Pub Date : 2020-01-29DOI: 10.1344/geologicaacta2020.18.1
E. Shcherbinina, A. Iakovleva, Y. Gavrilov, O. Golovanova, N. Muzylev
The lower Eocene sediments from the classical Paleogene section exposed along the Kheu River, northern Caucasus, southern Russia are here studied. This ca. 50m thick succession is lithologically contrasting: the lower and upper parts are composed by soft marls separated by a thick Radiolaria-rich unit of non-calcareous and low-calcareous mudstones with intercalations of compact cherty layers. According to nannofossil and dinocyst biostratigraphy, the unique intercalation of Total Organic Carbon (TOC)-rich sediment (sapropelitic bed) in the lower part of the lower Eocene correspond to the Paleocene-Eocene Thermal Maximum (PETM) and a series of sapropelitic interlayers in the upper marly part of the lower Eocene succession correlates with the Early Eocene Climatic Optimum (EECO). The study of nannofossil and dinocyst assemblages enabled detailed zonal subdivision and first-order calibration of nannofossil and dinocyst bio-events during this time-span. The studied interval of the section embraces the complete succession of nannofossil zones NP9-NP13 of Martini, 1971, CP8-CP11 of Okada and Bukry, 1980 and CNP11-CNE5 of Agnini et al., 2014. By means of dinocyst stratigraphy, the succession of Apectodinium hyperacanthum, Axiodinium augustum, Deflandrea oebisfeldensis, Dracodinium astra, Stenodinium meckelfeldense, Dracodinium varielongitudum, Ochetodinium romanum/Samlandia chlamydophora and Areosphaeridium diktyoplokum zones are identified in the Ypresian part of the Kheu section.
{"title":"Lower Eocene sedimentary succession and microfossil biostratigraphy in the central northern Caucasus basin","authors":"E. Shcherbinina, A. Iakovleva, Y. Gavrilov, O. Golovanova, N. Muzylev","doi":"10.1344/geologicaacta2020.18.1","DOIUrl":"https://doi.org/10.1344/geologicaacta2020.18.1","url":null,"abstract":"The lower Eocene sediments from the classical Paleogene section exposed along the Kheu River, northern Caucasus, southern Russia are here studied. This ca. 50m thick succession is lithologically contrasting: the lower and upper parts are composed by soft marls separated by a thick Radiolaria-rich unit of non-calcareous and low-calcareous mudstones with intercalations of compact cherty layers. According to nannofossil and dinocyst biostratigraphy, the unique intercalation of Total Organic Carbon (TOC)-rich sediment (sapropelitic bed) in the lower part of the lower Eocene correspond to the Paleocene-Eocene Thermal Maximum (PETM) and a series of sapropelitic interlayers in the upper marly part of the lower Eocene succession correlates with the Early Eocene Climatic Optimum (EECO). The study of nannofossil and dinocyst assemblages enabled detailed zonal subdivision and first-order calibration of nannofossil and dinocyst bio-events during this time-span. The studied interval of the section embraces the complete succession of nannofossil zones NP9-NP13 of Martini, 1971, CP8-CP11 of Okada and Bukry, 1980 and CNP11-CNE5 of Agnini et al., 2014. By means of dinocyst stratigraphy, the succession of Apectodinium hyperacanthum, Axiodinium augustum, Deflandrea oebisfeldensis, Dracodinium astra, Stenodinium meckelfeldense, Dracodinium varielongitudum, Ochetodinium romanum/Samlandia chlamydophora and Areosphaeridium diktyoplokum zones are identified in the Ypresian part of the Kheu section.","PeriodicalId":55107,"journal":{"name":"Geologica Acta","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47500171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-08DOI: 10.1344/geologicaacta2019.17.10
I. Urraza, S. Delpino, L. E. Grecco
Amphibolites included in the metapelitic sequence and as xenoliths in intrusive magmatic rocks outcropping in the southern sector of the Alumine Igneous-Metamorphic Complex (AIMC), Neuquen, Argentina, are studied in detail in order to determine their origin and their subsequent metamorphic evolution. Field evidence and wholerock geochemistry indicate that these rocks were derived from a Mid-Ocean Ridge Basalt (MORB)-type protolith, and were accreted as tectonic slices into the metapelitic sequence that mainly formed the basal accretionary prism associated with a pre-Andean SW-NE subduction setting. Phase relationships, geochemistry of mineral assemblages and geothermobarometry indicate the presence of at least two metamorphic events (M 1 1.9−3.9kbar, 677−745oC and M 2 6.4kbar, 723oC) framed in a counterclockwise P-T path, comparable to those previously determined for the metapelitic country-rocks and metatroctolites outcropping in the same sector of the AIMC. Based on regional correlations and the agreement in the petrological, geochemical, geochronological and structural characteristics, we suggest that the MORB-derived Norquinco amphibolites and neighboring aluminous metasedimentary basement rocks of the AIMC belong to the eastern prolongation of the Western Series of the Coastal Accretionary Complex of Central Chile in west-central Argentina territory.
{"title":"MORB-derived amphibolites in the Paleozoic basement of the Aluminé Igneous-Metamorphic Complex,.","authors":"I. Urraza, S. Delpino, L. E. Grecco","doi":"10.1344/geologicaacta2019.17.10","DOIUrl":"https://doi.org/10.1344/geologicaacta2019.17.10","url":null,"abstract":"Amphibolites included in the metapelitic sequence and as xenoliths in intrusive magmatic rocks outcropping in the southern sector of the Alumine Igneous-Metamorphic Complex (AIMC), Neuquen, Argentina, are studied in detail in order to determine their origin and their subsequent metamorphic evolution. Field evidence and wholerock geochemistry indicate that these rocks were derived from a Mid-Ocean Ridge Basalt (MORB)-type protolith, and were accreted as tectonic slices into the metapelitic sequence that mainly formed the basal accretionary prism associated with a pre-Andean SW-NE subduction setting. Phase relationships, geochemistry of mineral assemblages and geothermobarometry indicate the presence of at least two metamorphic events (M 1 1.9−3.9kbar, 677−745oC and M 2 6.4kbar, 723oC) framed in a counterclockwise P-T path, comparable to those previously determined for the metapelitic country-rocks and metatroctolites outcropping in the same sector of the AIMC. Based on regional correlations and the agreement in the petrological, geochemical, geochronological and structural characteristics, we suggest that the MORB-derived Norquinco amphibolites and neighboring aluminous metasedimentary basement rocks of the AIMC belong to the eastern prolongation of the Western Series of the Coastal Accretionary Complex of Central Chile in west-central Argentina territory.","PeriodicalId":55107,"journal":{"name":"Geologica Acta","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47454162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Andrade, P. Legoinha, Z. Stroynowski, F. Abrantes
Proboscia barboi and Proboscia curvirostris are two important diatom biostratigraphic markers from the high latitudes of the North Pacific and North Atlantic Oceans, dating back to the Pliocene-Pleistocene time. This study analyzes the biostratigraphic events and describes the morphology of P. barboi and P. curvirostris , particularly the morphologic variations of the latter species, based on observations of samples of Core U1340A from the IODP Expedition 323 in the Bering Sea. In Site U1340, the First Occurrence of P. curvirostris is observed at 1.52Ma and its First Common Occurrence at 1.39Ma, where morphologic variations were found abundantly. The Last Occurrence of P. curvirostris was found at 0.33Ma, while P. barboi ’s Last Occurrence is found at 0.67Ma. Based on the morphological similarity and known biostratigraphic distribution, previous authors have assumed that P. curvirostris descends from P. barboi , although this hypothesis is still in debate. At 1.39Ma P. curvirostris shows an increased size and thickness, which is typical of P. barboi , and some specimens display an incipient structure characteristic of P. curvirostris - the secondary spine. This morphology is intermediate between the two species and suggests an evolutionary transition from P. barboi to P. curvirostris . However, P. curvirostris already existed since 1.9Ma in the subarctic indicating that its speciation happened much earlier than 1.39Ma. Furthermore, since P. barboi co-occurs with P. curvirostris in the North Pacific, this evolutionary process was cladogenetic. Besides being evidence for a phylogenetic relationship, the abundant occurrence of intermediate forms at 1.39Ma may constitute a bioevent for a short time interval in the Bering Sea.
{"title":"Morphology, biostratigraphy, and evolution of PliocenePleistocene diatoms Proboscia barboi...","authors":"J. Andrade, P. Legoinha, Z. Stroynowski, F. Abrantes","doi":"10.1344/105.000005518","DOIUrl":"https://doi.org/10.1344/105.000005518","url":null,"abstract":"Proboscia barboi and Proboscia curvirostris are two important diatom biostratigraphic markers from the high latitudes of the North Pacific and North Atlantic Oceans, dating back to the Pliocene-Pleistocene time. This study analyzes the biostratigraphic events and describes the morphology of P. barboi and P. curvirostris , particularly the morphologic variations of the latter species, based on observations of samples of Core U1340A from the IODP Expedition 323 in the Bering Sea. In Site U1340, the First Occurrence of P. curvirostris is observed at 1.52Ma and its First Common Occurrence at 1.39Ma, where morphologic variations were found abundantly. The Last Occurrence of P. curvirostris was found at 0.33Ma, while P. barboi ’s Last Occurrence is found at 0.67Ma. Based on the morphological similarity and known biostratigraphic distribution, previous authors have assumed that P. curvirostris descends from P. barboi , although this hypothesis is still in debate. At 1.39Ma P. curvirostris shows an increased size and thickness, which is typical of P. barboi , and some specimens display an incipient structure characteristic of P. curvirostris - the secondary spine. This morphology is intermediate between the two species and suggests an evolutionary transition from P. barboi to P. curvirostris . However, P. curvirostris already existed since 1.9Ma in the subarctic indicating that its speciation happened much earlier than 1.39Ma. Furthermore, since P. barboi co-occurs with P. curvirostris in the North Pacific, this evolutionary process was cladogenetic. Besides being evidence for a phylogenetic relationship, the abundant occurrence of intermediate forms at 1.39Ma may constitute a bioevent for a short time interval in the Bering Sea.","PeriodicalId":55107,"journal":{"name":"Geologica Acta","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44033895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-07-30DOI: 10.1344/GEOLOGICAACTA2019.17.8
H. Barcelona, G. Peri, D. Winocur, A. Favetto
The present research explores the Bañitos-Gollete geothermal field located in the Frontal Andes Cordillera over the Pampean flat-slab. We carried out an audiomagnetotelluric survey in order to define the underground geoelectrical structure and to understand the link between the geothermal fluid flow path and the main geological structures. 2-D audiomagnetotelluric models suggest that the deep-rooted N-S fault system controls the geothermal flow path. We propose a conductive heat-driven system, taking into consideration the geologic setting and the supposed low geothermal gradient of this tectonic environment. The mature Na-Cl waters from Gollete and an estimated reservoir temperature of ~140ºC are consistent with this conceptual model. Further investigations are required to assess the geothermal potential of the study area, and the present work likely represents only the first but necessary step in the exploration process.
{"title":"Audiomagnetotelluric survey at the Bañitos-Gollete geothermal area, main Andes Cordillera of San Juan, Argentina.","authors":"H. Barcelona, G. Peri, D. Winocur, A. Favetto","doi":"10.1344/GEOLOGICAACTA2019.17.8","DOIUrl":"https://doi.org/10.1344/GEOLOGICAACTA2019.17.8","url":null,"abstract":"The present research explores the Bañitos-Gollete geothermal field located in the Frontal Andes Cordillera over the Pampean flat-slab. We carried out an audiomagnetotelluric survey in order to define the underground geoelectrical structure and to understand the link between the geothermal fluid flow path and the main geological structures. 2-D audiomagnetotelluric models suggest that the deep-rooted N-S fault system controls the geothermal flow path. We propose a conductive heat-driven system, taking into consideration the geologic setting and the supposed low geothermal gradient of this tectonic environment. The mature Na-Cl waters from Gollete and an estimated reservoir temperature of ~140ºC are consistent with this conceptual model. Further investigations are required to assess the geothermal potential of the study area, and the present work likely represents only the first but necessary step in the exploration process.","PeriodicalId":55107,"journal":{"name":"Geologica Acta","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2019-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43482922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-07-23DOI: 10.1344/geologicaacta2019.17.7
P. Fialho, A. Balbino, M. Antunes
The Langhian Vc unit of Brielas section (Caparica road, Almada), in the marine Miocene of the Lower Tagus Basin (West Portugal), is rich in batoid species. In this study, batoids are represented by 149 isolated fossil teeth and a single fossil dental plate collected from a bulk sample of washed and sorted sediment. A total of 12 species belonging to the orders Rhinopristiformes, Rajiformes, Torpediniformes and Myliobatiformes were identified. All genera and some species are known to have extant representatives. Aetobatus cappettai Antunes and Balbino, 2006, is described now from Langhian material which suggests it is older than previously supposed. The biogeographic ranges, environmental constraints and behaviour of the species described in this study point out to an infralittoral environment characterized by the dominance of warm water conditions, where episodic upwelling contributed to the occurrence of different types of batoids coexisting in the same habitat.
{"title":"Langhian rays (Chondrichthyes, Batomorphii) from Brielas, Lower Tagus Basin, Portugal.","authors":"P. Fialho, A. Balbino, M. Antunes","doi":"10.1344/geologicaacta2019.17.7","DOIUrl":"https://doi.org/10.1344/geologicaacta2019.17.7","url":null,"abstract":"The Langhian Vc unit of Brielas section (Caparica road, Almada), in the marine Miocene of the Lower Tagus Basin (West Portugal), is rich in batoid species. In this study, batoids are represented by 149 isolated fossil teeth and a single fossil dental plate collected from a bulk sample of washed and sorted sediment. A total of 12 species belonging to the orders Rhinopristiformes, Rajiformes, Torpediniformes and Myliobatiformes were identified. All genera and some species are known to have extant representatives. Aetobatus cappettai Antunes and Balbino, 2006, is described now from Langhian material which suggests it is older than previously supposed. The biogeographic ranges, environmental constraints and behaviour of the species described in this study point out to an infralittoral environment characterized by the dominance of warm water conditions, where episodic upwelling contributed to the occurrence of different types of batoids coexisting in the same habitat.","PeriodicalId":55107,"journal":{"name":"Geologica Acta","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2019-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42184610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-18DOI: 10.1344/GEOLOGICAACTA2019.17.6
A. Khalifa, Z. Çakır, L. Owen, S. Kaya
The left-lateral strike-slip Adiyaman fault is located in eastern Turkey within the plate boundary deformation zone between Arabia and Anatolia. The Adiyaman fault is a major splay from the East Anatolian Fault (EAF), one of the most important tectonic structures in the Eastern Mediterranean region. These faults are consequence of the collision between the Arabian and Anatolian plates and the resulting westward tectonic escape of Anatolia. Although the EAF has been intensively studied since its discovery in the late 1960s, little is known about the Adiyaman fault and its tectonic activity. In this study, we extract geomorphic indices including mountain-front sinuosity (Smf), valley floor width-to-height ratio (Vf), stream length-gradient (SL), catchment Asymmetry Factor (AF) and hypsometric integrals and curves (HI and HC) to evaluate the relative tectonic activity of the Adiyaman fault. These three geomorphic indices (AF, HI, and HC) are averaged to define an index for Relative Tectonic Activity (RTA) that allows the Adiyaman fault to be divided into categories of low, moderate and high RTA. The results confirm that the Adiyaman fault is an active fault with high to moderate Quaternary tectonic activity. However, this fault is of minor importance on accommodating plate boundary deformation, as evidenced by the recent crustal motions determined by GPS studies. Nevertheless, it is worthwhile to note that the Adiyaman fault still poses a significant seismic hazard for the region despite its relatively moderate tectonic activity.
{"title":"Evaluation of the Relative Tectonic Activity of the Adıyaman fault within the Arabian-Anatolian.","authors":"A. Khalifa, Z. Çakır, L. Owen, S. Kaya","doi":"10.1344/GEOLOGICAACTA2019.17.6","DOIUrl":"https://doi.org/10.1344/GEOLOGICAACTA2019.17.6","url":null,"abstract":"The left-lateral strike-slip Adiyaman fault is located in eastern Turkey within the plate boundary deformation zone between Arabia and Anatolia. The Adiyaman fault is a major splay from the East Anatolian Fault (EAF), one of the most important tectonic structures in the Eastern Mediterranean region. These faults are consequence of the collision between the Arabian and Anatolian plates and the resulting westward tectonic escape of Anatolia. Although the EAF has been intensively studied since its discovery in the late 1960s, little is known about the Adiyaman fault and its tectonic activity. In this study, we extract geomorphic indices including mountain-front sinuosity (Smf), valley floor width-to-height ratio (Vf), stream length-gradient (SL), catchment Asymmetry Factor (AF) and hypsometric integrals and curves (HI and HC) to evaluate the relative tectonic activity of the Adiyaman fault. These three geomorphic indices (AF, HI, and HC) are averaged to define an index for Relative Tectonic Activity (RTA) that allows the Adiyaman fault to be divided into categories of low, moderate and high RTA. The results confirm that the Adiyaman fault is an active fault with high to moderate Quaternary tectonic activity. However, this fault is of minor importance on accommodating plate boundary deformation, as evidenced by the recent crustal motions determined by GPS studies. Nevertheless, it is worthwhile to note that the Adiyaman fault still poses a significant seismic hazard for the region despite its relatively moderate tectonic activity.","PeriodicalId":55107,"journal":{"name":"Geologica Acta","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2019-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48074453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-05DOI: 10.1344/GEOLOGICAACTA2019.17.5
R. Galdos, Angels Canals i Sabaté, E. López, Joaquín Moreno
The chemical composition of tourmaline has been used as a host environment register as well as a potential exploration tool for mineral deposits. In this study, the textural and chemical composition of tourmalines associated with Zn-Pb mineralizations around the Murguia diapir (Basque Cantabrian Basin, N Spain) are examined to verify if they record the mineralizing events in the area. Petrographically, tourmalines have been differentiated between inherited and authigenic. Colorless authigenic tourmalines are present as halos partially around green and pleochroic detrital grains or as individual crystals. Inherited and authigenic tourmalines are also chemically distinct. Authigenic tourmalines show different X-site occupancies, a Mg/(Mg+Fe) ratio above 0.77, and are aluminum rich and plot to the right of the povondraite-oxidravite join, above the schorl-dravite join. Inherited tourmalines plot within the alkaline (Na+K) group field, and have a Mg/(Mg+Fe) ratio below 0.77. These data suggest that authigenic tourmalines grew under reducing conditions, compatible with the hydrothermal event responsible for the ore deposition and caprock formation during the diapir ascent.
{"title":"Tourmaline records hydrothermal events related to Zn-Pb mineralization around the Murguía diapi.","authors":"R. Galdos, Angels Canals i Sabaté, E. López, Joaquín Moreno","doi":"10.1344/GEOLOGICAACTA2019.17.5","DOIUrl":"https://doi.org/10.1344/GEOLOGICAACTA2019.17.5","url":null,"abstract":"The chemical composition of tourmaline has been used as a host environment register as well as a potential exploration tool for mineral deposits. In this study, the textural and chemical composition of tourmalines associated with Zn-Pb mineralizations around the Murguia diapir (Basque Cantabrian Basin, N Spain) are examined to verify if they record the mineralizing events in the area. Petrographically, tourmalines have been differentiated between inherited and authigenic. Colorless authigenic tourmalines are present as halos partially around green and pleochroic detrital grains or as individual crystals. Inherited and authigenic tourmalines are also chemically distinct. Authigenic tourmalines show different X-site occupancies, a Mg/(Mg+Fe) ratio above 0.77, and are aluminum rich and plot to the right of the povondraite-oxidravite join, above the schorl-dravite join. Inherited tourmalines plot within the alkaline (Na+K) group field, and have a Mg/(Mg+Fe) ratio below 0.77. These data suggest that authigenic tourmalines grew under reducing conditions, compatible with the hydrothermal event responsible for the ore deposition and caprock formation during the diapir ascent.","PeriodicalId":55107,"journal":{"name":"Geologica Acta","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46211934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-27DOI: 10.1344/GEOLOGICAACTA2019.17.4
Pedro J. M. Costa, D. Silva, L. Figueirinhas, J. Lario
Quartz grains collected from Arauco and Mataquito (central Chile) after the 2010 Maule tsunami presented an overwhelming dominance of dissolution textures. The analysis of superficial imprints proved that some grains were mechanically impacted before deposition. However, the percentage of grains with fresh surfaces and percussion marks was significantly lower than average values from other tsunami deposits elsewhere in the world. In this work, we discuss the reasons for such results in the context of the geomorphological setting of the areas analyzed and its influence on the microtextural signatures observed. The data presented in this study evidences a geographic dependence in the type of microtextures in the areas analyzed. For example, in Arauco the abundance of dissolution textures decreases rapidly towards the center of the embayment and increases towards the rocky headlands of its westernmost sector. By contrast, an increase of mechanical marks (e.g. fresh surfaces) is observed in the central region of the Arauco’s embayment. Similarly, in Mataquito, dissolution features are more abundant in the headlands or small capes, while there is a higher presence of mechanical marks in sandy embayments. The results of this study demonstrate the importance of the geomorphological context as a controlling factor in the intensity of mechanical imprints on the surface of quartz grains transported by tsunamis and deposited in the inner shelf and coastal areas. Therefore, our results suggest that without a detailed geomorphological contextualization microtextural discrimination can lead to misleading interpretations. Hence, there is a need for more microtextural analysis on tsunami deposits in order to assess the variability in the geographic distribution and intensity of microtextures imprinted on the surface of quartz grains deposited during a tsunami event.
{"title":"The importance of coastal geomorphological setting as a controlling factor on microtextural...","authors":"Pedro J. M. Costa, D. Silva, L. Figueirinhas, J. Lario","doi":"10.1344/GEOLOGICAACTA2019.17.4","DOIUrl":"https://doi.org/10.1344/GEOLOGICAACTA2019.17.4","url":null,"abstract":"Quartz grains collected from Arauco and Mataquito (central Chile) after the 2010 Maule tsunami presented an overwhelming dominance of dissolution textures. The analysis of superficial imprints proved that some grains were mechanically impacted before deposition. However, the percentage of grains with fresh surfaces and percussion marks was significantly lower than average values from other tsunami deposits elsewhere in the world. In this work, we discuss the reasons for such results in the context of the geomorphological setting of the areas analyzed and its influence on the microtextural signatures observed. The data presented in this study evidences a geographic dependence in the type of microtextures in the areas analyzed. For example, in Arauco the abundance of dissolution textures decreases rapidly towards the center of the embayment and increases towards the rocky headlands of its westernmost sector. By contrast, an increase of mechanical marks (e.g. fresh surfaces) is observed in the central region of the Arauco’s embayment. Similarly, in Mataquito, dissolution features are more abundant in the headlands or small capes, while there is a higher presence of mechanical marks in sandy embayments. The results of this study demonstrate the importance of the geomorphological context as a controlling factor in the intensity of mechanical imprints on the surface of quartz grains transported by tsunamis and deposited in the inner shelf and coastal areas. Therefore, our results suggest that without a detailed geomorphological contextualization microtextural discrimination can lead to misleading interpretations. Hence, there is a need for more microtextural analysis on tsunami deposits in order to assess the variability in the geographic distribution and intensity of microtextures imprinted on the surface of quartz grains deposited during a tsunami event.","PeriodicalId":55107,"journal":{"name":"Geologica Acta","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2019-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42369328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-31DOI: 10.1344/GEOLOGICAACTA2019.17.1
S. Timón-Sánchez, F. López-Moro, R. Romer, D. Rhede, A. Fernández-Fernández, C. Moro-Benito
The scheelite skarn from Los Santos and the W-Au veins from El Cabaco district, located in the Spanish Central System Batholith (SCSB), are some of the best-known tungsten ore deposits in Spain. Uraninite is an accessory mineral in both deposits, which underwent several hydrothermal flow events. Chemical and textural characteristics, as well as electron microprobe U-Th-Pb uraninite chemical data from the different stages of the skarn and the vein-type mineralizations, are presented here. Based on these data the uraninite was able to be classified into two groups. Group I uraninite has an octahedral habit and occurs as inclusions in K-feldspar relicts of the leucogranite related to Los Santos skarn formation. It shows high Th (6.95 to 8.51wt.% ThO 2 ) and high Rare Earth Elements (REEs) contents (0.55 to 1.38wt.% ∑REE 2 O 3 ). Group II uraninite occurs i) associated to El Cabaco granite, in a greenish selvage-style greisen and its reddish envelope and in the mineralized rimming quartz veins and ii) in Los Santos high-temperature endoskarn and anorthite skarn, where it is associated with U-rich mica. This uraninite type has lower Th and ∑REE 2 O 3 contents than Group-I uraninite. The mineral chemistry and the assemblage and textural relationships suggest that Group-I uraninite is magmatic and the attained U-Th-Pb chemical age of 300±4Ma is interpreted as the magmatic age of the skarn-forming aplite granites in the western part of the SCSB. Group-II uraninite includes two events: i) hydrothermal uraninite, which yields an age of 295±2Ma, dates a strong alkali mobilization and early tungsten deposition and ii) a later hydrothermal process, around 287±4Ma, that resulted in sulfides and late scheelite precipitation and widespread silicification. Finally, the gold deposition is younger than this silicification according to textural criteria. Therefore, W-Au deposits in the western part of the SCSB were formed by superposition of several processes that took place some 15Ma after the skarn-forming granite crystallized. Comparable W, W-Au and U deposits in the Variscan orogenic belt show a similar timing of hydrothermal events, suggesting that the hydrothermal history was controlled by large-scale Late-Variscan tectonic processes.
{"title":"Late-Variscan multistage hydrothermal processes unveiled by chemical ages coupled with compositiona.","authors":"S. Timón-Sánchez, F. López-Moro, R. Romer, D. Rhede, A. Fernández-Fernández, C. Moro-Benito","doi":"10.1344/GEOLOGICAACTA2019.17.1","DOIUrl":"https://doi.org/10.1344/GEOLOGICAACTA2019.17.1","url":null,"abstract":"The scheelite skarn from Los Santos and the W-Au veins from El Cabaco district, located in the Spanish Central System Batholith (SCSB), are some of the best-known tungsten ore deposits in Spain. Uraninite is an accessory mineral in both deposits, which underwent several hydrothermal flow events. Chemical and textural characteristics, as well as electron microprobe U-Th-Pb uraninite chemical data from the different stages of the skarn and the vein-type mineralizations, are presented here. Based on these data the uraninite was able to be classified into two groups. Group I uraninite has an octahedral habit and occurs as inclusions in K-feldspar relicts of the leucogranite related to Los Santos skarn formation. It shows high Th (6.95 to 8.51wt.% ThO 2 ) and high Rare Earth Elements (REEs) contents (0.55 to 1.38wt.% ∑REE 2 O 3 ). Group II uraninite occurs i) associated to El Cabaco granite, in a greenish selvage-style greisen and its reddish envelope and in the mineralized rimming quartz veins and ii) in Los Santos high-temperature endoskarn and anorthite skarn, where it is associated with U-rich mica. This uraninite type has lower Th and ∑REE 2 O 3 contents than Group-I uraninite. The mineral chemistry and the assemblage and textural relationships suggest that Group-I uraninite is magmatic and the attained U-Th-Pb chemical age of 300±4Ma is interpreted as the magmatic age of the skarn-forming aplite granites in the western part of the SCSB. Group-II uraninite includes two events: i) hydrothermal uraninite, which yields an age of 295±2Ma, dates a strong alkali mobilization and early tungsten deposition and ii) a later hydrothermal process, around 287±4Ma, that resulted in sulfides and late scheelite precipitation and widespread silicification. Finally, the gold deposition is younger than this silicification according to textural criteria. Therefore, W-Au deposits in the western part of the SCSB were formed by superposition of several processes that took place some 15Ma after the skarn-forming granite crystallized. Comparable W, W-Au and U deposits in the Variscan orogenic belt show a similar timing of hydrothermal events, suggesting that the hydrothermal history was controlled by large-scale Late-Variscan tectonic processes.","PeriodicalId":55107,"journal":{"name":"Geologica Acta","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48748359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-21DOI: 10.1344/GEOLOGICAACTA2019.17.2
S. Khan, M. Shah
Excellent dolomite exposures are observed in the eastern Salt Range (Pakistan), where the Cambrian Jutana Formation consists of two distinct units (i.e. oolitic – pisolitic unit and massive dolomite unit). Field observations revealed that the lower, oolitic-pisolitic unit mostly comprises medium to thick bedded, interlayered brown yellowish dolostone containing ooids/pisoids and faunal assemblages, and grey whitish sandstone with distinct depositional sedimentary features (i.e. trough-, herringbone- and hhummocky crossbedding). The upper massive dolostone unit consists of thick bedded to massive dolostone. These two units are separated by shale. Petrographic studies identified three dolomite types, which include: fine crystalline dolomite (Dol. I), medium-coarse crystalline dolomite (Dol. II) and fracture associated, coarse crystalline dolomite (Dol. III). Stable isotope studies indicate less depleted δ 18 O values for Dol. I (-6.44 to -3.76‰V-PDB), slightly depleted δ18O values for Dol. II (-7.73 to -5.24‰V-PDB) and more depleted δ 18 O values for Dol. III (-7.29 to -7.20‰V-PDB). The δ 13 C values of the three dolomite phases are well within the range of Cambrian sea-water signatures. Furthermore, δ 26 Mg-δ 25 Mg signatures (Dol. I; δ 26 Mg=-1.19 to -1.67, δ 25 Mg=-0.61 to -0.86 and Dol. II; δ 26 Mg=-1.34 to -1.59, δ 25 Mg=-0.70 to -0.83) indicate three phases of dolomitization in different diagenetic settings. First, an initial stage of dolomitization during the early Cambrian resulted from altered marine, Mg-rich fluids associated with the mixing zone mechanism. Second, a late stage of dolomitization was associated with burial during late Permian. A third dolomitization phase was related to post-Eocene times.
{"title":"Multiphase dolomitization in the Jutana Formation (Cambrian), Salt Range (Pakistan): evidences from field observations, microscopic studies and isotopic analysis","authors":"S. Khan, M. Shah","doi":"10.1344/GEOLOGICAACTA2019.17.2","DOIUrl":"https://doi.org/10.1344/GEOLOGICAACTA2019.17.2","url":null,"abstract":"Excellent dolomite exposures are observed in the eastern Salt Range (Pakistan), where the Cambrian Jutana Formation consists of two distinct units (i.e. oolitic – pisolitic unit and massive dolomite unit). Field observations revealed that the lower, oolitic-pisolitic unit mostly comprises medium to thick bedded, interlayered brown yellowish dolostone containing ooids/pisoids and faunal assemblages, and grey whitish sandstone with distinct depositional sedimentary features (i.e. trough-, herringbone- and hhummocky crossbedding). The upper massive dolostone unit consists of thick bedded to massive dolostone. These two units are separated by shale. Petrographic studies identified three dolomite types, which include: fine crystalline dolomite (Dol. I), medium-coarse crystalline dolomite (Dol. II) and fracture associated, coarse crystalline dolomite (Dol. III). Stable isotope studies indicate less depleted δ 18 O values for Dol. I (-6.44 to -3.76‰V-PDB), slightly depleted δ18O values for Dol. II (-7.73 to -5.24‰V-PDB) and more depleted δ 18 O values for Dol. III (-7.29 to -7.20‰V-PDB). The δ 13 C values of the three dolomite phases are well within the range of Cambrian sea-water signatures. Furthermore, δ 26 Mg-δ 25 Mg signatures (Dol. I; δ 26 Mg=-1.19 to -1.67, δ 25 Mg=-0.61 to -0.86 and Dol. II; δ 26 Mg=-1.34 to -1.59, δ 25 Mg=-0.70 to -0.83) indicate three phases of dolomitization in different diagenetic settings. First, an initial stage of dolomitization during the early Cambrian resulted from altered marine, Mg-rich fluids associated with the mixing zone mechanism. Second, a late stage of dolomitization was associated with burial during late Permian. A third dolomitization phase was related to post-Eocene times.","PeriodicalId":55107,"journal":{"name":"Geologica Acta","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2019-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44558610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}