{"title":"Qualitative Analysis of Large Scale Dynamical Systems","authors":"A. Michel, Richard K. Miller, M. Vidyasagar","doi":"10.2307/3009732","DOIUrl":"https://doi.org/10.2307/3009732","url":null,"abstract":"","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":"44 1","pages":"689-689"},"PeriodicalIF":0.0,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90217147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-04-01Epub Date: 2011-10-24DOI: 10.1109/TSMCB.2011.2169056
Shaoning Pang, Tao Ban, Youki Kadobayashi, Nikola K Kasabov
To adapt linear discriminant analysis (LDA) to real-world applications, there is a pressing need to equip it with an incremental learning ability to integrate knowledge presented by one-pass data streams, a functionality to join multiple LDA models to make the knowledge sharing between independent learning agents more efficient, and a forgetting functionality to avoid reconstruction of the overall discriminant eigenspace caused by some irregular changes. To this end, we introduce two adaptive LDA learning methods: LDA merging and LDA splitting. These provide the benefits of ability of online learning with one-pass data streams, retained class separability identical to the batch learning method, high efficiency for knowledge sharing due to condensed knowledge representation by the eigenspace model, and more preferable time and storage costs than traditional approaches under common application conditions. These properties are validated by experiments on a benchmark face image data set. By a case study on the application of the proposed method to multiagent cooperative learning and system alternation of a face recognition system, we further clarified the adaptability of the proposed methods to complex dynamic learning tasks.
{"title":"LDA merging and splitting with applications to multiagent cooperative learning and system alteration.","authors":"Shaoning Pang, Tao Ban, Youki Kadobayashi, Nikola K Kasabov","doi":"10.1109/TSMCB.2011.2169056","DOIUrl":"https://doi.org/10.1109/TSMCB.2011.2169056","url":null,"abstract":"<p><p>To adapt linear discriminant analysis (LDA) to real-world applications, there is a pressing need to equip it with an incremental learning ability to integrate knowledge presented by one-pass data streams, a functionality to join multiple LDA models to make the knowledge sharing between independent learning agents more efficient, and a forgetting functionality to avoid reconstruction of the overall discriminant eigenspace caused by some irregular changes. To this end, we introduce two adaptive LDA learning methods: LDA merging and LDA splitting. These provide the benefits of ability of online learning with one-pass data streams, retained class separability identical to the batch learning method, high efficiency for knowledge sharing due to condensed knowledge representation by the eigenspace model, and more preferable time and storage costs than traditional approaches under common application conditions. These properties are validated by experiments on a benchmark face image data set. By a case study on the application of the proposed method to multiagent cooperative learning and system alternation of a face recognition system, we further clarified the adaptability of the proposed methods to complex dynamic learning tasks.</p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"552-64"},"PeriodicalIF":0.0,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2011.2169056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40117262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-02-01Epub Date: 2011-10-31DOI: 10.1109/TSMCB.2011.2165336
Guoxian Zhang, Silvia Ferrari, Chenghui Cai
This paper investigates the comparative performance of several information-driven search strategies and decision rules using a canonical target classification problem. Five sensor models are considered: one obtained from classical estimation theory and four obtained from Bernoulli, Poisson, binomial, and mixture-of-binomial distributions. A systematic approach is presented for deriving information functions that represent the expected utility of future sensor measurements from mutual information, Rènyi divergence, Kullback-Leibler divergence, information potential, quadratic entropy, and the Cauchy-Schwarz distance. The resulting information-driven strategies are compared to direct-search, alert-confirm, task-driven (TS), and log-likelihood-ratio (LLR) search strategies. Extensive numerical simulations show that quadratic entropy typically leads to the most effective search strategy with respect to correct-classification rates. In the presence of prior information, the quadratic-entropy-driven strategy also displays the lowest rate of false alarms. However, when prior information is absent or very noisy, TS and LLR strategies achieve the lowest false-alarm rates for the Bernoulli, mixture-of-binomial, and classical sensor models.
{"title":"A comparison of information functions and search strategies for sensor planning in target classification.","authors":"Guoxian Zhang, Silvia Ferrari, Chenghui Cai","doi":"10.1109/TSMCB.2011.2165336","DOIUrl":"https://doi.org/10.1109/TSMCB.2011.2165336","url":null,"abstract":"<p><p>This paper investigates the comparative performance of several information-driven search strategies and decision rules using a canonical target classification problem. Five sensor models are considered: one obtained from classical estimation theory and four obtained from Bernoulli, Poisson, binomial, and mixture-of-binomial distributions. A systematic approach is presented for deriving information functions that represent the expected utility of future sensor measurements from mutual information, Rènyi divergence, Kullback-Leibler divergence, information potential, quadratic entropy, and the Cauchy-Schwarz distance. The resulting information-driven strategies are compared to direct-search, alert-confirm, task-driven (TS), and log-likelihood-ratio (LLR) search strategies. Extensive numerical simulations show that quadratic entropy typically leads to the most effective search strategy with respect to correct-classification rates. In the presence of prior information, the quadratic-entropy-driven strategy also displays the lowest rate of false alarms. However, when prior information is absent or very noisy, TS and LLR strategies achieve the lowest false-alarm rates for the Bernoulli, mixture-of-binomial, and classical sensor models.</p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"2-16"},"PeriodicalIF":0.0,"publicationDate":"2012-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2011.2165336","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40131706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-10-01Epub Date: 2011-05-23DOI: 10.1109/TSMCB.2011.2144582
Hao Gao, Wenbo Xu
Particle swarm optimization (PSO) is a population-based optimization technique that can be applied to a wide range of problems. Here, we first investigate the behavior of particles in the PSO using a Monte Carlo method. The results reveal the essence of the trajectory of particles during iterations and the reasons why the PSO lacks a global search ability in the last stage of iterations. Then, we report a novel PSO with a moderate-random-search strategy (MRPSO), which enhances the ability of particles to explore the solution spaces more effectively and increases their convergence rates. Furthermore, a new mutation strategy is used, which makes it easier for particles in hybrid MRPSO (HMRPSO) to find the global optimum and which also seeks a balance between the exploration of new regions and the exploitation of the already sampled regions in the solution spaces. Thirteen benchmark functions are employed to test the performance of the HMRPSO. The results show that the new PSO algorithm performs much better than other PSO algorithms for each multimodal and unimodal function. Furthermore, compared with recent evolutionary algorithms, experimental results empirically demonstrate that the proposed framework yields promising search performance.
{"title":"A new particle swarm algorithm and its globally convergent modifications.","authors":"Hao Gao, Wenbo Xu","doi":"10.1109/TSMCB.2011.2144582","DOIUrl":"https://doi.org/10.1109/TSMCB.2011.2144582","url":null,"abstract":"<p><p>Particle swarm optimization (PSO) is a population-based optimization technique that can be applied to a wide range of problems. Here, we first investigate the behavior of particles in the PSO using a Monte Carlo method. The results reveal the essence of the trajectory of particles during iterations and the reasons why the PSO lacks a global search ability in the last stage of iterations. Then, we report a novel PSO with a moderate-random-search strategy (MRPSO), which enhances the ability of particles to explore the solution spaces more effectively and increases their convergence rates. Furthermore, a new mutation strategy is used, which makes it easier for particles in hybrid MRPSO (HMRPSO) to find the global optimum and which also seeks a balance between the exploration of new regions and the exploitation of the already sampled regions in the solution spaces. Thirteen benchmark functions are employed to test the performance of the HMRPSO. The results show that the new PSO algorithm performs much better than other PSO algorithms for each multimodal and unimodal function. Furthermore, compared with recent evolutionary algorithms, experimental results empirically demonstrate that the proposed framework yields promising search performance.</p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"1334-51"},"PeriodicalIF":0.0,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2011.2144582","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40107966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-10-01Epub Date: 2011-05-23DOI: 10.1109/TSMCB.2011.2144968
Mohammad Shafiul Alam, Md Monirul Islam, Xin Yao, Kazuyuki Murase
In the application of evolutionary algorithms (EAs) to complex problem solving, it is essential to maintain proper balance between global exploration and local exploitation to achieve a good near-optimum solution to the problem. This paper presents a recurring two-stage evolutionary programming (RTEP) to balance the explorative and exploitative features of the conventional EAs. Unlike most previous works, RTEP is based on repeated and alternated execution of two different stages, namely, the exploration and exploitation stages, each with its own mutation operator, selection strategy, and explorative/exploitative objective. Both analytical and empirical studies have been carried out to understand the necessity of repeated and alternated exploration and exploitation operations in EAs. A suite of 48 benchmark numerical optimization problems has been used in the empirical studies. The experimental results show the remarkable effectiveness of the repeated exploration and exploitation operations employed by RTEP.
{"title":"Recurring two-stage evolutionary programming: a novel approach for numeric optimization.","authors":"Mohammad Shafiul Alam, Md Monirul Islam, Xin Yao, Kazuyuki Murase","doi":"10.1109/TSMCB.2011.2144968","DOIUrl":"https://doi.org/10.1109/TSMCB.2011.2144968","url":null,"abstract":"In the application of evolutionary algorithms (EAs) to complex problem solving, it is essential to maintain proper balance between global exploration and local exploitation to achieve a good near-optimum solution to the problem. This paper presents a recurring two-stage evolutionary programming (RTEP) to balance the explorative and exploitative features of the conventional EAs. Unlike most previous works, RTEP is based on repeated and alternated execution of two different stages, namely, the exploration and exploitation stages, each with its own mutation operator, selection strategy, and explorative/exploitative objective. Both analytical and empirical studies have been carried out to understand the necessity of repeated and alternated exploration and exploitation operations in EAs. A suite of 48 benchmark numerical optimization problems has been used in the empirical studies. The experimental results show the remarkable effectiveness of the repeated exploration and exploitation operations employed by RTEP.","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"1352-65"},"PeriodicalIF":0.0,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2011.2144968","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40107965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-10-01Epub Date: 2011-05-19DOI: 10.1109/TSMCB.2011.2139203
Huaguang Zhang, Xiangpeng Xie, Shaocheng Tong
This paper proposes a novel H(∞) filtering technique for a class of discrete-time fuzzy systems. First, a novel kind of fuzzy H(∞) filter, which is homogenous polynomially parameter dependent on membership functions with an arbitrary degree, is developed to guarantee the asymptotic stability and a prescribed H(∞) performance of the filtering error system. Second, relaxed conditions for H(∞) performance analysis are proposed by using a new fuzzy Lyapunov function and the Finsler lemma with homogenous polynomial matrix Lagrange multipliers. Then, based on a new kind of slack variable technique, relaxed linear matrix inequality-based H(∞) filtering conditions are proposed. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed approach.
{"title":"Homogenous polynomially parameter-dependent H∞ filter designs of discrete-time fuzzy systems.","authors":"Huaguang Zhang, Xiangpeng Xie, Shaocheng Tong","doi":"10.1109/TSMCB.2011.2139203","DOIUrl":"https://doi.org/10.1109/TSMCB.2011.2139203","url":null,"abstract":"<p><p>This paper proposes a novel H(∞) filtering technique for a class of discrete-time fuzzy systems. First, a novel kind of fuzzy H(∞) filter, which is homogenous polynomially parameter dependent on membership functions with an arbitrary degree, is developed to guarantee the asymptotic stability and a prescribed H(∞) performance of the filtering error system. Second, relaxed conditions for H(∞) performance analysis are proposed by using a new fuzzy Lyapunov function and the Finsler lemma with homogenous polynomial matrix Lagrange multipliers. Then, based on a new kind of slack variable technique, relaxed linear matrix inequality-based H(∞) filtering conditions are proposed. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed approach.</p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"1313-22"},"PeriodicalIF":0.0,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2011.2139203","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40104217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-10-01Epub Date: 2011-05-23DOI: 10.1109/TSMCB.2011.2148173
Mojtaba Ahmadieh Khanesar, Erdal Kayacan, Mohammad Teshnehlab, Okyay Kaynak
In this paper, the noise reduction property of type-2 fuzzy logic (FL) systems (FLSs) (T2FLSs) that use a novel type-2 fuzzy membership function is studied. The proposed type-2 membership function has certain values on both ends of the support and the kernel and some uncertain values for the other values of the support. The parameter tuning rules of a T2FLS that uses such a membership function are derived using the gradient descend learning algorithm. There exist a number of papers in the literature that claim that the performance of T2FLSs is better than type-1 FLSs under noisy conditions, and the claim is tried to be justified by simulation studies only for some specific systems. In this paper, a simpler T2FLS is considered with the novel membership function proposed in which the effect of input noise in the rule base is shown numerically in a general way. The proposed type-2 fuzzy neuro structure is tested on different input-output data sets, and it is shown that the T2FLS with the proposed novel membership function has better noise reduction property when compared to the type-1 counterparts.
{"title":"Analysis of the noise reduction property of type-2 fuzzy logic systems using a novel type-2 membership function.","authors":"Mojtaba Ahmadieh Khanesar, Erdal Kayacan, Mohammad Teshnehlab, Okyay Kaynak","doi":"10.1109/TSMCB.2011.2148173","DOIUrl":"https://doi.org/10.1109/TSMCB.2011.2148173","url":null,"abstract":"<p><p>In this paper, the noise reduction property of type-2 fuzzy logic (FL) systems (FLSs) (T2FLSs) that use a novel type-2 fuzzy membership function is studied. The proposed type-2 membership function has certain values on both ends of the support and the kernel and some uncertain values for the other values of the support. The parameter tuning rules of a T2FLS that uses such a membership function are derived using the gradient descend learning algorithm. There exist a number of papers in the literature that claim that the performance of T2FLSs is better than type-1 FLSs under noisy conditions, and the claim is tried to be justified by simulation studies only for some specific systems. In this paper, a simpler T2FLS is considered with the novel membership function proposed in which the effect of input noise in the rule base is shown numerically in a general way. The proposed type-2 fuzzy neuro structure is tested on different input-output data sets, and it is shown that the T2FLS with the proposed novel membership function has better noise reduction property when compared to the type-1 counterparts.</p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"1395-406"},"PeriodicalIF":0.0,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2011.2148173","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40107964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-08-01DOI: 10.1016/J.LINGUA.2011.05.001
P. Sleeman
{"title":"Verbal and adjectival participles: Position and internal structure","authors":"P. Sleeman","doi":"10.1016/J.LINGUA.2011.05.001","DOIUrl":"https://doi.org/10.1016/J.LINGUA.2011.05.001","url":null,"abstract":"","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":"91 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76923469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-06-01DOI: 10.1109/TSMCB.2010.2064767
Nicolas Widynski, Séverine Dubuisson, Isabelle Bloch
In this paper, we propose a novel method to introduce spatial information in particle filters. This information may be expressed as spatial relations (orientation, distance, etc.), velocity, scaling, or shape information. Spatial information is modeled in a generic fuzzy-set framework. The fuzzy models are then introduced in the particle filter and automatically define transition and prior spatial distributions. We also propose an efficient importance distribution to produce relevant particles, which is dedicated to the proposed fuzzy framework. The fuzzy modeling provides flexibility both in the semantics of information and in the transitions from one instant to another one. This allows one to take into account situations where a tracked object changes its direction in a quite abrupt way and where poor prior information on dynamics is available, as demonstrated on synthetic data. As an illustration, two tests on real video sequences are performed in this paper. The first one concerns a classical tracking problem and shows that our approach efficiently tracks objects with complex and unknown dynamics, outperforming classical filtering techniques while using only a small number of particles. In the second experiment, we show the flexibility of our approach for modeling: Fuzzy shapes are modeled in a generic way and allow the tracking of objects with changing shape.
{"title":"Integration of fuzzy spatial information in tracking based on particle filtering.","authors":"Nicolas Widynski, Séverine Dubuisson, Isabelle Bloch","doi":"10.1109/TSMCB.2010.2064767","DOIUrl":"https://doi.org/10.1109/TSMCB.2010.2064767","url":null,"abstract":"<p><p>In this paper, we propose a novel method to introduce spatial information in particle filters. This information may be expressed as spatial relations (orientation, distance, etc.), velocity, scaling, or shape information. Spatial information is modeled in a generic fuzzy-set framework. The fuzzy models are then introduced in the particle filter and automatically define transition and prior spatial distributions. We also propose an efficient importance distribution to produce relevant particles, which is dedicated to the proposed fuzzy framework. The fuzzy modeling provides flexibility both in the semantics of information and in the transitions from one instant to another one. This allows one to take into account situations where a tracked object changes its direction in a quite abrupt way and where poor prior information on dynamics is available, as demonstrated on synthetic data. As an illustration, two tests on real video sequences are performed in this paper. The first one concerns a classical tracking problem and shows that our approach efficiently tracks objects with complex and unknown dynamics, outperforming classical filtering techniques while using only a small number of particles. In the second experiment, we show the flexibility of our approach for modeling: Fuzzy shapes are modeled in a generic way and allow the tracking of objects with changing shape.</p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"635-49"},"PeriodicalIF":0.0,"publicationDate":"2011-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2010.2064767","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40092442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-06-01DOI: 10.1109/TSMCB.2010.2086060
Longbing Cao, Huaifeng Zhang, Yanchang Zhao, Dan Luo, Chengqi Zhang
Enterprise data mining applications often involve complex data such as multiple large heterogeneous data sources, user preferences, and business impact. In such situations, a single method or one-step mining is often limited in discovering informative knowledge. It would also be very time and space consuming, if not impossible, to join relevant large data sources for mining patterns consisting of multiple aspects of information. It is crucial to develop effective approaches for mining patterns combining necessary information from multiple relevant business lines, catering for real business settings and decision-making actions rather than just providing a single line of patterns. The recent years have seen increasing efforts on mining more informative patterns, e.g., integrating frequent pattern mining with classifications to generate frequent pattern-based classifiers. Rather than presenting a specific algorithm, this paper builds on our existing works and proposes combined mining as a general approach to mining for informative patterns combining components from either multiple data sets or multiple features or by multiple methods on demand. We summarize general frameworks, paradigms, and basic processes for multifeature combined mining, multisource combined mining, and multimethod combined mining. Novel types of combined patterns, such as incremental cluster patterns, can result from such frameworks, which cannot be directly produced by the existing methods. A set of real-world case studies has been conducted to test the frameworks, with some of them briefed in this paper. They identify combined patterns for informing government debt prevention and improving government service objectives, which show the flexibility and instantiation capability of combined mining in discovering informative knowledge in complex data.
{"title":"Combined mining: discovering informative knowledge in complex data.","authors":"Longbing Cao, Huaifeng Zhang, Yanchang Zhao, Dan Luo, Chengqi Zhang","doi":"10.1109/TSMCB.2010.2086060","DOIUrl":"https://doi.org/10.1109/TSMCB.2010.2086060","url":null,"abstract":"<p><p>Enterprise data mining applications often involve complex data such as multiple large heterogeneous data sources, user preferences, and business impact. In such situations, a single method or one-step mining is often limited in discovering informative knowledge. It would also be very time and space consuming, if not impossible, to join relevant large data sources for mining patterns consisting of multiple aspects of information. It is crucial to develop effective approaches for mining patterns combining necessary information from multiple relevant business lines, catering for real business settings and decision-making actions rather than just providing a single line of patterns. The recent years have seen increasing efforts on mining more informative patterns, e.g., integrating frequent pattern mining with classifications to generate frequent pattern-based classifiers. Rather than presenting a specific algorithm, this paper builds on our existing works and proposes combined mining as a general approach to mining for informative patterns combining components from either multiple data sets or multiple features or by multiple methods on demand. We summarize general frameworks, paradigms, and basic processes for multifeature combined mining, multisource combined mining, and multimethod combined mining. Novel types of combined patterns, such as incremental cluster patterns, can result from such frameworks, which cannot be directly produced by the existing methods. A set of real-world case studies has been conducted to test the frameworks, with some of them briefed in this paper. They identify combined patterns for informing government debt prevention and improving government service objectives, which show the flexibility and instantiation capability of combined mining in discovering informative knowledge in complex data.</p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"699-712"},"PeriodicalIF":0.0,"publicationDate":"2011-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2010.2086060","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40092444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}