Pub Date : 2018-01-02DOI: 10.1080/0144235X.2018.1461347
S. Pshenichnyuk, A. Modelli, A. Komolov
Abstract Small molecular species present in mitochondria as, e.g. quinones and oxygen, can capture cellular electrons thus behaving as electron carriers or reactive species, supporting the fundamental process of respiration, and providing protection from pathogens. When xenobiotics penetrate living cells, their delicate redox balance can be altered by capture of cellular electrons to form temporary negative ions. The latter can give rise to the formation of reactive species via dissociative electron attachment (DEA), as observed under gas-phase or electrochemical conditions. DEA to isolated biorelevant molecules studied in vacuo with the support of in silico methods can serve as a model to predict the behaviour of these species in vivo under conditions of electron ‘leakage’ in the lipid-protein-cytosol media or in enzymatic active centres. The present review summarises the results of studies on the correlation between the biological activity of various classes of compounds and fragment species formed by DEA. The following classes of compounds are included into the present review: chlorinated organic pollutants, brominated ethers, captafol and 2,6-dichloroisonicotinic acid, atrazine and bromoxynil, non-steroidal anti-inflammatory drugs, natural polyphenolic compounds, anthralin, salicylic acid and related compounds, ascorbic acid, melatonin, tryptophan, indole and related compounds and some organic peroxides. Formation of temporary molecular anions and their decay are characterised using electron transmission spectroscopy (ETS) and DEA spectroscopy. Quantum-chemical calculations support the identification of the dissociation products. Cellular electron attachment to unnatural electron acceptors is likely to be the first step of cascade processes which constitute the molecular mechanisms of electron-driven biological processes. The fragment species detected with DEA are of importance for understanding the metabolism of xenobiotics, including side effects produced by drugs.
{"title":"Interconnections between dissociative electron attachment and electron-driven biological processes","authors":"S. Pshenichnyuk, A. Modelli, A. Komolov","doi":"10.1080/0144235X.2018.1461347","DOIUrl":"https://doi.org/10.1080/0144235X.2018.1461347","url":null,"abstract":"Abstract Small molecular species present in mitochondria as, e.g. quinones and oxygen, can capture cellular electrons thus behaving as electron carriers or reactive species, supporting the fundamental process of respiration, and providing protection from pathogens. When xenobiotics penetrate living cells, their delicate redox balance can be altered by capture of cellular electrons to form temporary negative ions. The latter can give rise to the formation of reactive species via dissociative electron attachment (DEA), as observed under gas-phase or electrochemical conditions. DEA to isolated biorelevant molecules studied in vacuo with the support of in silico methods can serve as a model to predict the behaviour of these species in vivo under conditions of electron ‘leakage’ in the lipid-protein-cytosol media or in enzymatic active centres. The present review summarises the results of studies on the correlation between the biological activity of various classes of compounds and fragment species formed by DEA. The following classes of compounds are included into the present review: chlorinated organic pollutants, brominated ethers, captafol and 2,6-dichloroisonicotinic acid, atrazine and bromoxynil, non-steroidal anti-inflammatory drugs, natural polyphenolic compounds, anthralin, salicylic acid and related compounds, ascorbic acid, melatonin, tryptophan, indole and related compounds and some organic peroxides. Formation of temporary molecular anions and their decay are characterised using electron transmission spectroscopy (ETS) and DEA spectroscopy. Quantum-chemical calculations support the identification of the dissociation products. Cellular electron attachment to unnatural electron acceptors is likely to be the first step of cascade processes which constitute the molecular mechanisms of electron-driven biological processes. The fragment species detected with DEA are of importance for understanding the metabolism of xenobiotics, including side effects produced by drugs.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"48 1","pages":"125 - 170"},"PeriodicalIF":6.1,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73606176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-02DOI: 10.1080/0144235X.2018.1419042
Gloria Bazargan, K. Sohlberg
Abstract The development of switchable mechanically interlocked molecular architectures (MIMAs) is an active area of experimental and theoretical research because the environmental-responsiveness of these systems makes them desirable candidates for incorporation into molecular machines. Presented here is a review of the recent literature that reports theoretical and computational studies of these topologically complex systems. Modelling strategies that have been applied to switchable MIMAs are analysed and outstanding challenges to theory and computation are highlighted.
{"title":"Advances in modelling switchable mechanically interlocked molecular architectures","authors":"Gloria Bazargan, K. Sohlberg","doi":"10.1080/0144235X.2018.1419042","DOIUrl":"https://doi.org/10.1080/0144235X.2018.1419042","url":null,"abstract":"Abstract The development of switchable mechanically interlocked molecular architectures (MIMAs) is an active area of experimental and theoretical research because the environmental-responsiveness of these systems makes them desirable candidates for incorporation into molecular machines. Presented here is a review of the recent literature that reports theoretical and computational studies of these topologically complex systems. Modelling strategies that have been applied to switchable MIMAs are analysed and outstanding challenges to theory and computation are highlighted.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"36 1","pages":"1 - 82"},"PeriodicalIF":6.1,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89654839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-02DOI: 10.1080/0144235X.2018.1419731
P. Banerjee, T. Chakraborty
Abstract The review presents a critical analysis of the data obtained from vibrational spectroscopic studies on a narrow selection of weak hydrogen-bonded binary molecular complexes for measurements performed under isolated conditions, addressing the nature, properties, physical origins of the binding forces, and the role of such hydrogen bonds in dynamics of vibrational relaxations. In the recent history of studies of chemical bonding, hydrogen bond certainly occupies the centre stage. Although the bottom line of our knowledge for structure of hydrogen bonded systems is based on crystallographic data, it is well recognised that the constrained environment of a molecular crystal seriously perturbs the shallow interaction potentials of hydrogen bonds, and particularly their weaker variants. Binary complexes of different categories of molecular prototypes are the most convenient systems to look into the attributes and role played by the weak hydrogen bonds in promoting a chemically significant event. A variety of weak hydrogen bonded binary complexes, having mostly two types of binding motifs, CH··O and OH⋯π, have been considered for this review. The vital molecular parameter that has been primarily considered in the present analysis is the hydrogen bond induced spectral shift (ΔνΧ-Η) of the stretching vibrational fundamental of the donor group (X–H), for measurements performed in inert gas matrixes and also in the gas phase. The changes in infrared spectral band shapes of νX–H transitions have been considered to suggest the influence of the hydrogen bond in vibrational dynamics of the excited X–H stretching mode. Attempts are made to correlate the observed spectral shifts in homologous series of complexes for a particular binding motif with different energetic and electronic structure parameters, and those correlations have been used to get insights into the underlying molecular interactions and origin of vibrational spectral shifts. The other vital parameters of binary molecular complexes are the low-frequency intermolecular vibrations, which appear typically in terahertz range of the electromagnetic spectrum. A brief analysis of the available data for weak hydrogen bonded complexes, obtained by employing LIF spectroscopic method, is presented, and information obtained from complementary spectroscopic methods, like far-infrared absorption, are discussed. The spectral data presented are mostly from the published work of the authors.
{"title":"Weak hydrogen bonds: insights from vibrational spectroscopic studies","authors":"P. Banerjee, T. Chakraborty","doi":"10.1080/0144235X.2018.1419731","DOIUrl":"https://doi.org/10.1080/0144235X.2018.1419731","url":null,"abstract":"Abstract The review presents a critical analysis of the data obtained from vibrational spectroscopic studies on a narrow selection of weak hydrogen-bonded binary molecular complexes for measurements performed under isolated conditions, addressing the nature, properties, physical origins of the binding forces, and the role of such hydrogen bonds in dynamics of vibrational relaxations. In the recent history of studies of chemical bonding, hydrogen bond certainly occupies the centre stage. Although the bottom line of our knowledge for structure of hydrogen bonded systems is based on crystallographic data, it is well recognised that the constrained environment of a molecular crystal seriously perturbs the shallow interaction potentials of hydrogen bonds, and particularly their weaker variants. Binary complexes of different categories of molecular prototypes are the most convenient systems to look into the attributes and role played by the weak hydrogen bonds in promoting a chemically significant event. A variety of weak hydrogen bonded binary complexes, having mostly two types of binding motifs, CH··O and OH⋯π, have been considered for this review. The vital molecular parameter that has been primarily considered in the present analysis is the hydrogen bond induced spectral shift (ΔνΧ-Η) of the stretching vibrational fundamental of the donor group (X–H), for measurements performed in inert gas matrixes and also in the gas phase. The changes in infrared spectral band shapes of νX–H transitions have been considered to suggest the influence of the hydrogen bond in vibrational dynamics of the excited X–H stretching mode. Attempts are made to correlate the observed spectral shifts in homologous series of complexes for a particular binding motif with different energetic and electronic structure parameters, and those correlations have been used to get insights into the underlying molecular interactions and origin of vibrational spectral shifts. The other vital parameters of binary molecular complexes are the low-frequency intermolecular vibrations, which appear typically in terahertz range of the electromagnetic spectrum. A brief analysis of the available data for weak hydrogen bonded complexes, obtained by employing LIF spectroscopic method, is presented, and information obtained from complementary spectroscopic methods, like far-infrared absorption, are discussed. The spectral data presented are mostly from the published work of the authors.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"92 1","pages":"123 - 83"},"PeriodicalIF":6.1,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84817421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-08-02DOI: 10.1080/0144235X.2017.1351672
F. Ancilotto, M. Barranco, F. Coppens, J. Eloranta, N. Halberstadt, A. Hernando, D. Mateo, M. Pi
Abstract During the last decade, density function theory (DFT) in its static and dynamic time dependent forms, has emerged as a powerful tool to describe the structure and dynamics of doped liquid helium and droplets. In this review, we summarise the activity carried out in this field within the DFT framework since the publication of the previous review article on this subject [M. Barranco et al., J. Low Temp. Phys. 142, 1 (2006)]. Furthermore, a comprehensive presentation of the actual implementations of helium DFT is given, which have not been discussed in the individual articles or are scattered in the existing literature.
{"title":"Density functional theory of doped superfluid liquid helium and nanodroplets","authors":"F. Ancilotto, M. Barranco, F. Coppens, J. Eloranta, N. Halberstadt, A. Hernando, D. Mateo, M. Pi","doi":"10.1080/0144235X.2017.1351672","DOIUrl":"https://doi.org/10.1080/0144235X.2017.1351672","url":null,"abstract":"Abstract During the last decade, density function theory (DFT) in its static and dynamic time dependent forms, has emerged as a powerful tool to describe the structure and dynamics of doped liquid helium and droplets. In this review, we summarise the activity carried out in this field within the DFT framework since the publication of the previous review article on this subject [M. Barranco et al., J. Low Temp. Phys. 142, 1 (2006)]. Furthermore, a comprehensive presentation of the actual implementations of helium DFT is given, which have not been discussed in the individual articles or are scattered in the existing literature.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"4 1","pages":"621 - 707"},"PeriodicalIF":6.1,"publicationDate":"2017-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74255179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-07-10DOI: 10.1080/0144235X.2017.1337371
T. Urbańczyk, M. Strojecki, M. Krośnicki, A. Kędziorski, P. Żuchowski, J. Koperski
Abstract A critical review of experimental studies and ab initio calculations of the low-lying ungerade excited and ground state interatomic potentials of Cd2 van der Waals dimer is presented. Consistency as well as discrepancies between experimental results and ab initio calculations are probed. In order to obtain better agreement with existing experimental data, fill in gaps in current knowledge and provide a unifying framework, advanced all-electron ab initio calculations were performed and simulations of the reported spectra were executed. From simulations of laser-induced fluorescence excitation and dispersed emission spectra, analytical and/or point-wise representations of the (51P1), B11u(51P1), a31u(53P1), (53P1) and c31u(53P2) excited-, and the (51S0) ground-state Cd2 interatomic potentials were obtained. The comparison of the ab initio calculated potentials with results of the analyses allows to illustrate a current state-of-the-art of theory-and-experiment correspondence for such a demanding system. Results are presented in the context of an importance of the group 2 and group 12 metal dimer interatomic potentials especially, in ultra-cold physics and chemistry, and in fundamental tests of quantum mechanics.
{"title":"Interatomic potentials of metal dimers: probing agreement between experiment and advanced ab initio calculations for van der Waals dimer Cd2","authors":"T. Urbańczyk, M. Strojecki, M. Krośnicki, A. Kędziorski, P. Żuchowski, J. Koperski","doi":"10.1080/0144235X.2017.1337371","DOIUrl":"https://doi.org/10.1080/0144235X.2017.1337371","url":null,"abstract":"Abstract A critical review of experimental studies and ab initio calculations of the low-lying ungerade excited and ground state interatomic potentials of Cd2 van der Waals dimer is presented. Consistency as well as discrepancies between experimental results and ab initio calculations are probed. In order to obtain better agreement with existing experimental data, fill in gaps in current knowledge and provide a unifying framework, advanced all-electron ab initio calculations were performed and simulations of the reported spectra were executed. From simulations of laser-induced fluorescence excitation and dispersed emission spectra, analytical and/or point-wise representations of the (51P1), B11u(51P1), a31u(53P1), (53P1) and c31u(53P2) excited-, and the (51S0) ground-state Cd2 interatomic potentials were obtained. The comparison of the ab initio calculated potentials with results of the analyses allows to illustrate a current state-of-the-art of theory-and-experiment correspondence for such a demanding system. Results are presented in the context of an importance of the group 2 and group 12 metal dimer interatomic potentials especially, in ultra-cold physics and chemistry, and in fundamental tests of quantum mechanics.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"35 1","pages":"541 - 620"},"PeriodicalIF":6.1,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83811956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-07-07DOI: 10.1080/0144235X.2017.1351821
R. Vexiau, D. Borsalino, M. Lepers, A. Orbán, M. Aymar, O. Dulieu, N. Bouloufa-Maafa
Abstract In this article we address the general approach for calculating dynamical dipole polarizabilities of small quantum systems, based on a sum-over-states formula involving in principle the entire energy spectrum of the system. We complement this method by a few-parameter model involving a limited number of effective transitions, allowing for a compact and accurate representation of both the isotropic and anisotropic components of the polarizability. We apply the method to the series of ten heteronuclear molecules composed of two of (Li,Na,K,Rb,Cs) alkali-metal atoms. We rely on both up-to-date spectroscopically-determined potential energy curves for the lowest electronic states, and on our systematic studies of these systems performed during the last decade for higher excited states and for permanent and transition dipole moments. Such a compilation is timely for the continuously growing researches on ultracold polar molecules. Indeed the knowledge of the dynamic dipole polarizabilities is crucial to model the optical response of molecules when trapped in optical lattices, and to determine optimal lattice frequencies ensuring optimal transfer to the absolute ground state of initially weakly-bound molecules. When they exist, we determine the so-called ‘magic frequencies’ where the ac-Stark shift and thus the viewed trap depth, is the same for both weakly-bound and ground-state molecules.
{"title":"Dynamic dipole polarizabilities of heteronuclear alkali dimers: optical response, trapping and control of ultracold molecules","authors":"R. Vexiau, D. Borsalino, M. Lepers, A. Orbán, M. Aymar, O. Dulieu, N. Bouloufa-Maafa","doi":"10.1080/0144235X.2017.1351821","DOIUrl":"https://doi.org/10.1080/0144235X.2017.1351821","url":null,"abstract":"Abstract In this article we address the general approach for calculating dynamical dipole polarizabilities of small quantum systems, based on a sum-over-states formula involving in principle the entire energy spectrum of the system. We complement this method by a few-parameter model involving a limited number of effective transitions, allowing for a compact and accurate representation of both the isotropic and anisotropic components of the polarizability. We apply the method to the series of ten heteronuclear molecules composed of two of (Li,Na,K,Rb,Cs) alkali-metal atoms. We rely on both up-to-date spectroscopically-determined potential energy curves for the lowest electronic states, and on our systematic studies of these systems performed during the last decade for higher excited states and for permanent and transition dipole moments. Such a compilation is timely for the continuously growing researches on ultracold polar molecules. Indeed the knowledge of the dynamic dipole polarizabilities is crucial to model the optical response of molecules when trapped in optical lattices, and to determine optimal lattice frequencies ensuring optimal transfer to the absolute ground state of initially weakly-bound molecules. When they exist, we determine the so-called ‘magic frequencies’ where the ac-Stark shift and thus the viewed trap depth, is the same for both weakly-bound and ground-state molecules.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"18 1","pages":"709 - 750"},"PeriodicalIF":6.1,"publicationDate":"2017-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73157017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-06-12DOI: 10.1080/0144235X.2017.1331900
A. Cunsolo
Abstract More than two decades of inelastic X-ray scattering (IXS) studies on noble gases and alkali metals are reviewed to illustrate the advances they prompted in our understanding of the terahertz dynamics of simplest systems. The various literature results outline a remarkably coherent picture of common and distinctive behaviours of liquids and their crystalline counterparts. Furthermore, they draw a consistent and comprehensive picture of the evolution of collective modes at the crossover between the hydrodynamic and the single particle regime, their coupling with fast (sub-ps) relaxation processes and their gradual disappearance upon approaching microscopic scales. The gradual transition of the spectrum towards the single particle limit along with its coupling with collisional relaxations will be discussed in some detail. Finally, less understood emerging topics will be discussed as the occurrence of polyamorphic crossovers, the onset of non-hydrodynamic modes and quantum effects on the spectrum, as well as recent IXS results challenging our vision of the supercritical phase as an intrinsically homogeneous thermodynamic domain.
{"title":"The terahertz dynamics of simplest fluids probed by inelastic X-ray scattering","authors":"A. Cunsolo","doi":"10.1080/0144235X.2017.1331900","DOIUrl":"https://doi.org/10.1080/0144235X.2017.1331900","url":null,"abstract":"Abstract More than two decades of inelastic X-ray scattering (IXS) studies on noble gases and alkali metals are reviewed to illustrate the advances they prompted in our understanding of the terahertz dynamics of simplest systems. The various literature results outline a remarkably coherent picture of common and distinctive behaviours of liquids and their crystalline counterparts. Furthermore, they draw a consistent and comprehensive picture of the evolution of collective modes at the crossover between the hydrodynamic and the single particle regime, their coupling with fast (sub-ps) relaxation processes and their gradual disappearance upon approaching microscopic scales. The gradual transition of the spectrum towards the single particle limit along with its coupling with collisional relaxations will be discussed in some detail. Finally, less understood emerging topics will be discussed as the occurrence of polyamorphic crossovers, the onset of non-hydrodynamic modes and quantum effects on the spectrum, as well as recent IXS results challenging our vision of the supercritical phase as an intrinsically homogeneous thermodynamic domain.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"40 1","pages":"433 - 539"},"PeriodicalIF":6.1,"publicationDate":"2017-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74711964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-06-07DOI: 10.1080/0144235X.2017.1321856
Jianping Wang
Abstract Over the last decade, ultrafast two-dimensional infrared (2D IR) spectroscopy has been greatly advanced in a variety of aspects and is becoming a more exciting vibrational tool for understanding the structures and dynamics of condensed-phase equilibrium and non-equilibrium molecular systems, as well as surface-immobilised monolayers or adsorbates. A number of novel multi-pulse experimental schemes have been reported, some of them allow one to simultaneously examine anharmonic vibrational interactions and frequency–frequency correlations among vibrational chromophores having very different vibrational frequencies, particularly in a broadband fashion, providing potentially intrinsic spectroscopic probes for local, regional, and global molecular structures and dynamics; and some of them allow one to access more vibrational levels of a given set of anharmonic oscillators, enabling a better characterisation of their anharmonic potentials and factors influencing them. In this review, we first introduce these basic experimental schemes, mainly focusing on the time-domain methods. We then introduce technological and experimental advances on 2D IR signal detections that can provide much higher spectral resolution and higher sensitivities. Together, these advances can further increase the capacities of these nonlinear infrared methods. Computational considerations and developments on assessing more anharmonic potential parameters and simulating correlated broadband 2D IR spectra are then followed. Examples of the applications of these experimental and theoretical methods are also provided and discussed. We finally conclude this review by summarising these recent developments of the 2D IR methodologies and by discussing more advanced multi-pulse nonlinear IR experiments and their potential applications in near future.
{"title":"Ultrafast two-dimensional infrared spectroscopy for molecular structures and dynamics with expanding wavelength range and increasing sensitivities: from experimental and computational perspectives","authors":"Jianping Wang","doi":"10.1080/0144235X.2017.1321856","DOIUrl":"https://doi.org/10.1080/0144235X.2017.1321856","url":null,"abstract":"Abstract Over the last decade, ultrafast two-dimensional infrared (2D IR) spectroscopy has been greatly advanced in a variety of aspects and is becoming a more exciting vibrational tool for understanding the structures and dynamics of condensed-phase equilibrium and non-equilibrium molecular systems, as well as surface-immobilised monolayers or adsorbates. A number of novel multi-pulse experimental schemes have been reported, some of them allow one to simultaneously examine anharmonic vibrational interactions and frequency–frequency correlations among vibrational chromophores having very different vibrational frequencies, particularly in a broadband fashion, providing potentially intrinsic spectroscopic probes for local, regional, and global molecular structures and dynamics; and some of them allow one to access more vibrational levels of a given set of anharmonic oscillators, enabling a better characterisation of their anharmonic potentials and factors influencing them. In this review, we first introduce these basic experimental schemes, mainly focusing on the time-domain methods. We then introduce technological and experimental advances on 2D IR signal detections that can provide much higher spectral resolution and higher sensitivities. Together, these advances can further increase the capacities of these nonlinear infrared methods. Computational considerations and developments on assessing more anharmonic potential parameters and simulating correlated broadband 2D IR spectra are then followed. Examples of the applications of these experimental and theoretical methods are also provided and discussed. We finally conclude this review by summarising these recent developments of the 2D IR methodologies and by discussing more advanced multi-pulse nonlinear IR experiments and their potential applications in near future.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"36 1","pages":"377 - 431"},"PeriodicalIF":6.1,"publicationDate":"2017-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79190297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-04-03DOI: 10.1080/0144235X.2017.1301030
M. Brunger
Abstract We review a selection of recent experimental and theoretical cross section results for electron scattering from a range of biofuels (methanol, ethanol), biomolecules (water, tetrahydrofuran, pyrimidine, tetrahydrofurfuryl alcohol and para-benzoquinone) and molecular fragments that are formed from the action of atmospheric-pressure plasmas on biomass (phenol, furfural). Where possible, the implications of those cross sections, on simulating the transport of electrons through such a species under the influence of an applied external electric field or in the context of charged-particle track behaviour and radiation damage in matter, will also be examined.
{"title":"Electron scattering and transport in biofuels, biomolecules and biomass fragments","authors":"M. Brunger","doi":"10.1080/0144235X.2017.1301030","DOIUrl":"https://doi.org/10.1080/0144235X.2017.1301030","url":null,"abstract":"Abstract We review a selection of recent experimental and theoretical cross section results for electron scattering from a range of biofuels (methanol, ethanol), biomolecules (water, tetrahydrofuran, pyrimidine, tetrahydrofurfuryl alcohol and para-benzoquinone) and molecular fragments that are formed from the action of atmospheric-pressure plasmas on biomass (phenol, furfural). Where possible, the implications of those cross sections, on simulating the transport of electrons through such a species under the influence of an applied external electric field or in the context of charged-particle track behaviour and radiation damage in matter, will also be examined.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"45 4 1","pages":"333 - 376"},"PeriodicalIF":6.1,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80862831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-04-03DOI: 10.1080/0144235X.2017.1293974
E. Herbst
This review is concerned with the formation of molecules in the interstellar medium (ISM), which is composed mainly of regions of gas and dust known as interstellar clouds, ranging in size from a few to 100’s of light years in extent. Upwards of 200 different molecules have been observed spectroscopically in these objects, with a significant fraction of them ‘large’ by astronomical standards; i.e. containing six or more atoms. Interstellar clouds are of interest to chemists because of the exotic molecules and chemistry that occur in these sources, while they are of interest to astronomers because these clouds are the only known birthplaces of new stars and extrasolar planets. The formation of stars and planets from portions of dense interstellar clouds is a complex evolutionary process with multiple stages dependent upon the mass of the collapsing object. For low-mass stars such as our sun, the process is reasonably well understood and proceeds through the following intermediate stages: cold dense cores, pre-stellar cores, hot cores, and protoplanetary discs. For high-mass stars, the process is significantly less well understood because these objects are rare and are formed through evolutionary stages that are short in duration, at least astronomically speaking. Molecules are found in all of these stages, in the gas phase and often in the solid phase, with the chemistry dependent upon the physical conditions and their history. Indeed, the many molecules detected have helped significantly to unravel much of the complexity involved in stellar and planetary formation. This review is divided into sections in which, following an introduction, we discuss the different types of chemical reactions that synthesise large molecules, starting with cold dense cores of temperature 10 K and gas density , and proceeding through the various stages of low-mass star formation through protoplanetary discs. Several other types of sources are discussed briefly. We then review some recent progress that has occurred within the last several years in improving our knowledge of the chemistry in this fast-growing and rapidly evolving field of research. We end with a brief discussion of the detailed chemical simulations employed to follow the chemistry in the various sources in the ISM.
{"title":"The synthesis of large interstellar molecules","authors":"E. Herbst","doi":"10.1080/0144235X.2017.1293974","DOIUrl":"https://doi.org/10.1080/0144235X.2017.1293974","url":null,"abstract":"This review is concerned with the formation of molecules in the interstellar medium (ISM), which is composed mainly of regions of gas and dust known as interstellar clouds, ranging in size from a few to 100’s of light years in extent. Upwards of 200 different molecules have been observed spectroscopically in these objects, with a significant fraction of them ‘large’ by astronomical standards; i.e. containing six or more atoms. Interstellar clouds are of interest to chemists because of the exotic molecules and chemistry that occur in these sources, while they are of interest to astronomers because these clouds are the only known birthplaces of new stars and extrasolar planets. The formation of stars and planets from portions of dense interstellar clouds is a complex evolutionary process with multiple stages dependent upon the mass of the collapsing object. For low-mass stars such as our sun, the process is reasonably well understood and proceeds through the following intermediate stages: cold dense cores, pre-stellar cores, hot cores, and protoplanetary discs. For high-mass stars, the process is significantly less well understood because these objects are rare and are formed through evolutionary stages that are short in duration, at least astronomically speaking. Molecules are found in all of these stages, in the gas phase and often in the solid phase, with the chemistry dependent upon the physical conditions and their history. Indeed, the many molecules detected have helped significantly to unravel much of the complexity involved in stellar and planetary formation. This review is divided into sections in which, following an introduction, we discuss the different types of chemical reactions that synthesise large molecules, starting with cold dense cores of temperature 10 K and gas density , and proceeding through the various stages of low-mass star formation through protoplanetary discs. Several other types of sources are discussed briefly. We then review some recent progress that has occurred within the last several years in improving our knowledge of the chemistry in this fast-growing and rapidly evolving field of research. We end with a brief discussion of the detailed chemical simulations employed to follow the chemistry in the various sources in the ISM.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"5 1","pages":"287 - 331"},"PeriodicalIF":6.1,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88831750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}