Functional enrichment analysis revealed that many expanded gene families in Schizopygopsis were associated with immune response while many contracted gene families were functionally associated with olfaction. Among the 123 positively selected genes (PSGs), angpt2a was detected in HIF-1 signaling pathway and possibly related to the hypoxia adaptation of Schizopygopsis. Furthermore, two PSGs cox15 and ndufb10 were distributed in thermogenesis, and there was a Schizopygopsis-specific missense mutation in cox15 (Gln115Glu), which possibly contributed to the cold temperature adaptation of the Schizopygopsis. Kyoto Encyclopedia of Genes and Genomes enrichment of the PSGs revealed three significant pathways including metabolic pathways, cell cycle, and homologous recombination and Gene Ontology enrichment analysis of the PSGs revealed several categories associated with DNA repair, cellular response to DNA damage stimulus, and metabolic process. Chromosome-scale characterization of olfactory receptor (OR) repertoires indicated that Schizopygopsis had the least number of OR genes, and the OR gene contraction was possibly caused by the limited food variety and the environmental factors such as lower air pressure, lower humidity, and lower temperature. Our study will help expand our understanding of the potential adaptive mechanism of Schizopygopsis to cope with the high-altitude conditions.
Acarospora socialis, the bright cobblestone lichen, is commonly found in southwestern North America. This charismatic yellow lichen is a species of key ecological significance as it is often a pioneer species in new environments. Despite their ecological importance virtually no research has been conducted on the genomics of A. socialis. To address this, we used long-read sequencing to generate the first high-quality draft genome of A. socialis. Lichen thallus tissue was collected from Pinkham Canyon in Joshua Tree National Park, California and deposited in the UC Riverside herbarium under accession #295874. The de novo assembly of the mycobiont partner of the lichen was generated from Pacific Biosciences HiFi long reads and Dovetail Omni-C chromatin capture data. After removing algal and bacterial contigs, the fungal genome was approximately 31.2 Mb consisting of 38 scaffolds with contig and scaffold N50 of 2.4 Mb. The BUSCO completeness score of the assembled genome was 97.5% using the Ascomycota gene set. Information on the genome of A. socialis is important for California conservation purposes given that this lichen is threatened in some places locally by wildfires due to climate change. This reference genome will be used for understanding the genetic diversity, population genomics, and comparative genomics of A. socialis species. Genomic resources for this species will support population and landscape genomics investigations, exploring the use of A. socialis as a bioindicator species for climate change, and in studies of adaptation by comparing populations that occur across aridity gradients in California.
In many organisms, especially those of conservation concern, traditional lines of evidence for taxonomic delineation, such as morphological data, are often difficult to obtain. In these cases, genetic data are often the only source of information available for taxonomic studies. In particular, population surveys of mitochondrial genomes offer increased resolution and precision in support of taxonomic decisions relative to conventional use of the control region or other gene fragments of the mitochondrial genome. To improve quantitative guidelines for taxonomic decisions in cetaceans, we build on a previous effort targeting the control region and evaluate, for whole mitogenome sequences, a suite of divergence and diagnosability estimates for pairs of recognized cetacean populations, subspecies, and species. From this overview, we recommend new guidelines based on complete mitogenomes, combined with other types of evidence for isolation and divergence, which will improve resolution for taxonomic decisions, especially in the face of small sample sizes or low levels of genetic diversity. We further use simulated data to assist interpretations of divergence in the context of varying forms of historical demography, culture, and ecology.
Cooperative hunting between humans and killer whales (Orcinus orca) targeting baleen whales was reported in Eden, New South Wales, Australia, for almost a century. By 1928, whaling operations had ceased, and local killer whale sightings became scarce. A killer whale from the group, known as "Old Tom," washed up dead in 1930 and his skeleton was preserved. How these killer whales from Eden relate to other populations globally and whether their genetic descendants persist today remains unknown. We extracted and sequenced DNA from Old Tom using ancient DNA techniques. Genomic sequences were then compared with a global dataset of mitochondrial and nuclear genomes. Old Tom shared a most recent common ancestor with killer whales from Australasia, the North Atlantic, and the North Pacific, having the highest genetic similarity with contemporary New Zealand killer whales. However, much of the variation found in Old Tom's genome was not shared with these widespread populations, suggesting ancestral rather than ongoing gene flow. Our genetic comparisons also failed to find any clear descendants of Tom, raising the possibility of local extinction of this group. We integrated Traditional Custodian knowledge to recapture the events in Eden and recognize that Indigenous Australians initiated the relationship with the killer whales before European colonization and the advent of commercial whaling locally. This study rectifies discrepancies in local records and provides new insight into the origins of the killer whales in Eden and the history of Australasian killer whales.
Gene flow can affect evolutionary inference when species are undersampled. Here, we evaluate the effects of gene flow and geographic sampling on demographic inference of 2 hummingbirds that hybridize, Allen's hummingbird (Selasphorus sasin) and rufous hummingbird (Selasphorus rufus). Using whole-genome data and extensive geographic sampling, we find widespread connectivity, with introgression far beyond the Allen's × rufous hybrid zone, although the Z chromosome resists introgression beyond the hybrid zone. We test alternative hypotheses of speciation history of Allen's, rufous, and Calliope (S. calliope) hummingbird and find that rufous hummingbird is the sister taxon to Allen's hummingbird, and Calliope hummingbird is the outgroup. A model treating the 2 subspecies of Allen's hummingbird as a single panmictic population fit observed genetic data better than models treating the subspecies as distinct populations, in contrast to morphological and behavioral differences and analyses of spatial population structure. With additional sampling, our study builds upon recent studies that came to conflicting conclusions regarding the evolutionary histories of these 2 species. Our results stress the importance of thorough geographic sampling when assessing demographic history in the presence of gene flow.
The 20th century commercial whaling industry severely reduced populations of great whales throughout the Southern Hemisphere. The effect of this exploitation on genetic diversity and population structure remains largely undescribed. Here, we compare pre- and post-whaling diversity of mitochondrial DNA (mtDNA) control region sequences for 3 great whales in the South Atlantic, such as the blue, humpback, and fin whale. Pre-whaling diversity is described from mtDNA extracted from bones collected near abandoned whaling stations, primarily from the South Atlantic island of South Georgia. These bones are known to represent the first stage of 20th century whaling and thus pre-whaling diversity of these populations. Post-whaling diversity is described from previously published studies reporting large-scale sampling of living whales in the Southern Hemisphere. Despite relatively high levels of surviving genetic diversity in the post-whaling populations, we found evidence of a probable loss of mtDNA lineages in all 3 species. This is evidenced by the detection of a large number of haplotypes found in the pre-whaling samples that are not present in the post-whaling samples. A rarefaction analysis further supports a loss of haplotypes in the South Atlantic humpback and Antarctic blue whale populations. The bones from former whaling stations in the South Atlantic represent a remarkable molecular archive for further investigation of the decline and ongoing recovery in the great whales of the Southern Hemisphere.