首页 > 最新文献

GIScience & Remote Sensing最新文献

英文 中文
Mapping winter fallow arable lands in Southern China by using a multi-temporal overlapped area minimization threshold method 利用多时相重叠面积最小化阈值法绘制中国南方冬季休耕耕地图
IF 6.7 2区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2024-03-25 DOI: 10.1080/15481603.2024.2333587
Xiangyi Wang, Yingbin He, Yan Zha, Huicong Chen, Yongye Wang, Xiuying Wu, Jiong Ning, Anran Feng, Shengnan Han, Shanjun Luo
In China, a nation facing farmland scarcity, accurate mapping of winter fallow arable lands is crucial for enhancing crop rotation and land use efficiency. The Dynamic Threshold (DT) method commonl...
中国是一个耕地稀缺的国家,准确绘制冬季休耕耕地图对于加强轮作和提高土地利用效率至关重要。动态阈值法(DT)是一种常用的冬闲...
{"title":"Mapping winter fallow arable lands in Southern China by using a multi-temporal overlapped area minimization threshold method","authors":"Xiangyi Wang, Yingbin He, Yan Zha, Huicong Chen, Yongye Wang, Xiuying Wu, Jiong Ning, Anran Feng, Shengnan Han, Shanjun Luo","doi":"10.1080/15481603.2024.2333587","DOIUrl":"https://doi.org/10.1080/15481603.2024.2333587","url":null,"abstract":"In China, a nation facing farmland scarcity, accurate mapping of winter fallow arable lands is crucial for enhancing crop rotation and land use efficiency. The Dynamic Threshold (DT) method commonl...","PeriodicalId":55091,"journal":{"name":"GIScience & Remote Sensing","volume":"180 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140291784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated knowledge graph construction framework for places-of-interest retrieval using a property graph database 利用属性图数据库进行兴趣点检索的综合知识图构建框架
IF 6.7 2区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2024-03-20 DOI: 10.1080/15481603.2024.2331861
Seula Park, Youngmin Lee, Kiyun Yu
With recent technological advances, the efficient extraction and utilization of valuable information from large-scale data sources have become increasingly important. The development of knowledge g...
随着近年来技术的进步,从大规模数据源中有效提取和利用有价值的信息变得越来越重要。知识库的开发是一项艰巨的任务。
{"title":"Integrated knowledge graph construction framework for places-of-interest retrieval using a property graph database","authors":"Seula Park, Youngmin Lee, Kiyun Yu","doi":"10.1080/15481603.2024.2331861","DOIUrl":"https://doi.org/10.1080/15481603.2024.2331861","url":null,"abstract":"With recent technological advances, the efficient extraction and utilization of valuable information from large-scale data sources have become increasingly important. The development of knowledge g...","PeriodicalId":55091,"journal":{"name":"GIScience & Remote Sensing","volume":"120 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140182849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel spaceborne photon-counting laser altimeter denoising method based on parameter-adaptive density clustering 基于参数自适应密度聚类的新型空间光子计数激光高度计去噪方法
IF 6.7 2区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2024-03-15 DOI: 10.1080/15481603.2024.2326702
Ren Liu, Xinming Tang, Junfeng Xie, Rujia Ma, Fan Mo, Xiaomeng Yang
To tackle the challenge of denoising spaceborne photon-counting laser altimeter point clouds with uneven noise density, this study proposes a denoising method based on adaptive parameter density cl...
为解决噪声密度不均匀的空间光子计数激光测高仪点云去噪难题,本研究提出了一种基于自适应参数密度克隆的去噪方法。
{"title":"A novel spaceborne photon-counting laser altimeter denoising method based on parameter-adaptive density clustering","authors":"Ren Liu, Xinming Tang, Junfeng Xie, Rujia Ma, Fan Mo, Xiaomeng Yang","doi":"10.1080/15481603.2024.2326702","DOIUrl":"https://doi.org/10.1080/15481603.2024.2326702","url":null,"abstract":"To tackle the challenge of denoising spaceborne photon-counting laser altimeter point clouds with uneven noise density, this study proposes a denoising method based on adaptive parameter density cl...","PeriodicalId":55091,"journal":{"name":"GIScience & Remote Sensing","volume":"36 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140135994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
U-SeqNet: learning spatiotemporal mapping relationships for multimodal multitemporal cloud removal U-SeqNet:学习时空映射关系,实现多模态多时空云清除
IF 6.7 2区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2024-03-14 DOI: 10.1080/15481603.2024.2330185
Qian Zhang, Xiangnan Liu, Tao Peng, Xiao Yang, Mengzhen Tang, Xinyu Zou, Meiling Liu, Ling Wu, Tingwei Zhang
Optical remotely sensed time series data have various key applications in Earth surface dynamics. However, cloud cover significantly hampers data analysis and interpretation. Despite synthetic aper...
光学遥感时间序列数据在地球表面动力学方面有多种重要应用。然而,云层严重阻碍了数据分析和解释。尽管合成孔径雷达(AP)和云图(CM)的应用已经取得了很大的进展,但云层覆盖仍然是数据分析和解释的障碍。
{"title":"U-SeqNet: learning spatiotemporal mapping relationships for multimodal multitemporal cloud removal","authors":"Qian Zhang, Xiangnan Liu, Tao Peng, Xiao Yang, Mengzhen Tang, Xinyu Zou, Meiling Liu, Ling Wu, Tingwei Zhang","doi":"10.1080/15481603.2024.2330185","DOIUrl":"https://doi.org/10.1080/15481603.2024.2330185","url":null,"abstract":"Optical remotely sensed time series data have various key applications in Earth surface dynamics. However, cloud cover significantly hampers data analysis and interpretation. Despite synthetic aper...","PeriodicalId":55091,"journal":{"name":"GIScience & Remote Sensing","volume":"09 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140124182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping invasive noxious weed species in the alpine grassland ecosystems using very high spatial resolution UAV hyperspectral imagery and a novel deep learning model 利用空间分辨率极高的无人机高光谱图像和新型深度学习模型绘制高寒草地生态系统中的入侵有害杂草物种地图
IF 6.7 2区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2024-03-13 DOI: 10.1080/15481603.2024.2327146
Fei Xing, Ru An, Xulin Guo, Xiaoji Shen
The term “invasive noxious weed species” (INWS), which refers to noxious weed plants that invade native alpine grasslands, has increasingly become an ecological and economic threat in the alpine gr...
入侵有害杂草物种"(INWS)是指入侵本地高山草地的有害杂草植物,它已日益成为高山草地的一种生态和经济威胁。
{"title":"Mapping invasive noxious weed species in the alpine grassland ecosystems using very high spatial resolution UAV hyperspectral imagery and a novel deep learning model","authors":"Fei Xing, Ru An, Xulin Guo, Xiaoji Shen","doi":"10.1080/15481603.2024.2327146","DOIUrl":"https://doi.org/10.1080/15481603.2024.2327146","url":null,"abstract":"The term “invasive noxious weed species” (INWS), which refers to noxious weed plants that invade native alpine grasslands, has increasingly become an ecological and economic threat in the alpine gr...","PeriodicalId":55091,"journal":{"name":"GIScience & Remote Sensing","volume":"140 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140124210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bridging satellite missions: deep transfer learning for enhanced tropical cyclone intensity estimation 衔接卫星任务:用于增强热带气旋强度估计的深度转移学习
IF 6.7 2区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2024-03-11 DOI: 10.1080/15481603.2024.2325720
Minki Choo, Yejin Kim, Juhyun Lee, Jungho Im, Il-Ju Moon
Geostationary satellites are valuable tools for monitoring the entire lifetime of tropical cyclones (TCs). Although the most widely used method for TC intensity estimation is manual, several automa...
地球静止卫星是监测热带气旋(TC)整个生命周期的宝贵工具。虽然最广泛使用的热带气旋强度估算方法是人工估算,但也有几种自动估算方法。
{"title":"Bridging satellite missions: deep transfer learning for enhanced tropical cyclone intensity estimation","authors":"Minki Choo, Yejin Kim, Juhyun Lee, Jungho Im, Il-Ju Moon","doi":"10.1080/15481603.2024.2325720","DOIUrl":"https://doi.org/10.1080/15481603.2024.2325720","url":null,"abstract":"Geostationary satellites are valuable tools for monitoring the entire lifetime of tropical cyclones (TCs). Although the most widely used method for TC intensity estimation is manual, several automa...","PeriodicalId":55091,"journal":{"name":"GIScience & Remote Sensing","volume":"8 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140117942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Process-based and geostationary meteorological satellite-enhanced dead fuel moisture content estimation 基于过程的和地球静止气象卫星增强的死亡燃料水分含量估算
IF 6.7 2区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2024-03-05 DOI: 10.1080/15481603.2024.2324556
Chunquan Fan, Binbin He, Jianpeng Yin, Rui Chen, Hongguo Zhang
Dead fuel moisture content (DFMC) is essential for assessing wildfire danger, fire behavior, and fuel consumption. Several process-based models have been proposed to estimate DFMC. Previous studies...
枯死燃料含水量(DFMC)对于评估野火危险、火灾行为和燃料消耗至关重要。已经提出了几种基于过程的模型来估算 DFMC。以前的研究...
{"title":"Process-based and geostationary meteorological satellite-enhanced dead fuel moisture content estimation","authors":"Chunquan Fan, Binbin He, Jianpeng Yin, Rui Chen, Hongguo Zhang","doi":"10.1080/15481603.2024.2324556","DOIUrl":"https://doi.org/10.1080/15481603.2024.2324556","url":null,"abstract":"Dead fuel moisture content (DFMC) is essential for assessing wildfire danger, fire behavior, and fuel consumption. Several process-based models have been proposed to estimate DFMC. Previous studies...","PeriodicalId":55091,"journal":{"name":"GIScience & Remote Sensing","volume":"71 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140037915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cloud restoration of optical satellite imagery using time-series spectral similarity group 利用时间序列光谱相似性组对光学卫星图像进行云恢复
IF 6.7 2区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2024-03-05 DOI: 10.1080/15481603.2024.2324553
Yerin Yun, Jinha Jung, Youkyung Han
According to climate statistics, clouds cover more than a third of the Earth’s land surface on average. This cloud coverage obstructs optical satellite imagery, resulting in a loss of essential inf...
根据气候统计数据,云层平均覆盖了地球陆地表面的三分之一以上。这种云层覆盖阻碍了光学卫星图像,导致重要信息的丢失。
{"title":"Cloud restoration of optical satellite imagery using time-series spectral similarity group","authors":"Yerin Yun, Jinha Jung, Youkyung Han","doi":"10.1080/15481603.2024.2324553","DOIUrl":"https://doi.org/10.1080/15481603.2024.2324553","url":null,"abstract":"According to climate statistics, clouds cover more than a third of the Earth’s land surface on average. This cloud coverage obstructs optical satellite imagery, resulting in a loss of essential inf...","PeriodicalId":55091,"journal":{"name":"GIScience & Remote Sensing","volume":"13 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140048047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inferring the heterogeneous effect of urban land use on building height with causal machine learning 利用因果机器学习推断城市土地利用对建筑高度的异质性影响
IF 6.7 2区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2024-02-25 DOI: 10.1080/15481603.2024.2321695
Yimin Chen, Jing Chen, Shuai Zhao, Xiaocong Xu, Xiaoping Liu, Xinchang Zhang, Honghui Zhang
Machine learning has become an important approach for land use change modeling. However, conventional machine learning algorithms are limited in their ability to capture causal relationships in lan...
机器学习已成为土地利用变化建模的一种重要方法。然而,传统的机器学习算法在捕捉土地利用变化中的因果关系方面能力有限。
{"title":"Inferring the heterogeneous effect of urban land use on building height with causal machine learning","authors":"Yimin Chen, Jing Chen, Shuai Zhao, Xiaocong Xu, Xiaoping Liu, Xinchang Zhang, Honghui Zhang","doi":"10.1080/15481603.2024.2321695","DOIUrl":"https://doi.org/10.1080/15481603.2024.2321695","url":null,"abstract":"Machine learning has become an important approach for land use change modeling. However, conventional machine learning algorithms are limited in their ability to capture causal relationships in lan...","PeriodicalId":55091,"journal":{"name":"GIScience & Remote Sensing","volume":"201 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139987548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fine classification of crops based on an inductive transfer learning method with compact polarimetric SAR images 利用紧凑型偏振合成孔径雷达图像,基于归纳转移学习法对农作物进行精细分类
IF 6.7 2区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2024-02-23 DOI: 10.1080/15481603.2024.2319939
Xianyu Guo, Junjun Yin, Jian Yang
Compact polarimetric synthetic aperture radar (CP SAR) reduces fully polarimetric SAR system complexity and expands the imaging swath. Generally, fine classification of crop types relies on many la...
紧凑型偏振合成孔径雷达(CP SAR)降低了全偏振合成孔径雷达系统的复杂性,并扩大了成像范围。一般来说,农作物类型的精细分类依赖于许多方面,如农作物的...
{"title":"Fine classification of crops based on an inductive transfer learning method with compact polarimetric SAR images","authors":"Xianyu Guo, Junjun Yin, Jian Yang","doi":"10.1080/15481603.2024.2319939","DOIUrl":"https://doi.org/10.1080/15481603.2024.2319939","url":null,"abstract":"Compact polarimetric synthetic aperture radar (CP SAR) reduces fully polarimetric SAR system complexity and expands the imaging swath. Generally, fine classification of crop types relies on many la...","PeriodicalId":55091,"journal":{"name":"GIScience & Remote Sensing","volume":"38 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139957160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
GIScience & Remote Sensing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1