Citizen Science (CS) is a research approach that has become popular in recent years and offers innovative potential for dialect research in ornithology. As the scepticism about CS data is still widespread, we analysed the development of a 3-year CS project based on the song of the Common Nightingale (Luscinia megarhynchos) to share best practices and lessons learned. We focused on the data scope, individual engagement, spatial distribution and species misidentifications from recordings generated before (2018, 2019) and during the COVID-19 outbreak (2020) with a smartphone using the 'Naturblick' app. The number of nightingale song recordings and individual engagement increased steadily and peaked in the season during the pandemic. 13,991 nightingale song recordings were generated by anonymous (64%) and non-anonymous participants (36%). As the project developed, the spatial distribution of recordings expanded (from Berlin based to nationwide). The rates of species misidentifications were low, decreased in the course of the project (10-1%) and were mainly affected by vocal similarities with other bird species. This study further showed that community engagement and data quality were not directly affected by dissemination activities, but that the former was influenced by external factors and the latter benefited from the app. We conclude that CS projects using smartphone apps with an integrated pattern recognition algorithm are well suited to support bioacoustic research in ornithology. Based on our findings, we recommend setting up CS projects over the long term to build an engaged community which generates high data quality for robust scientific conclusions.
Supplementary information: The online version contains supplementary material available at 10.1007/s10336-022-02018-8.
In the Galapagos Islands, many endemic landbird populations are declining due to habitat degradation, food availability, introduced species and other factors. Given nestlings typically lack efficient defense mechanisms against parasites, hematophagous ectoparasites such as the larvae of the introduced Avian Vampire Fly, Philornis downsi, can impose high brood mortality and cause threatening population declines in Darwin finches and other landbirds. Here, we assess whether the food compensation hypothesis (i.e., the parents' potential to compensate for deleterious parasite effects via increased food provisioning) applies to the Green Warbler-Finch. We differentiated nests with low or high infestation levels by P. downsi and quantified food provisioning rates of male and female parents, time females spent brooding nestlings, and nestling growth. Male provisioning rates, total provisioning rates and female brooding time did not significantly vary in relation to infestation levels, nor by the number of nestlings. Opposed to the predictions of the food compensation hypothesis, females showed significantly reduced provisioning rates at high infestation levels. Nestling body mass was significantly lower and there was a reduction of skeletal growth, although not significantly, in highly infested nests. The females' response to high infestation may be due to parasites directly attacking and weakening brooding females, or else that females actively reduce current reproductive effort in favor of future reproduction. This life-history trade-off may be typical for Darwin finches and many tropical birds with long lifespans and therefore high residual reproductive value. Conservation strategies may not build on the potential for parental food compensation by this species.