Pub Date : 2023-11-01Epub Date: 2023-08-26DOI: 10.1007/s10827-023-00860-0
Brian L Frost, Stanislav M Mintchev
Recent investigations of traumatic brain injuries have shown that these injuries can result in conformational changes at the level of individual neurons in the cerebral cortex. Focal axonal swelling is one consequence of such injuries and leads to a variable width along the cell axon. Simulations of the electrical properties of axons impacted in such a way show that this damage may have a nonlinear deleterious effect on spike-encoded signal transmission. The computational cost of these simulations complicates the investigation of the effects of such damage at a network level. We have developed an efficient algorithm that faithfully reproduces the spike train filtering properties seen in physical simulations. We use this algorithm to explore the impact of focal axonal swelling on small networks of integrate and fire neurons. We explore also the effects of architecture modifications to networks impacted in this manner. In all tested networks, our results indicate that the addition of presynaptic inhibitory neurons either increases or leaves unchanged the fidelity, in terms of bandwidth, of the network's processing properties with respect to this damage.
{"title":"A high-efficiency model indicating the role of inhibition in the resilience of neuronal networks to damage resulting from traumatic injury.","authors":"Brian L Frost, Stanislav M Mintchev","doi":"10.1007/s10827-023-00860-0","DOIUrl":"10.1007/s10827-023-00860-0","url":null,"abstract":"<p><p>Recent investigations of traumatic brain injuries have shown that these injuries can result in conformational changes at the level of individual neurons in the cerebral cortex. Focal axonal swelling is one consequence of such injuries and leads to a variable width along the cell axon. Simulations of the electrical properties of axons impacted in such a way show that this damage may have a nonlinear deleterious effect on spike-encoded signal transmission. The computational cost of these simulations complicates the investigation of the effects of such damage at a network level. We have developed an efficient algorithm that faithfully reproduces the spike train filtering properties seen in physical simulations. We use this algorithm to explore the impact of focal axonal swelling on small networks of integrate and fire neurons. We explore also the effects of architecture modifications to networks impacted in this manner. In all tested networks, our results indicate that the addition of presynaptic inhibitory neurons either increases or leaves unchanged the fidelity, in terms of bandwidth, of the network's processing properties with respect to this damage.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":" ","pages":"463-474"},"PeriodicalIF":1.2,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10450908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-08-10DOI: 10.1007/s10827-023-00857-9
Cecilia Jarne, Rodrigo Laje
Recurrent Neural Networks (RNNs) are frequently used to model aspects of brain function and structure. In this work, we trained small fully-connected RNNs to perform temporal and flow control tasks with time-varying stimuli. Our results show that different RNNs can solve the same task by converging to different underlying dynamics and also how the performance gracefully degrades as either network size is decreased, interval duration is increased, or connectivity damage is induced. For the considered tasks, we explored how robust the network obtained after training can be according to task parameterization. In the process, we developed a framework that can be useful to parameterize other tasks of interest in computational neuroscience. Our results are useful to quantify different aspects of the models, which are normally used as black boxes and need to be understood in order to model the biological response of cerebral cortex areas.
{"title":"Exploring weight initialization, diversity of solutions, and degradation in recurrent neural networks trained for temporal and decision-making tasks.","authors":"Cecilia Jarne, Rodrigo Laje","doi":"10.1007/s10827-023-00857-9","DOIUrl":"10.1007/s10827-023-00857-9","url":null,"abstract":"<p><p>Recurrent Neural Networks (RNNs) are frequently used to model aspects of brain function and structure. In this work, we trained small fully-connected RNNs to perform temporal and flow control tasks with time-varying stimuli. Our results show that different RNNs can solve the same task by converging to different underlying dynamics and also how the performance gracefully degrades as either network size is decreased, interval duration is increased, or connectivity damage is induced. For the considered tasks, we explored how robust the network obtained after training can be according to task parameterization. In the process, we developed a framework that can be useful to parameterize other tasks of interest in computational neuroscience. Our results are useful to quantify different aspects of the models, which are normally used as black boxes and need to be understood in order to model the biological response of cerebral cortex areas.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":" ","pages":"407-431"},"PeriodicalIF":1.2,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10320984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1007/s10827-023-00849-9
Kine Ødegård Hanssen, Sverre Grødem, Marianne Fyhn, Torkel Hafting, Gaute T Einevoll, Torbjørn Vefferstad Ness, Geir Halnes
The perineuronal nets (PNNs) are sugar coated protein structures that encapsulate certain neurons in the brain, such as parvalbumin positive (PV) inhibitory neurons. As PNNs are theorized to act as a barrier to ion transport, they may effectively increase the membrane charge-separation distance, thereby affecting the membrane capacitance. Tewari et al. (2018) found that degradation of PNNs induced a 25%-50% increase in membrane capacitance [Formula: see text] and a reduction in the firing rates of PV-cells. In the current work, we explore how changes in [Formula: see text] affects the firing rate in a selection of computational neuron models, ranging in complexity from a single compartment Hodgkin-Huxley model to morphologically detailed PV-neuron models. In all models, an increased [Formula: see text] lead to reduced firing, but the experimentally reported increase in [Formula: see text] was not alone sufficient to explain the experimentally reported reduction in firing rate. We therefore hypothesized that PNN degradation in the experiments affected not only [Formula: see text], but also ionic reversal potentials and ion channel conductances. In simulations, we explored how various model parameters affected the firing rate of the model neurons, and identified which parameter variations in addition to [Formula: see text] that are most likely candidates for explaining the experimentally reported reduction in firing rate.
{"title":"Responses in fast-spiking interneuron firing rates to parameter variations associated with degradation of perineuronal nets.","authors":"Kine Ødegård Hanssen, Sverre Grødem, Marianne Fyhn, Torkel Hafting, Gaute T Einevoll, Torbjørn Vefferstad Ness, Geir Halnes","doi":"10.1007/s10827-023-00849-9","DOIUrl":"https://doi.org/10.1007/s10827-023-00849-9","url":null,"abstract":"<p><p>The perineuronal nets (PNNs) are sugar coated protein structures that encapsulate certain neurons in the brain, such as parvalbumin positive (PV) inhibitory neurons. As PNNs are theorized to act as a barrier to ion transport, they may effectively increase the membrane charge-separation distance, thereby affecting the membrane capacitance. Tewari et al. (2018) found that degradation of PNNs induced a 25%-50% increase in membrane capacitance [Formula: see text] and a reduction in the firing rates of PV-cells. In the current work, we explore how changes in [Formula: see text] affects the firing rate in a selection of computational neuron models, ranging in complexity from a single compartment Hodgkin-Huxley model to morphologically detailed PV-neuron models. In all models, an increased [Formula: see text] lead to reduced firing, but the experimentally reported increase in [Formula: see text] was not alone sufficient to explain the experimentally reported reduction in firing rate. We therefore hypothesized that PNN degradation in the experiments affected not only [Formula: see text], but also ionic reversal potentials and ion channel conductances. In simulations, we explored how various model parameters affected the firing rate of the model neurons, and identified which parameter variations in addition to [Formula: see text] that are most likely candidates for explaining the experimentally reported reduction in firing rate.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"51 2","pages":"283-298"},"PeriodicalIF":1.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182141/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9997089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1007/s10827-023-00845-z
Loïc J Azzalini, David Crompton, Gabriele M T D'Eleuterio, Frances Skinner, Milad Lankarany
Data assimilation techniques for state and parameter estimation are frequently applied in the context of computational neuroscience. In this work, we show how an adaptive variant of the unscented Kalman filter (UKF) performs on the tracking of a conductance-based neuron model. Unlike standard recursive filter implementations, the robust adaptive unscented Kalman filter (RAUKF) jointly estimates the states and parameters of the neuronal model while adjusting noise covariance matrices online based on innovation and residual information. We benchmark the adaptive filter's performance against existing nonlinear Kalman filters and explore the sensitivity of the filter parameters to the system being modelled. To evaluate the robustness of the proposed solution, we simulate practical settings that challenge tracking performance, such as a model mismatch and measurement faults. Compared to standard variants of the Kalman filter the adaptive variant implemented here is more accurate and robust to faults.
{"title":"Adaptive unscented Kalman filter for neuronal state and parameter estimation.","authors":"Loïc J Azzalini, David Crompton, Gabriele M T D'Eleuterio, Frances Skinner, Milad Lankarany","doi":"10.1007/s10827-023-00845-z","DOIUrl":"https://doi.org/10.1007/s10827-023-00845-z","url":null,"abstract":"<p><p>Data assimilation techniques for state and parameter estimation are frequently applied in the context of computational neuroscience. In this work, we show how an adaptive variant of the unscented Kalman filter (UKF) performs on the tracking of a conductance-based neuron model. Unlike standard recursive filter implementations, the robust adaptive unscented Kalman filter (RAUKF) jointly estimates the states and parameters of the neuronal model while adjusting noise covariance matrices online based on innovation and residual information. We benchmark the adaptive filter's performance against existing nonlinear Kalman filters and explore the sensitivity of the filter parameters to the system being modelled. To evaluate the robustness of the proposed solution, we simulate practical settings that challenge tracking performance, such as a model mismatch and measurement faults. Compared to standard variants of the Kalman filter the adaptive variant implemented here is more accurate and robust to faults.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"51 2","pages":"223-237"},"PeriodicalIF":1.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9615487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1007/s10827-023-00848-w
Loïs Naudin
{"title":"Different parameter solutions of a conductance-based model that behave identically are not necessarily degenerate.","authors":"Loïs Naudin","doi":"10.1007/s10827-023-00848-w","DOIUrl":"https://doi.org/10.1007/s10827-023-00848-w","url":null,"abstract":"","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"51 2","pages":"201-206"},"PeriodicalIF":1.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9627283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1007/s10827-023-00844-0
Sevgi Öztürk, İsmail Devecioğlu, Burak Güçlü
Decoding of sensorimotor information is essential for brain-computer interfaces (BCIs) as well as in normal functioning organisms. In this study, Bayesian models were developed for the prediction of binary decisions of 10 awake freely-moving male/female rats based on neural activity in a vibrotactile yes/no detection task. The vibrotactile stimuli were 40-Hz sinusoidal displacements (amplitude: 200 µm, duration: 0.5 s) applied on the glabrous skin. The task was to depress the right lever for stimulus detection and left lever for stimulus-off condition. Spike activity was recorded from 16-channel microwire arrays implanted in the hindlimb representation of primary somatosensory cortex (S1), overlapping also with the associated representation in the primary motor cortex (M1). Single-/multi-unit average spike rate (Rd) within the stimulus analysis window was used as the predictor of the stimulus state and the behavioral response at each trial based on a Bayesian network model. Due to high neural and psychophysical response variability for each rat and also across subjects, mean Rd was not correlated with hit and false alarm rates. Despite the fluctuations in the neural data, the Bayesian model for each rat generated moderately good accuracy (0.60-0.90) and good class prediction scores (recall, precision, F1) and was also tested with subsets of data (e.g. regular vs. fast spike groups). It was generally observed that the models were better for rats with lower psychophysical performance (lower sensitivity index A'). This suggests that Bayesian inference and similar machine learning techniques may be especially helpful during the training phase of BCIs or for rehabilitation with neuroprostheses.
{"title":"Bayesian prediction of psychophysical detection responses from spike activity in the rat sensorimotor cortex.","authors":"Sevgi Öztürk, İsmail Devecioğlu, Burak Güçlü","doi":"10.1007/s10827-023-00844-0","DOIUrl":"https://doi.org/10.1007/s10827-023-00844-0","url":null,"abstract":"<p><p>Decoding of sensorimotor information is essential for brain-computer interfaces (BCIs) as well as in normal functioning organisms. In this study, Bayesian models were developed for the prediction of binary decisions of 10 awake freely-moving male/female rats based on neural activity in a vibrotactile yes/no detection task. The vibrotactile stimuli were 40-Hz sinusoidal displacements (amplitude: 200 µm, duration: 0.5 s) applied on the glabrous skin. The task was to depress the right lever for stimulus detection and left lever for stimulus-off condition. Spike activity was recorded from 16-channel microwire arrays implanted in the hindlimb representation of primary somatosensory cortex (S1), overlapping also with the associated representation in the primary motor cortex (M1). Single-/multi-unit average spike rate (R<sub>d</sub>) within the stimulus analysis window was used as the predictor of the stimulus state and the behavioral response at each trial based on a Bayesian network model. Due to high neural and psychophysical response variability for each rat and also across subjects, mean R<sub>d</sub> was not correlated with hit and false alarm rates. Despite the fluctuations in the neural data, the Bayesian model for each rat generated moderately good accuracy (0.60-0.90) and good class prediction scores (recall, precision, F1) and was also tested with subsets of data (e.g. regular vs. fast spike groups). It was generally observed that the models were better for rats with lower psychophysical performance (lower sensitivity index A'). This suggests that Bayesian inference and similar machine learning techniques may be especially helpful during the training phase of BCIs or for rehabilitation with neuroprostheses.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"51 2","pages":"207-222"},"PeriodicalIF":1.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9979116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1007/s10827-023-00846-y
Sushmita Rose John, Bernd Krauskopf, Hinke M Osinga, Jonathan E Rubin
Square-wave bursting is an activity pattern common to a variety of neuronal and endocrine cell models that has been linked to central pattern generation for respiration and other physiological functions. Many of the reduced mathematical models that exhibit square-wave bursting yield transitions to an alternative pseudo-plateau bursting pattern with small parameter changes. This susceptibility to activity change could represent a problematic feature in settings where the release events triggered by spike production are necessary for function. In this work, we analyze how model bursting and other activity patterns vary with changes in a timescale associated with the conductance of a fast inward current. Specifically, using numerical simulations and dynamical systems methods, such as fast-slow decomposition and bifurcation and phase-plane analysis, we demonstrate and explain how the presence of a slow negative feedback associated with a gradual reduction of a fast inward current in these models helps to maintain the presence of spikes within the active phases of bursts. Therefore, although such a negative feedback is not necessary for burst production, we find that its presence generates a robustness that may be important for function.
{"title":"Slow negative feedback enhances robustness of square-wave bursting.","authors":"Sushmita Rose John, Bernd Krauskopf, Hinke M Osinga, Jonathan E Rubin","doi":"10.1007/s10827-023-00846-y","DOIUrl":"https://doi.org/10.1007/s10827-023-00846-y","url":null,"abstract":"<p><p>Square-wave bursting is an activity pattern common to a variety of neuronal and endocrine cell models that has been linked to central pattern generation for respiration and other physiological functions. Many of the reduced mathematical models that exhibit square-wave bursting yield transitions to an alternative pseudo-plateau bursting pattern with small parameter changes. This susceptibility to activity change could represent a problematic feature in settings where the release events triggered by spike production are necessary for function. In this work, we analyze how model bursting and other activity patterns vary with changes in a timescale associated with the conductance of a fast inward current. Specifically, using numerical simulations and dynamical systems methods, such as fast-slow decomposition and bifurcation and phase-plane analysis, we demonstrate and explain how the presence of a slow negative feedback associated with a gradual reduction of a fast inward current in these models helps to maintain the presence of spikes within the active phases of bursts. Therefore, although such a negative feedback is not necessary for burst production, we find that its presence generates a robustness that may be important for function.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"51 2","pages":"239-261"},"PeriodicalIF":1.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181982/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9627811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1007/s10827-023-00847-x
Nathan G Glasgow, Yu Chen, Alon Korngreen, Robert E Kass, Nathan N Urban
To understand single neuron computation, it is necessary to know how specific physiological parameters affect neural spiking patterns that emerge in response to specific stimuli. Here we present a computational pipeline combining biophysical and statistical models that provides a link between variation in functional ion channel expression and changes in single neuron stimulus encoding. More specifically, we create a mapping from biophysical model parameters to stimulus encoding statistical model parameters. Biophysical models provide mechanistic insight, whereas statistical models can identify associations between spiking patterns and the stimuli they encode. We used public biophysical models of two morphologically and functionally distinct projection neuron cell types: mitral cells (MCs) of the main olfactory bulb, and layer V cortical pyramidal cells (PCs). We first simulated sequences of action potentials according to certain stimuli while scaling individual ion channel conductances. We then fitted point process generalized linear models (PP-GLMs), and we constructed a mapping between the parameters in the two types of models. This framework lets us detect effects on stimulus encoding of changing an ion channel conductance. The computational pipeline combines models across scales and can be applied as a screen of channels, in any cell type of interest, to identify ways that channel properties influence single neuron computation.
{"title":"A biophysical and statistical modeling paradigm for connecting neural physiology and function.","authors":"Nathan G Glasgow, Yu Chen, Alon Korngreen, Robert E Kass, Nathan N Urban","doi":"10.1007/s10827-023-00847-x","DOIUrl":"https://doi.org/10.1007/s10827-023-00847-x","url":null,"abstract":"<p><p>To understand single neuron computation, it is necessary to know how specific physiological parameters affect neural spiking patterns that emerge in response to specific stimuli. Here we present a computational pipeline combining biophysical and statistical models that provides a link between variation in functional ion channel expression and changes in single neuron stimulus encoding. More specifically, we create a mapping from biophysical model parameters to stimulus encoding statistical model parameters. Biophysical models provide mechanistic insight, whereas statistical models can identify associations between spiking patterns and the stimuli they encode. We used public biophysical models of two morphologically and functionally distinct projection neuron cell types: mitral cells (MCs) of the main olfactory bulb, and layer V cortical pyramidal cells (PCs). We first simulated sequences of action potentials according to certain stimuli while scaling individual ion channel conductances. We then fitted point process generalized linear models (PP-GLMs), and we constructed a mapping between the parameters in the two types of models. This framework lets us detect effects on stimulus encoding of changing an ion channel conductance. The computational pipeline combines models across scales and can be applied as a screen of channels, in any cell type of interest, to identify ways that channel properties influence single neuron computation.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"51 2","pages":"263-282"},"PeriodicalIF":1.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182162/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9706786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1007/s10827-022-00842-8
Mohsen Kamelian Rad, Meysam Hedayati Hamedani, Mohammad Bagher Khodabakhshi
The interaction between neurons in a neuronal network develops spontaneous electrical activities. But the effects of electromagnetic radiation on these activities have not yet been well explored. In this study, a ring of three coupled 1-dimensional Rulkov neurons and the generated electromagnetic field (EMF) are considered to investigate how the spontaneous activities might change regarding the EMF exposure. By employing the bifurcation analysis and time series, a comprehensive view of neuronal behavioral changes due to electromagnetic inductions is provided. The main findings of this study are as follows: 1) When a neuronal network is showing a spontaneous chaotic firing manner (without any external stimuli), a generated magnetic field inhibits this type of behavior. In fact, EMF completely eliminated the chaotic intrinsic behaviors of the neuronal loop. 2) When the network is exhibiting regular period-3 spiking patterns, the generated magnetic field changes its firing pattern to chaotic spiking, which is similar to epileptic seizures. 3) With weak synaptic connections, electromagnetic radiation inhibits and suppresses neuronal activities. 4) If the external magnetic flux has a high amplitude, it can change the shape of the induction current according to its shape 5) when there are weak synaptic connections in the network, a high-frequency external magnetic flux engenders high-frequency fluctuations in the membrane voltages. On the whole, electromagnetic radiation changes the pattern of the spontaneous activities of neuronal networks in the brain according to synaptic strengths and initial states of the neurons.
{"title":"Variations of the spontaneous electrical activities of the neuronal networks imposed by the exposure of electromagnetic radiations using computational map-based modeling.","authors":"Mohsen Kamelian Rad, Meysam Hedayati Hamedani, Mohammad Bagher Khodabakhshi","doi":"10.1007/s10827-022-00842-8","DOIUrl":"https://doi.org/10.1007/s10827-022-00842-8","url":null,"abstract":"<p><p>The interaction between neurons in a neuronal network develops spontaneous electrical activities. But the effects of electromagnetic radiation on these activities have not yet been well explored. In this study, a ring of three coupled 1-dimensional Rulkov neurons and the generated electromagnetic field (EMF) are considered to investigate how the spontaneous activities might change regarding the EMF exposure. By employing the bifurcation analysis and time series, a comprehensive view of neuronal behavioral changes due to electromagnetic inductions is provided. The main findings of this study are as follows: 1) When a neuronal network is showing a spontaneous chaotic firing manner (without any external stimuli), a generated magnetic field inhibits this type of behavior. In fact, EMF completely eliminated the chaotic intrinsic behaviors of the neuronal loop. 2) When the network is exhibiting regular period-3 spiking patterns, the generated magnetic field changes its firing pattern to chaotic spiking, which is similar to epileptic seizures. 3) With weak synaptic connections, electromagnetic radiation inhibits and suppresses neuronal activities. 4) If the external magnetic flux has a high amplitude, it can change the shape of the induction current according to its shape 5) when there are weak synaptic connections in the network, a high-frequency external magnetic flux engenders high-frequency fluctuations in the membrane voltages. On the whole, electromagnetic radiation changes the pattern of the spontaneous activities of neuronal networks in the brain according to synaptic strengths and initial states of the neurons.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"51 1","pages":"187-200"},"PeriodicalIF":1.2,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9210461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1007/s10827-022-00840-w
Loïs Naudin, Laetitia Raison-Aubry, Laure Buhry
Electrical activity of excitable cells results from ion exchanges through cell membranes, so that genetic or epigenetic changes in genes encoding ion channels are likely to affect neuronal electrical signaling throughout the brain. There is a large literature on the effect of variations in ion channels on the dynamics of spiking neurons that represent the main type of neurons found in the vertebrate nervous systems. Nevertheless, non-spiking neurons are also ubiquitous in many nervous tissues and play a critical role in the processing of some sensory systems. To our knowledge, however, how conductance variations affect the dynamics of non-spiking neurons has never been assessed. Based on experimental observations reported in the biological literature and on mathematical considerations, we first propose a phenotypic classification of non-spiking neurons. Then, we determine a general pattern of the phenotypic evolution of non-spiking neurons as a function of changes in calcium and potassium conductances. Furthermore, we study the homeostatic compensatory mechanisms of ion channels in a well-posed non-spiking retinal cone model. We show that there is a restricted range of ion conductance values for which the behavior and phenotype of the neuron are maintained. Finally, we discuss the implications of the phenotypic changes of individual cells at the level of neuronal network functioning of the C. elegans worm and the retina, which are two non-spiking nervous tissues composed of neurons with various phenotypes.
{"title":"A general pattern of non-spiking neuron dynamics under the effect of potassium and calcium channel modifications.","authors":"Loïs Naudin, Laetitia Raison-Aubry, Laure Buhry","doi":"10.1007/s10827-022-00840-w","DOIUrl":"https://doi.org/10.1007/s10827-022-00840-w","url":null,"abstract":"<p><p>Electrical activity of excitable cells results from ion exchanges through cell membranes, so that genetic or epigenetic changes in genes encoding ion channels are likely to affect neuronal electrical signaling throughout the brain. There is a large literature on the effect of variations in ion channels on the dynamics of spiking neurons that represent the main type of neurons found in the vertebrate nervous systems. Nevertheless, non-spiking neurons are also ubiquitous in many nervous tissues and play a critical role in the processing of some sensory systems. To our knowledge, however, how conductance variations affect the dynamics of non-spiking neurons has never been assessed. Based on experimental observations reported in the biological literature and on mathematical considerations, we first propose a phenotypic classification of non-spiking neurons. Then, we determine a general pattern of the phenotypic evolution of non-spiking neurons as a function of changes in calcium and potassium conductances. Furthermore, we study the homeostatic compensatory mechanisms of ion channels in a well-posed non-spiking retinal cone model. We show that there is a restricted range of ion conductance values for which the behavior and phenotype of the neuron are maintained. Finally, we discuss the implications of the phenotypic changes of individual cells at the level of neuronal network functioning of the C. elegans worm and the retina, which are two non-spiking nervous tissues composed of neurons with various phenotypes.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"51 1","pages":"173-186"},"PeriodicalIF":1.2,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9263305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}