Pub Date : 2021-10-01DOI: 10.4018/ijwsr.2021100101
Fei Xie, Jun Yan, Jun Shen
Unexpected faults result in unscheduled cloud outage, which negatively affects the completion of workflow tasks in the cloud. This paper presents a novel PageRank based fault handling strategy to rescue workflow tasks at the faulty data center. The proposed approach uses a holistic view and considers the task attributes, the timeline scenario, and the overall cloud performance. A priority assignment system is developed based on the modified PageRank algorithm to prioritise workflow tasks. A Min-Max normalization method is applied to select the target data center and match the timeline at this data center. Additionally, a dynamic PageRank-constrained task scheduling algorithm is proposed to generate the task scheduling solution. The simulation results show that the proposed approach can achieve better fault handling performance, measured by task resilience ratio, workflow resilience ratio and workflow continuity ratio, in both the traditional 3-replica and the image backup cloud environment.
{"title":"A Novel PageRank-Based Fault Handling Strategy for Workflow Scheduling in Cloud Data Centers","authors":"Fei Xie, Jun Yan, Jun Shen","doi":"10.4018/ijwsr.2021100101","DOIUrl":"https://doi.org/10.4018/ijwsr.2021100101","url":null,"abstract":"Unexpected faults result in unscheduled cloud outage, which negatively affects the completion of workflow tasks in the cloud. This paper presents a novel PageRank based fault handling strategy to rescue workflow tasks at the faulty data center. The proposed approach uses a holistic view and considers the task attributes, the timeline scenario, and the overall cloud performance. A priority assignment system is developed based on the modified PageRank algorithm to prioritise workflow tasks. A Min-Max normalization method is applied to select the target data center and match the timeline at this data center. Additionally, a dynamic PageRank-constrained task scheduling algorithm is proposed to generate the task scheduling solution. The simulation results show that the proposed approach can achieve better fault handling performance, measured by task resilience ratio, workflow resilience ratio and workflow continuity ratio, in both the traditional 3-replica and the image backup cloud environment.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"72 1","pages":"1-26"},"PeriodicalIF":1.1,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91053496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-01DOI: 10.4018/IJWSR.2021070105
Yi Zhang, Bo Hu, Yiwen Zhang
Cloud enterprise resource planning (Cloud ERP) is an internet- and cloud computing-based enterprise information system developed on the cloud platform. Cloud ERP has lower costs and shorter development time compared with traditional ERP system, but it remains in a state of information isolated island. To maximize the advantages of cloud computing and make up the deficiency of traditional ERP systems, it is necessary to break down the "wall" between enterprises, making cloud ERP enter a more open and interconnected ecological environment. The model-driven development approach contributes to a better resilient scheduling capability of ERP system, leading to faster development and deployment of it. In this article, the authors propose a “knowledge + data” model-driven open ecological cloud ERP and explain the definition and functions of each model layer. Finally, the effectiveness of model layers is demonstrated in the open ecological cloud ERP reference architecture.
{"title":"Model-Driven Open Ecological Cloud Enterprise Resource Planning","authors":"Yi Zhang, Bo Hu, Yiwen Zhang","doi":"10.4018/IJWSR.2021070105","DOIUrl":"https://doi.org/10.4018/IJWSR.2021070105","url":null,"abstract":"Cloud enterprise resource planning (Cloud ERP) is an internet- and cloud computing-based enterprise information system developed on the cloud platform. Cloud ERP has lower costs and shorter development time compared with traditional ERP system, but it remains in a state of information isolated island. To maximize the advantages of cloud computing and make up the deficiency of traditional ERP systems, it is necessary to break down the \"wall\" between enterprises, making cloud ERP enter a more open and interconnected ecological environment. The model-driven development approach contributes to a better resilient scheduling capability of ERP system, leading to faster development and deployment of it. In this article, the authors propose a “knowledge + data” model-driven open ecological cloud ERP and explain the definition and functions of each model layer. Finally, the effectiveness of model layers is demonstrated in the open ecological cloud ERP reference architecture.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"42 1","pages":"82-99"},"PeriodicalIF":1.1,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90828831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kalıp yargılar; algılayışları, toplumsal gruplara ilişkin bilgileri inançlarımızı ve beklentileri içeren bilişsel yapılardır. Toplumsal cinsiyet kalıp yargıları, toplumsal cinsiyet beklentilerini doğurur ve bu beklentiler bizim diğerlerine bakışımızda birer algısal filtre görevi görürler. İnsanlar, sınıflandırma süreci yoluyla dünyayı birçok farklı toplumsal gruba ayırır ve bu toplumsal gruplara ilişkin bilgilerini, inançlarını ve beklentilerini içeren bilişsel bir yapı geliştirir. Araştırmanın amacı: Üniversitesi öğrencilerinin kadınlara yönelik yargı ve kalıp yargılara ne derece katılmaktadırlar?” sorusuna cevap aramaktır. Ayrıca, kendini gerçekleştiren kehanetin kalıp yargıların üzerinde oluşumu açıklanacaktır. Araştırma yöntem olarak anket tekniğiyle üniversite öğrencilerine yönelik olarak internet ortamında uygulanmıştır. Araştırmada, kadına yönelik toplam kırk iki kalıp yargı sorusu yöneltilmiştir. Kalıp yargılara yönelik düşünceler aritmetik ortalamalarla gösterilmiştir. Araştırmanın sonucunda bazı kalıp yargıların zaman içinde değiştiği bazıların ise hala ataerkil özellikler sergilediği yönündedir.
剩下的是法官;智力结构包括我们对与社会群体相关的信息的信念和期望。Toplumsal cinsiyet kalıp yargıları,Toplumsal cinsiyet beklentilerini doğurur ve bu beklentiler bizim diğerlerine bakışımızda birer algısal filttre görevi gö。根据对水的分类,人类被分为几个不同的社会群体(E.776;E.776,E.776)这项研究的目的是对这些女性进行评判,并继续留在大学进行评判。”回答问题。此外,让自己出名的先知将在776.0年解释法官的存在。问卷调查技术已在国际上应用于U.776名大学生。在这项研究中,共有四十二个案件提交法院。法院以776的算术平均数作出裁决。调查的结果是,一些法官在这段时间内发生了变化,而其属性仍为776。
{"title":"Kendini Gerçekleştiren Kehanet Teorisi Bağlamında Kadınlarla İlgili Kalıp Yargılara Yönelik Bir Araştırma","authors":"Nuray Mercan","doi":"10.33831/JWS.V19I1.268","DOIUrl":"https://doi.org/10.33831/JWS.V19I1.268","url":null,"abstract":"Kalıp yargılar; algılayışları, toplumsal gruplara ilişkin bilgileri inançlarımızı ve beklentileri içeren bilişsel yapılardır. Toplumsal cinsiyet kalıp yargıları, toplumsal cinsiyet beklentilerini doğurur ve bu beklentiler bizim diğerlerine bakışımızda birer algısal filtre görevi görürler. İnsanlar, sınıflandırma süreci yoluyla dünyayı birçok farklı toplumsal gruba ayırır ve bu toplumsal gruplara ilişkin bilgilerini, inançlarını ve beklentilerini içeren bilişsel bir yapı geliştirir. Araştırmanın amacı: Üniversitesi öğrencilerinin kadınlara yönelik yargı ve kalıp yargılara ne derece katılmaktadırlar?” sorusuna cevap aramaktır. Ayrıca, kendini gerçekleştiren kehanetin kalıp yargıların üzerinde oluşumu açıklanacaktır. Araştırma yöntem olarak anket tekniğiyle üniversite öğrencilerine yönelik olarak internet ortamında uygulanmıştır. Araştırmada, kadına yönelik toplam kırk iki kalıp yargı sorusu yöneltilmiştir. Kalıp yargılara yönelik düşünceler aritmetik ortalamalarla gösterilmiştir. Araştırmanın sonucunda bazı kalıp yargıların zaman içinde değiştiği bazıların ise hala ataerkil özellikler sergilediği yönündedir.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"19 1","pages":"31-42"},"PeriodicalIF":1.1,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46872325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kadın hakları ve toplumsal cinsiyet eşitliği konuları tartışıldığında, Batılı bilim insanlarının Müslüman ülkeleri birleşmiş tek bir kültür olarak görme eğilimleri vardır. Söz konusu eğilim ve savların sorgulandığı bu makalede, aynı zamanda, İslamiyet’i toplumsal cinsiyet eşitliğine karşı kuvvetli bir engel olarak gören birtakım fikirlere de eleştirel bir yaklaşım getirilerek, Müslüman ülkelerde toplumsal cinsiyet eşitliği politikaları arasındaki farklılıklar incelenmektedir. Bu amaçla bu çalışmada dünyadaki toplumsal cinsiyet eşitliği politikalarının kapsamını ölçmek için oluşturulmuş yeni ve orijinal kadın politikası ölçekleri kullanılmıştır. Bu ölçekler, 20 tanesi Müslüman olmak üzere toplam 84 ülkedeki toplumsal cinsiyet eşitliği politikalarını, karşılaştırmalı bir bakış açısıyla incelemeyi mümkün kılmıştır. Bu çalışmanın analizleri Müslüman ülkelerdeki toplumsal cinsiyet eşitliği politikaları arasında önemli farklılıklar olduğunu göstermektir. Bunun yanında, bu çalışmanın sunduğu ampirik deliller, Müslüman ülkelerin Müslüman olmayan ülkelere oranla genel olarak daha kötü toplumsal cinsiyet eşitliği politikaları ürettiklerini de göstermektedir
当谈到讨论妇女权利和社会平等时,西方科学家有课程可以看到与776r年统一的776ltu 776r相同的ku。在这篇受到检察官质疑的文章中,伊斯兰教也是社会性别平等的有力障碍,这是对社会性别平等政策差异的批评。为此,776世纪,新的和原始的妇女政策被用来衡量社会平等政策的范围。这些措施包括:Mu 776;荡妇776;男子776;零、84或776;根据可比的观点,该国的公共性别平等政策。本研究的分析表明,公元776年、公元776曼、公元776曼、公元777曼、元776曼和元776年的社会性别平等政策存在显著差异;另一方面,本研究提供的两栖动物证据,Mu 776;slu-76man u Cu776;Mu Cu776man;slu-Cu776man
{"title":"Müslüman Ülkelerde Toplumsal Cinsiyet Eşitliği Politikalarının Karşılaştırmalı Analizi","authors":"Senem Ertan","doi":"10.33831/JWS.V19I1.269","DOIUrl":"https://doi.org/10.33831/JWS.V19I1.269","url":null,"abstract":"Kadın hakları ve toplumsal cinsiyet eşitliği konuları tartışıldığında, Batılı bilim insanlarının Müslüman ülkeleri birleşmiş tek bir kültür olarak görme eğilimleri vardır. Söz konusu eğilim ve savların sorgulandığı bu makalede, aynı zamanda, İslamiyet’i toplumsal cinsiyet eşitliğine karşı kuvvetli bir engel olarak gören birtakım fikirlere de eleştirel bir yaklaşım getirilerek, Müslüman ülkelerde toplumsal cinsiyet eşitliği politikaları arasındaki farklılıklar incelenmektedir. Bu amaçla bu çalışmada dünyadaki toplumsal cinsiyet eşitliği politikalarının kapsamını ölçmek için oluşturulmuş yeni ve orijinal kadın politikası ölçekleri kullanılmıştır. Bu ölçekler, 20 tanesi Müslüman olmak üzere toplam 84 ülkedeki toplumsal cinsiyet eşitliği politikalarını, karşılaştırmalı bir bakış açısıyla incelemeyi mümkün kılmıştır. Bu çalışmanın analizleri Müslüman ülkelerdeki toplumsal cinsiyet eşitliği politikaları arasında önemli farklılıklar olduğunu göstermektir. Bunun yanında, bu çalışmanın sunduğu ampirik deliller, Müslüman ülkelerin Müslüman olmayan ülkelere oranla genel olarak daha kötü toplumsal cinsiyet eşitliği politikaları ürettiklerini de göstermektedir","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"19 1","pages":"43-73"},"PeriodicalIF":1.1,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44161230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-01DOI: 10.4018/IJWSR.2021040104
Mingxin Gan, Xiongtao Zhang
As a typical characteristic of microblog information, short text length makes a microblog recommendation hard for new users. Moreover, user cold start makes it difficult to explore accurately the interests of microblog users. Therefore, the authors proposed a microblog recommendation model that integrates both of the users' interest from their communities and the semantic from their neighbors' microblogs. Based on the Kullback-Leibler (KL) language model, the proposed model estimated an interest-based language model and a microblog-based language model. Specifically, the interest-based language model was estimated based on both of the user's word set of interest and that of their community interest. Meanwhile, the microblog-based language model was estimated by combining the word set of a microblog, the neighbor semantic, and the microblog set. Real data from Sina Weibo was crawled to evaluate recommendation performance. Results showed that the proposed model outperforms state-of-art models significantly.
{"title":"Integrating Community Interest and Neighbor Semantic for Microblog Recommendation","authors":"Mingxin Gan, Xiongtao Zhang","doi":"10.4018/IJWSR.2021040104","DOIUrl":"https://doi.org/10.4018/IJWSR.2021040104","url":null,"abstract":"As a typical characteristic of microblog information, short text length makes a microblog recommendation hard for new users. Moreover, user cold start makes it difficult to explore accurately the interests of microblog users. Therefore, the authors proposed a microblog recommendation model that integrates both of the users' interest from their communities and the semantic from their neighbors' microblogs. Based on the Kullback-Leibler (KL) language model, the proposed model estimated an interest-based language model and a microblog-based language model. Specifically, the interest-based language model was estimated based on both of the user's word set of interest and that of their community interest. Meanwhile, the microblog-based language model was estimated by combining the word set of a microblog, the neighbor semantic, and the microblog set. Real data from Sina Weibo was crawled to evaluate recommendation performance. Results showed that the proposed model outperforms state-of-art models significantly.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"7 1","pages":"54-75"},"PeriodicalIF":1.1,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79872337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-01DOI: 10.4018/IJWSR.2021040101
Bo Wang, Mingchu Li
With the advent of the 5G era, the demands for features such as low latency and high concurrency are becoming increasingly significant. These sophisticated new network applications and services require huge gaps in network transmission bandwidth, network transmission latency, and user experience, making cloud computing face many technical challenges in terms of applicability. In response to cloud computing's shortcomings, edge computing has come into its own. However, many factors affect task offloading and resource allocation in the edge computing environment, such as the task offload latency, energy consumption, smart device mobility, end-user power, and other issues. This paper proposes a dynamic multi-winner game model based on incomplete information to solve multi-end users' task offloading and edge resource allocation. First, based on the history of end-users storage in edge data centers, a hidden Markov model can predict other end-users' bid prices at time t. Based on these predicted auction prices, the model determines their bids. A dynamic multi-winner game model is used to solve the offload strategy that minimizes latency, energy consumption, cost, and to maximizes end-user satisfaction at the edge data center. Finally, the authors designed a resource allocation algorithm based on different priorities and task types to implement resource allocation in edge data centers. To ensure the prediction model's accuracy, the authors also use the expectation-maximization algorithm to learn the model parameters. Comparative experimental results show that the proposed model can better results in time delay, energy consumption, and cost.
{"title":"Resource Allocation Scheduling Algorithm Based on Incomplete Information Dynamic Game for Edge Computing","authors":"Bo Wang, Mingchu Li","doi":"10.4018/IJWSR.2021040101","DOIUrl":"https://doi.org/10.4018/IJWSR.2021040101","url":null,"abstract":"With the advent of the 5G era, the demands for features such as low latency and high concurrency are becoming increasingly significant. These sophisticated new network applications and services require huge gaps in network transmission bandwidth, network transmission latency, and user experience, making cloud computing face many technical challenges in terms of applicability. In response to cloud computing's shortcomings, edge computing has come into its own. However, many factors affect task offloading and resource allocation in the edge computing environment, such as the task offload latency, energy consumption, smart device mobility, end-user power, and other issues. This paper proposes a dynamic multi-winner game model based on incomplete information to solve multi-end users' task offloading and edge resource allocation. First, based on the history of end-users storage in edge data centers, a hidden Markov model can predict other end-users' bid prices at time t. Based on these predicted auction prices, the model determines their bids. A dynamic multi-winner game model is used to solve the offload strategy that minimizes latency, energy consumption, cost, and to maximizes end-user satisfaction at the edge data center. Finally, the authors designed a resource allocation algorithm based on different priorities and task types to implement resource allocation in edge data centers. To ensure the prediction model's accuracy, the authors also use the expectation-maximization algorithm to learn the model parameters. Comparative experimental results show that the proposed model can better results in time delay, energy consumption, and cost.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"33 1","pages":"1-24"},"PeriodicalIF":1.1,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87261236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Resumes are critical for individuals to find jobs and for HR to select staffs. To explore the career patterns and demographic information correlation, 372,829 Chinese resumes working in Beijing in 2015 are collected with rich attributes. Besides, 1,837,281 documents in the People's Daily from May 1946 to December 2015 and the national college entrance examination scores of 42 majors in 27 Beijing universities from 2005 to 2015 are collected to build the multi-source dataset to assist resume data mining. The decade characteristics and major characteristics are explored from the multi-source dataset. Based on the data observation, an interactive visualization system called ResumeVis is developed to explore career patterns in the context of the times, especially the correlations among the resume attributes. The system is helpful for both job seekers and human resources.
{"title":"ResumeVis Interactive Visualization of Resumes Based on Multi-Source Data","authors":"Xiaohui Wang, Jiaqi Zhang, Kekuan Yao, Jingyan Qin","doi":"10.4018/IJWSR.2021040103","DOIUrl":"https://doi.org/10.4018/IJWSR.2021040103","url":null,"abstract":"Resumes are critical for individuals to find jobs and for HR to select staffs. To explore the career patterns and demographic information correlation, 372,829 Chinese resumes working in Beijing in 2015 are collected with rich attributes. Besides, 1,837,281 documents in the People's Daily from May 1946 to December 2015 and the national college entrance examination scores of 42 majors in 27 Beijing universities from 2005 to 2015 are collected to build the multi-source dataset to assist resume data mining. The decade characteristics and major characteristics are explored from the multi-source dataset. Based on the data observation, an interactive visualization system called ResumeVis is developed to explore career patterns in the context of the times, especially the correlations among the resume attributes. The system is helpful for both job seekers and human resources.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"90 1","pages":"40-53"},"PeriodicalIF":1.1,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83208732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-01DOI: 10.4018/IJWSR.2021040102
Tao Tang, Yuyin Ma, Wenjiang Feng
Edge computing is an evolving decentralized computing infrastructure by which end applications are situated near the computing facilities. While the edge servers leverage the close proximity to the end-users for provisioning services at reduced latency and lower energy costs, their capabilities are constrained by limitations in computational and radio resources, which calls for smart, quality-of-service (QoS) guaranteed, and efficient task scheduling methods and algorithms. For addressing the edge-environment-oriented multi-workflow scheduling problem, the authors consider a probabilistic-QoS-aware approach to multi-workflow scheduling upon edge servers and resources. It leverages a probability-mass function-based QoS aggregation model and a discrete firefly algorithm for generating the multi-workflow scheduling plans. This research conducted an experimental case study based on varying types of workflow process models and a real-world dataset for edge server positions. It can be observed the method clearly outperforms its peers in terms of workflow completion time, cost, and deadline violation rate.
{"title":"Probabilistic-QoS-Aware Multi-Workflow Scheduling Upon the Edge Computing Resources","authors":"Tao Tang, Yuyin Ma, Wenjiang Feng","doi":"10.4018/IJWSR.2021040102","DOIUrl":"https://doi.org/10.4018/IJWSR.2021040102","url":null,"abstract":"Edge computing is an evolving decentralized computing infrastructure by which end applications are situated near the computing facilities. While the edge servers leverage the close proximity to the end-users for provisioning services at reduced latency and lower energy costs, their capabilities are constrained by limitations in computational and radio resources, which calls for smart, quality-of-service (QoS) guaranteed, and efficient task scheduling methods and algorithms. For addressing the edge-environment-oriented multi-workflow scheduling problem, the authors consider a probabilistic-QoS-aware approach to multi-workflow scheduling upon edge servers and resources. It leverages a probability-mass function-based QoS aggregation model and a discrete firefly algorithm for generating the multi-workflow scheduling plans. This research conducted an experimental case study based on varying types of workflow process models and a real-world dataset for edge server positions. It can be observed the method clearly outperforms its peers in terms of workflow completion time, cost, and deadline violation rate.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"7 1","pages":"25-39"},"PeriodicalIF":1.1,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84376714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-01DOI: 10.4018/IJWSR.2021040105
Yu Wang, Xiaolin Li, Hua-ping Chen
In the web service marketplace, component-based economy has been proposed for describing participants' behavioral patterns. Composite service networks combine multiple composite services required by various service consumers. With each composite service as a product, web services comprise heterogeneous products. In this study, the pricing behavior of networked individual service providers is investigated. With the objective of service survival or high profitability, service providers compete both on the single-service and service-network levels. Using examples, several mild assumptions are formulated and analyzed. Then, a bi-objective optimization model is proposed based on these assumptions, which attempts to maintain a reasonable effectiveness-fairness trade-off from the individual service providers' perspective. The NP-completeness of the single-objective version is demonstrated by transforming the problem into a subset sum problem, which highlights the challenge of obtaining a pareto set for the bi-objective model. Finally, to validate the proposed model, numerical experimentation and case study are conducted, and both the bi-objective and many-objective versions of the problem are discussed.
{"title":"Bi-Objective Competition Pricing Model for Component Web Service Economy","authors":"Yu Wang, Xiaolin Li, Hua-ping Chen","doi":"10.4018/IJWSR.2021040105","DOIUrl":"https://doi.org/10.4018/IJWSR.2021040105","url":null,"abstract":"In the web service marketplace, component-based economy has been proposed for describing participants' behavioral patterns. Composite service networks combine multiple composite services required by various service consumers. With each composite service as a product, web services comprise heterogeneous products. In this study, the pricing behavior of networked individual service providers is investigated. With the objective of service survival or high profitability, service providers compete both on the single-service and service-network levels. Using examples, several mild assumptions are formulated and analyzed. Then, a bi-objective optimization model is proposed based on these assumptions, which attempts to maintain a reasonable effectiveness-fairness trade-off from the individual service providers' perspective. The NP-completeness of the single-objective version is demonstrated by transforming the problem into a subset sum problem, which highlights the challenge of obtaining a pareto set for the bi-objective model. Finally, to validate the proposed model, numerical experimentation and case study are conducted, and both the bi-objective and many-objective versions of the problem are discussed.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"1 1","pages":"76-100"},"PeriodicalIF":1.1,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86266444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.4018/ijwsr.2021070103
A. Brahmane, C. Krishna
The novelty in big data is rising day-by-day in such a way that the existing software tools face difficulty in supervision of big data. Furthermore, the rate of the imbalanced data in the huge datasets is a key constraint to the research industry. Thus, this paper proposes a novel technique for handling the big data using Spark framework. The proposed technique undergoes two steps for classifying the big data, which involves feature selection and classification, which is performed in the initial nodes of Spark architecture. The proposed optimization algorithm is named rider chaotic biography optimization (RCBO) algorithm, which is the integration of the rider optimization algorithm (ROA) and the standard chaotic biogeography-based optimisation (CBBO). The proposed RCBO deep-stacked auto-encoder using Spark framework effectively handles the big data for attaining effective big data classification. Here, the proposed RCBO is employed for selecting suitable features from the massive dataset.
{"title":"Rider Chaotic Biography Optimization-driven Deep Stacked Auto-encoder for Big Data Classification Using Spark Architecture: Rider Chaotic Biography Optimization","authors":"A. Brahmane, C. Krishna","doi":"10.4018/ijwsr.2021070103","DOIUrl":"https://doi.org/10.4018/ijwsr.2021070103","url":null,"abstract":"The novelty in big data is rising day-by-day in such a way that the existing software tools face difficulty in supervision of big data. Furthermore, the rate of the imbalanced data in the huge datasets is a key constraint to the research industry. Thus, this paper proposes a novel technique for handling the big data using Spark framework. The proposed technique undergoes two steps for classifying the big data, which involves feature selection and classification, which is performed in the initial nodes of Spark architecture. The proposed optimization algorithm is named rider chaotic biography optimization (RCBO) algorithm, which is the integration of the rider optimization algorithm (ROA) and the standard chaotic biogeography-based optimisation (CBBO). The proposed RCBO deep-stacked auto-encoder using Spark framework effectively handles the big data for attaining effective big data classification. Here, the proposed RCBO is employed for selecting suitable features from the massive dataset.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"14 1","pages":"42-62"},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72723650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}