The upper part of the Saiq and lower part of the Mahil formations in the Oman Mountains represent outcrop time-equivalents to the highly prolific, hydrocarbon-bearing subsurface Middle and Upper members of the Khuff Formation (K4-K1 reservoir intervals). In this study, four outcrops sections on the northern flank of the Oman Mountains (Al Jabal al-Akhdar region) are sedimentologically documented and integrated with the sequence-stratigraphic scheme initially developed at the Saiq Plateau reference section. The focus of this study is the description of the distribution and textural variation of grainstones as potential reservoir facies on a subregional (ca. 60 x 40 km) scale. Stratigraphic cross-sections are constructed based on two sequence-stratigraphic orders: (1) one second-order supersequence (DS2 18) that provides a well-constrained general framework and (2) four third-order depositional sequences (KS1-KS4), within which subtle temporal and spatial variations of grainstones occur. From these correlations predictive rules and correlation lengths of shoal bodies are extracted. The presence of Khuff grainstones is strongly governed by stratigraphic position. Thicker and more abundant grainstones are present during the early transgressive (KS4) and late regressive (KS1) portions of the supersequence. Thinner and less abundant grainstones are present during the late transgression (KS3 and lower KS2) and early regression (upper KS2). They are absent around the second-order zone of maximum flooding (middle KS2). High lateral continuity of correlated cycle sets is observed, suggesting the absence of significant tectonic activity of the area during the Late Permian and Early Triassic. Integrated litho-, bio-and sequence stratigraphy provides a robust framework for correlation on a regional scale (ca. 700 km). The Oman Mountains area shows a more distal facies pattern on the Khuff platform compared with other Khuff reservoir sections in the region. This is especially evident around KS2 maximum flooding with muddy foreshoal and offshoal deposits in contrast to mainly oolitic shoal deposits in the Musandam (UAE) and offshore Fars (Iran) area.
阿曼山脉Saiq组上部和Mahil组下部的露头时间相当于Khuff组中上段(K4-K1储层段)地表下高产、含油气的地层。在本研究中,阿曼山脉北侧(Al Jabal Al - akhdar地区)的4个露头剖面进行了沉积学记录,并与最初在Saiq高原参考剖面形成的层序地层体系相结合。本研究的重点是在分区域(约60 × 40公里)尺度上描述作为潜在储集相的颗粒岩的分布和结构变化。地层剖面是基于两个层序地层序构建的:(1)一个二级超层序(DS2 18),它提供了一个约束良好的总体格架;(2)四个三级沉积层序(KS1-KS4),在这些层序中,颗粒岩发生了微妙的时空变化。从这些相关性中提取了预测规则和滩体的相关长度。胡夫颗粒岩的存在受地层位置的强烈支配。在上层序的早海侵(KS4)和晚海侵(KS1)段,颗粒岩较厚,丰度较高。在海侵晚期(KS3和KS2下部)和海侵早期(KS2上部),颗粒较薄且含量较少。在最大淹水二级区(中部KS2)附近,它们不存在。相关旋回组横向连续性强,表明该区晚二叠世和早三叠世没有明显的构造活动。综合岩石、生物和层序地层学为区域尺度(约700公里)的对比提供了一个强有力的框架。与该地区的其他Khuff储层剖面相比,阿曼山区在Khuff地台上显示出更远端的相模式。与Musandam(阿联酋)和Fars(伊朗)近海地区主要的鲕粒浅滩沉积相比,KS2最大洪水附近的泥质前滩和近海沉积物尤其明显。
{"title":"Middle to Upper Khuff (Sequences KS1 to KS4) outcrop-equivalents in the Oman Mountains:Grainstone architecture on a subregional scale","authors":"B. Koehrer, T. Aigner, H. Forke, M. Poppelreiter","doi":"10.2113/geoarabia170459","DOIUrl":"https://doi.org/10.2113/geoarabia170459","url":null,"abstract":"\u0000 The upper part of the Saiq and lower part of the Mahil formations in the Oman Mountains represent outcrop time-equivalents to the highly prolific, hydrocarbon-bearing subsurface Middle and Upper members of the Khuff Formation (K4-K1 reservoir intervals). In this study, four outcrops sections on the northern flank of the Oman Mountains (Al Jabal al-Akhdar region) are sedimentologically documented and integrated with the sequence-stratigraphic scheme initially developed at the Saiq Plateau reference section.\u0000 The focus of this study is the description of the distribution and textural variation of grainstones as potential reservoir facies on a subregional (ca. 60 x 40 km) scale. Stratigraphic cross-sections are constructed based on two sequence-stratigraphic orders: (1) one second-order supersequence (DS2 18) that provides a well-constrained general framework and (2) four third-order depositional sequences (KS1-KS4), within which subtle temporal and spatial variations of grainstones occur. From these correlations predictive rules and correlation lengths of shoal bodies are extracted.\u0000 The presence of Khuff grainstones is strongly governed by stratigraphic position. Thicker and more abundant grainstones are present during the early transgressive (KS4) and late regressive (KS1) portions of the supersequence. Thinner and less abundant grainstones are present during the late transgression (KS3 and lower KS2) and early regression (upper KS2). They are absent around the second-order zone of maximum flooding (middle KS2). High lateral continuity of correlated cycle sets is observed, suggesting the absence of significant tectonic activity of the area during the Late Permian and Early Triassic.\u0000 Integrated litho-, bio-and sequence stratigraphy provides a robust framework for correlation on a regional scale (ca. 700 km). The Oman Mountains area shows a more distal facies pattern on the Khuff platform compared with other Khuff reservoir sections in the region. This is especially evident around KS2 maximum flooding with muddy foreshoal and offshoal deposits in contrast to mainly oolitic shoal deposits in the Musandam (UAE) and offshore Fars (Iran) area.","PeriodicalId":55118,"journal":{"name":"Geoarabia","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68184886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-10-01DOI: 10.2113/geoarabia1704161
R. Sachsenhofer, A. Bechtel, R. Dellmour, A. F. Mobarakabad, R. Gratzer, Adel Salman
The Sab’atayn Basin is a major hydrocarbon province in Yemen. Important source rocks occur in Upper Jurassic units (Lam Member of the Madbi Formation, Sab’atayn Formation). Depositional environment, source potential and maturity of the source rocks were investigated using 60 cuttings samples from the Tagina South-1 Well. All samples were analysed for bulk parameters (total organic carbon (TOC), carbonate, sulphur, RockEval). A subset of samples was selected for biomarker analysis, pyrolysis-gas chromatography and isotope investigations. A carbonate-rich, euhaline, dysoxic to anoxic environment prevailed during deposition of the Lam Member. Bituminous shales within the overlying Sab’atayn Formation formed in a hypersaline, strictly anoxic depositional setting. Changes in the phytoplankton communities coincide with the outlined changes in the water body. Upward decreasing δ13C values suggest changes in carbon cycling due to changing redox conditions. The Lam Member, at least 500 m thick, is a good to very good source rock with an average TOC of 2.2%. The hydrogen index is controlled by maturity, but reaches 300 mg HC/g TOC in samples with low maturity (type II-III kerogen). The Lam Member produces sulphur-poor, paraffinic-naphthenic-aromatic low-wax oil. Bituminous shales in the Sab’atayn Formation contain up to 11% TOC and a type II (to III) kerogen (HI: up to 427 mg HC/g TOC). These shales are excellent sources for oil (and gas), but their source potential is limited by their relatively low thickness. Both, bituminous shales in the Sab’atayn Formation and the Lam Member are mature. The maturity of the deepest drilled part of the Lam Member is close to the zone of main oil generation. Numeric models show that Cenozoic heat flow is about 50 mW/m2. An increase in heat flow during Jurassic rifting is likely, but cannot be quantified. Major hydrocarbon generation occurred during Eocene–Oligocene times (assuming a Late Cretaceous heat flow of 50 mW/m2) or during both, Late Cretaceous and Eocene–Oligocene times (assuming a Late Cretaceous heat flow of 68 mW/m2).
{"title":"Upper Jurassic source rocks in the Sab’atayn Basin, Yemen: Depositional environment, source potential and hydrocarbon generation","authors":"R. Sachsenhofer, A. Bechtel, R. Dellmour, A. F. Mobarakabad, R. Gratzer, Adel Salman","doi":"10.2113/geoarabia1704161","DOIUrl":"https://doi.org/10.2113/geoarabia1704161","url":null,"abstract":"\u0000 The Sab’atayn Basin is a major hydrocarbon province in Yemen. Important source rocks occur in Upper Jurassic units (Lam Member of the Madbi Formation, Sab’atayn Formation). Depositional environment, source potential and maturity of the source rocks were investigated using 60 cuttings samples from the Tagina South-1 Well. All samples were analysed for bulk parameters (total organic carbon (TOC), carbonate, sulphur, RockEval). A subset of samples was selected for biomarker analysis, pyrolysis-gas chromatography and isotope investigations.\u0000 A carbonate-rich, euhaline, dysoxic to anoxic environment prevailed during deposition of the Lam Member. Bituminous shales within the overlying Sab’atayn Formation formed in a hypersaline, strictly anoxic depositional setting. Changes in the phytoplankton communities coincide with the outlined changes in the water body. Upward decreasing δ13C values suggest changes in carbon cycling due to changing redox conditions.\u0000 The Lam Member, at least 500 m thick, is a good to very good source rock with an average TOC of 2.2%. The hydrogen index is controlled by maturity, but reaches 300 mg HC/g TOC in samples with low maturity (type II-III kerogen). The Lam Member produces sulphur-poor, paraffinic-naphthenic-aromatic low-wax oil. Bituminous shales in the Sab’atayn Formation contain up to 11% TOC and a type II (to III) kerogen (HI: up to 427 mg HC/g TOC). These shales are excellent sources for oil (and gas), but their source potential is limited by their relatively low thickness. Both, bituminous shales in the Sab’atayn Formation and the Lam Member are mature. The maturity of the deepest drilled part of the Lam Member is close to the zone of main oil generation. Numeric models show that Cenozoic heat flow is about 50 mW/m2. An increase in heat flow during Jurassic rifting is likely, but cannot be quantified. Major hydrocarbon generation occurred during Eocene–Oligocene times (assuming a Late Cretaceous heat flow of 50 mW/m2) or during both, Late Cretaceous and Eocene–Oligocene times (assuming a Late Cretaceous heat flow of 68 mW/m2).","PeriodicalId":55118,"journal":{"name":"Geoarabia","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68185264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hardgrounds and omission surfaces are rare in the predominantly pelagic and hemi-pelagic chalk, chert and phosphorite lithofacies association that forms the Upper Cretaceous (Coniacian to Maastrichtian) Belqa Group succession in central Jordan. However, newly-described hardgrounds of regional extent at the base of the Dhiban Chalk Member (Campanian) in central and south Jordan reveal a complex history of sedimentation and early diagenesis. Following drowning of the Turonian carbonate platform during the Coniacian, the chalk-chert-phosphorite association was deposited on a pelagic ramp in fluctuating water depths. The Mujib Chalk and Dhiban Chalk members represent highstand sea levels, separated by a regressive, lowstand chert-rich unit (Tafilah Member). Hardground successions can be traced over 100 km, and show an early diagenetic history of phosphatisation and biogenic silica lithification from opal-A to opal-CT and quartz that resulted in penecontemporaneous chert deformation, followed by submarine bioerosion and colonisation by corals and/or bivalves. Subsequent deposition of detrital, remanié phosphatic chalk passing up into pelagic coccolith-rich ooze reflects a transgressive third-order sea-level rise during the Early Campanian. These events provide a time-frame for early silica diagenesis and subsequent hardground development. Regional variations in the hardground successions and their early diagenesis are attributed to their precursor host sediment and relative palaeogeographic position on a homoclinal ramp at the southern margin of the Neo-Tethys Ocean.
{"title":"Early diagenesis of Late Cretaceous chalk-chert-phosphorite hardgrounds in Jordan: Implications for sedimentation on a Coniacian-Campanian pelagic ramp","authors":"J. Powell, B. Moh’d","doi":"10.2113/geoarabia170417","DOIUrl":"https://doi.org/10.2113/geoarabia170417","url":null,"abstract":"\u0000 Hardgrounds and omission surfaces are rare in the predominantly pelagic and hemi-pelagic chalk, chert and phosphorite lithofacies association that forms the Upper Cretaceous (Coniacian to Maastrichtian) Belqa Group succession in central Jordan. However, newly-described hardgrounds of regional extent at the base of the Dhiban Chalk Member (Campanian) in central and south Jordan reveal a complex history of sedimentation and early diagenesis. Following drowning of the Turonian carbonate platform during the Coniacian, the chalk-chert-phosphorite association was deposited on a pelagic ramp in fluctuating water depths. The Mujib Chalk and Dhiban Chalk members represent highstand sea levels, separated by a regressive, lowstand chert-rich unit (Tafilah Member). Hardground successions can be traced over 100 km, and show an early diagenetic history of phosphatisation and biogenic silica lithification from opal-A to opal-CT and quartz that resulted in penecontemporaneous chert deformation, followed by submarine bioerosion and colonisation by corals and/or bivalves. Subsequent deposition of detrital, remanié phosphatic chalk passing up into pelagic coccolith-rich ooze reflects a transgressive third-order sea-level rise during the Early Campanian. These events provide a time-frame for early silica diagenesis and subsequent hardground development. Regional variations in the hardground successions and their early diagenesis are attributed to their precursor host sediment and relative palaeogeographic position on a homoclinal ramp at the southern margin of the Neo-Tethys Ocean.","PeriodicalId":55118,"journal":{"name":"Geoarabia","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68185274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The coherence attribute is an edge detection method that is widely used for interpreting faults on 3-D seismic time slices. The traditional coherence attribute is calculated on migrated volumes using traces from all available azimuths. It has recently been shown that calculating coherence along specific azimuths can enhance the detection of faults running perpendicular to those azimuths. In this study, we applied azimuthal coherence attribute analysis on a 3-D seismic data set from a gas field in Central Saudi Arabia. We generated four migrated 3-D data volumes sorted by azimuth in addition to a conventional full-azimuth volume. We then calculated the coherence attribute for all volumes and compared each azimuthal coherence volume to the conventional full-azimuth coherence volume. The azimuthal coherence results exhibited an improved definition for faults whose strikes are perpendicular to the sorting azimuth. More specifically, systems of NW-trending discontinuities were imaged more clearly in the NE-SW oriented coherence volume than it was in the full-azimuth coherence volume. The reason for this enhancement is the fact that seismic waves tend to avoid passing through the fault when they propagate parallel to the fault strike therefore missing the effects of the fault while they must pass through the fault when propagating perpendicular to the fault strike which results in better illumination of the fault.
{"title":"Imaging subtle faults using azimuthal coherence attribute: A case study from Central Saudi Arabia","authors":"F. Alqahtani, A. Al-Shuhail","doi":"10.2113/geoarabia170443","DOIUrl":"https://doi.org/10.2113/geoarabia170443","url":null,"abstract":"\u0000 The coherence attribute is an edge detection method that is widely used for interpreting faults on 3-D seismic time slices. The traditional coherence attribute is calculated on migrated volumes using traces from all available azimuths. It has recently been shown that calculating coherence along specific azimuths can enhance the detection of faults running perpendicular to those azimuths. In this study, we applied azimuthal coherence attribute analysis on a 3-D seismic data set from a gas field in Central Saudi Arabia. We generated four migrated 3-D data volumes sorted by azimuth in addition to a conventional full-azimuth volume. We then calculated the coherence attribute for all volumes and compared each azimuthal coherence volume to the conventional full-azimuth coherence volume. The azimuthal coherence results exhibited an improved definition for faults whose strikes are perpendicular to the sorting azimuth. More specifically, systems of NW-trending discontinuities were imaged more clearly in the NE-SW oriented coherence volume than it was in the full-azimuth coherence volume. The reason for this enhancement is the fact that seismic waves tend to avoid passing through the fault when they propagate parallel to the fault strike therefore missing the effects of the fault while they must pass through the fault when propagating perpendicular to the fault strike which results in better illumination of the fault.","PeriodicalId":55118,"journal":{"name":"Geoarabia","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68185326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-10-01DOI: 10.2113/geoarabia1704109
B. Al-Qayim, A. Omer, H. Koyi
The northwestern segment of the Zagros Orogenic Belt of the Kurdistan Region of Iraq includes the Zagros Suture Zone which is consisting of allochthonous Tethyan Triassic–Eocene thrust sheets. The zone is bounded by the Zagros Main Reverse Fault in the northeast, and the Zagros Thrust Front in the southwest. Parts of this zone’s rocks are represented by stacks of thrust megasheets obducted over the autochthonous Cretaceous–Cenozoic sequence of the Arabian Plate margin. Each sheet represents a specific Tethyan tectonostratigraphic facies, and includes (from older to younger): isolated Triassic carbonate platforms (Avroman Limestone), Jurassic carbonate imbricates (Chia Gara, Sargelu and other formations), radiolarites (Qulqula Group), sedimentary mélange (sedimentary-volcanic units of the Qulqula Group), ophiolites (Mawat and Penjwin ultramafics complexes), and Cenozoic fore-arc volcano-sedimentary sequences (Walash Group). Petrography, facies interpretation and lithostratigraphic correlation of these allochthons along four traverses across the Zagros Suture Zone of the examined area indicate that they evolved during the closure of the Neo-Tethys Ocean. Their stacking pattern and tectonic association resulted from two important events: the Late Cretaceous obduction processes, and the Late Miocene–Pliocene collision, uplift, folding and suturing between the Arabian Plate and the Sanandaj-Sirjan Block of Iran. Based on these field observations and by using the model of the Iranian Zagros evolution, a tectonic scenario is proposed to explain the history and evolution of the Zagros Suture Zone in this area.
{"title":"Tectonostratigraphic overview of the Zagros Suture Zone, Kurdistan Region, Northeast Iraq","authors":"B. Al-Qayim, A. Omer, H. Koyi","doi":"10.2113/geoarabia1704109","DOIUrl":"https://doi.org/10.2113/geoarabia1704109","url":null,"abstract":"\u0000 The northwestern segment of the Zagros Orogenic Belt of the Kurdistan Region of Iraq includes the Zagros Suture Zone which is consisting of allochthonous Tethyan Triassic–Eocene thrust sheets. The zone is bounded by the Zagros Main Reverse Fault in the northeast, and the Zagros Thrust Front in the southwest. Parts of this zone’s rocks are represented by stacks of thrust megasheets obducted over the autochthonous Cretaceous–Cenozoic sequence of the Arabian Plate margin. Each sheet represents a specific Tethyan tectonostratigraphic facies, and includes (from older to younger): isolated Triassic carbonate platforms (Avroman Limestone), Jurassic carbonate imbricates (Chia Gara, Sargelu and other formations), radiolarites (Qulqula Group), sedimentary mélange (sedimentary-volcanic units of the Qulqula Group), ophiolites (Mawat and Penjwin ultramafics complexes), and Cenozoic fore-arc volcano-sedimentary sequences (Walash Group). Petrography, facies interpretation and lithostratigraphic correlation of these allochthons along four traverses across the Zagros Suture Zone of the examined area indicate that they evolved during the closure of the Neo-Tethys Ocean. Their stacking pattern and tectonic association resulted from two important events: the Late Cretaceous obduction processes, and the Late Miocene–Pliocene collision, uplift, folding and suturing between the Arabian Plate and the Sanandaj-Sirjan Block of Iran. Based on these field observations and by using the model of the Iranian Zagros evolution, a tectonic scenario is proposed to explain the history and evolution of the Zagros Suture Zone in this area.","PeriodicalId":55118,"journal":{"name":"Geoarabia","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68185173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Issautier, Y. L. Nindre, S. Viseur, A. Memesh, S. Dini
The increasing demand on geological reservoirs, whether for developing geothermal energy or for CO2 geological storage, raises questions on how reservoir heterogeneity might increase or decrease reservoir performance. To address this issue we selected the Minjur Sandstone Formation, a groundwater-bearing formation of Triassic age in Central Saudi Arabia, for complex reservoir modelling, simulation and prediction of the spatial distribution of sand bodies in a fluvio-deltaic system. This paper builds on a previous study that focused on the facies, stratigraphy, and reservoir characterisation of the Minjur Sandstone at the Khashm al Khalta type locality. Its purpose is to construct a deterministic 3-D model for (1) studying the connectivity of the Minjur Sandstone, and (2) illustrating a typical fluvio-deltaic reservoir and its associated heterogeneity. A first model simulates the spatial distribution of the depositional environments, which were further coded into relative proportions of sand, shale, evaporites and carbonates. This leads to a second model that contributes to reservoir applications through estimating the reservoir’s volume and storage capacities. Sequences 1 to 4 of the succession (Upper Jilh Formation–Lower Minjur Member), with a net-to-gross sand/shale ratio (NG) of ca. 8%, consist of poorly connected sandstone reservoir bodies. In contrast, sequences 5 to 9 (Upper Minjur Member), with an average NG of ca. 42%, consist of well-interconnected sandstone reservoir bodies. The NG depends on the tectonic influence and on relative sea-level variations. The best Minjur Sandstone reservoir bodies are at the base of each sequence, where limited available space favours a stack of deposits: interconnected fluvial channels which form wide spreads of coarse sandstone showing little diagenesis. The greatest potential is in the Upper Minjur Member. The effective reservoir volume was isolated using a sand content of > 85%. Rock volume and pore volume for an average porosity of 17% were subsequently calculated from the outcrop model. A representative block of 600 m x 600 m x 144 m was selected in order to simulate a fraction of the reservoir with the same properties as the whole. The block’s CO2 storage capacity was 57,000 tonne (in the International System, ‘SI’) for an arbitrary CO2 density of 0.7 (supercritical). This result was then transposed to the aquifer in the Riyadh area where similar conditions are assumed to exist. To obtain a ‘reservoir scale’ estimation, the block dimensions were upscaled to 20 km x 20 km x 80 m (the last figure being the effective thickness given by hydrogeological studies). The inferred storage capacity here was 30.5 Mt (million tonnes, International unit System, ‘SI’), which is an excellent figure when one considers the large-scale projects of Europe (Sleipner: 20 Mt) and Canada (Weyburn: 14 Mt).
{"title":"Managing clastic reservoir heterogeneity II: Geological modelling and reservoir characterisation of the Minjur Sandstone at the Khashm al Khalta type locality (Central Saudi Arabia)","authors":"B. Issautier, Y. L. Nindre, S. Viseur, A. Memesh, S. Dini","doi":"10.2113/geoarabia170361","DOIUrl":"https://doi.org/10.2113/geoarabia170361","url":null,"abstract":"\u0000 The increasing demand on geological reservoirs, whether for developing geothermal energy or for CO2 geological storage, raises questions on how reservoir heterogeneity might increase or decrease reservoir performance. To address this issue we selected the Minjur Sandstone Formation, a groundwater-bearing formation of Triassic age in Central Saudi Arabia, for complex reservoir modelling, simulation and prediction of the spatial distribution of sand bodies in a fluvio-deltaic system. This paper builds on a previous study that focused on the facies, stratigraphy, and reservoir characterisation of the Minjur Sandstone at the Khashm al Khalta type locality. Its purpose is to construct a deterministic 3-D model for (1) studying the connectivity of the Minjur Sandstone, and (2) illustrating a typical fluvio-deltaic reservoir and its associated heterogeneity. A first model simulates the spatial distribution of the depositional environments, which were further coded into relative proportions of sand, shale, evaporites and carbonates. This leads to a second model that contributes to reservoir applications through estimating the reservoir’s volume and storage capacities. Sequences 1 to 4 of the succession (Upper Jilh Formation–Lower Minjur Member), with a net-to-gross sand/shale ratio (NG) of ca. 8%, consist of poorly connected sandstone reservoir bodies. In contrast, sequences 5 to 9 (Upper Minjur Member), with an average NG of ca. 42%, consist of well-interconnected sandstone reservoir bodies. The NG depends on the tectonic influence and on relative sea-level variations. The best Minjur Sandstone reservoir bodies are at the base of each sequence, where limited available space favours a stack of deposits: interconnected fluvial channels which form wide spreads of coarse sandstone showing little diagenesis. The greatest potential is in the Upper Minjur Member. The effective reservoir volume was isolated using a sand content of > 85%. Rock volume and pore volume for an average porosity of 17% were subsequently calculated from the outcrop model. A representative block of 600 m x 600 m x 144 m was selected in order to simulate a fraction of the reservoir with the same properties as the whole. The block’s CO2 storage capacity was 57,000 tonne (in the International System, ‘SI’) for an arbitrary CO2 density of 0.7 (supercritical). This result was then transposed to the aquifer in the Riyadh area where similar conditions are assumed to exist. To obtain a ‘reservoir scale’ estimation, the block dimensions were upscaled to 20 km x 20 km x 80 m (the last figure being the effective thickness given by hydrogeological studies). The inferred storage capacity here was 30.5 Mt (million tonnes, International unit System, ‘SI’), which is an excellent figure when one considers the large-scale projects of Europe (Sleipner: 20 Mt) and Canada (Weyburn: 14 Mt).","PeriodicalId":55118,"journal":{"name":"Geoarabia","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68185155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The investigated Middle to Upper Triassic Upper Mahil Member, representing a Jilh outcrop equivalent in the Northern Oman Mountains, illustrates the proximal portion of a flat epeiric carbonate ramp. A sedimentological study of well-exposed outcrops in Wadi Sahtan may serve as a reference section for a sequence-stratigraphic framework and detailed facies description of the Upper Mahil Member. It also provides an insight into the seal and reservoir potential of carbonates in a low-accommodation inner ramp setting. Outcrop observations and thin section analyses yielded 14 different lithofacies types ranging from a supratidal marsh to high-energy subtidal shoal environment. Vertical facies stacking patterns show three basic small-scale cycle motifs (fifth-order). While mud-rich backshoal cycles with claystone intercalations and rooted/bioturbated mud-/wackestones illustrate potential baffles and seal units around the center of the Upper Mahil, potential reservoir units occur stratigraphically in the upper part of the formation. There, a few meter-thick trough cross-bedded oolitic-/peloidal-rich grainstone depicts maximum accommodation within backshoal to shoal cycle types below the erosional base-Jurassic unconformity. The investigated outcrop section in Wadi Sahtan was subdivided into nine almost complete third-order sequences. Two to four of these sequences are further stacked into three second-order super-sequences which are well reflected in the gamma-ray pattern. The highest reservoir potential occurs around second-order maximum floodings. Internal seals can be observed at third-order sequence boundaries where shales and muddy carbonates are up to 20 m thick. A regional correlation with subsurface data from Yibal and Lekhwair in Oman shows that the apparent thickness changes in the Upper Mahil (Jilh) are mainly determined by the Late Triassic/Early Jurassic erosional truncation. The occurrence of thick anhydrite units in the subsurface indicates a more proximal setting towards the southwest.
{"title":"Facies, sequence stratigraphy and reservoir/seal potential of a Jilh Formation outcrop equivalent (Wadi Sahtan, Triassic, Upper Mahil Member, Sultanate of Oman)","authors":"M. Obermaier, T. Aigner, H. Forke","doi":"10.2113/geoarabia170385","DOIUrl":"https://doi.org/10.2113/geoarabia170385","url":null,"abstract":"\u0000 The investigated Middle to Upper Triassic Upper Mahil Member, representing a Jilh outcrop equivalent in the Northern Oman Mountains, illustrates the proximal portion of a flat epeiric carbonate ramp. A sedimentological study of well-exposed outcrops in Wadi Sahtan may serve as a reference section for a sequence-stratigraphic framework and detailed facies description of the Upper Mahil Member. It also provides an insight into the seal and reservoir potential of carbonates in a low-accommodation inner ramp setting.\u0000 Outcrop observations and thin section analyses yielded 14 different lithofacies types ranging from a supratidal marsh to high-energy subtidal shoal environment. Vertical facies stacking patterns show three basic small-scale cycle motifs (fifth-order). While mud-rich backshoal cycles with claystone intercalations and rooted/bioturbated mud-/wackestones illustrate potential baffles and seal units around the center of the Upper Mahil, potential reservoir units occur stratigraphically in the upper part of the formation. There, a few meter-thick trough cross-bedded oolitic-/peloidal-rich grainstone depicts maximum accommodation within backshoal to shoal cycle types below the erosional base-Jurassic unconformity.\u0000 The investigated outcrop section in Wadi Sahtan was subdivided into nine almost complete third-order sequences. Two to four of these sequences are further stacked into three second-order super-sequences which are well reflected in the gamma-ray pattern. The highest reservoir potential occurs around second-order maximum floodings. Internal seals can be observed at third-order sequence boundaries where shales and muddy carbonates are up to 20 m thick.\u0000 A regional correlation with subsurface data from Yibal and Lekhwair in Oman shows that the apparent thickness changes in the Upper Mahil (Jilh) are mainly determined by the Late Triassic/Early Jurassic erosional truncation. The occurrence of thick anhydrite units in the subsurface indicates a more proximal setting towards the southwest.","PeriodicalId":55118,"journal":{"name":"Geoarabia","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68185164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Morad, I. Al-Aasm, F. Nader, A. Ceriani, M. Gasparrini, H. Mansurbeg
This study is based on petrographic examination (optical, scanning electron microscope, cathodo-luminescence, backscattered electron imaging, and fluorescence) of 1,350 thin sections as well as isotopic compositions of carbonates (172 carbon and oxygen and 118 strontium isotopes), microprobe analyses, and fluid inclusion microthermometry of cored Jurassic Arab D and C members from 16 wells in a field from offshore Abu Dhabi, United Arab Emirates. The formation was deposited in a ramp with barrier islands and distal slope setting. Petrographic, stable isotopic and fluid-inclusion analyses have unraveled the impact of diagenesis on reservoir quality of Arab D and C within the framework of depositional facies, sequence stratigraphy, and burial history. Diagenetic processes include cementation by grain rim cement and syntaxial calcite overgrowths, formation of moldic porosity by dissolution of allochems, dolomitization and dolomite cementation, cementation by gypsum and anhydrite, and stylolitization. Partial eogenetic calcite and dolomite cementation has prevented porosity loss in grainstones during burial diagenesis. Dolomitization and sulphate cementation of peritidal mud are suggested to have occurred in an evaporative sabkha setting, whereas dolomitization of subtidal packstones and grainstones was driven by seepage reflux of lagoon brines formed during major falls in relative sea level. Recrystallization of dolomite occurred by hot saline waters (Th 85–100°C; and salinity 14–18 wt% NaCl). Anhydrite and gypsum cements (Th 95–105°C; fluid salinity 16–20 wt% NaCl), were subjected to extensive dissolution, presumably caused by thermal sulfate reduction followed by a major phase of oil emplacement. The last cement recorded was a second phase of anhydrite and gypsum (Th 95–120°C; 16–22 wt% NaCl), which fills fractures associated with faults.
{"title":"Impact of diagenesis on the spatial and temporal distribution of reservoir quality in the Jurassic Arab D and C members, offshore Abu Dhabi oilfield, United Arab Emirates","authors":"S. Morad, I. Al-Aasm, F. Nader, A. Ceriani, M. Gasparrini, H. Mansurbeg","doi":"10.2113/geoarabia170317","DOIUrl":"https://doi.org/10.2113/geoarabia170317","url":null,"abstract":"\u0000 This study is based on petrographic examination (optical, scanning electron microscope, cathodo-luminescence, backscattered electron imaging, and fluorescence) of 1,350 thin sections as well as isotopic compositions of carbonates (172 carbon and oxygen and 118 strontium isotopes), microprobe analyses, and fluid inclusion microthermometry of cored Jurassic Arab D and C members from 16 wells in a field from offshore Abu Dhabi, United Arab Emirates. The formation was deposited in a ramp with barrier islands and distal slope setting. Petrographic, stable isotopic and fluid-inclusion analyses have unraveled the impact of diagenesis on reservoir quality of Arab D and C within the framework of depositional facies, sequence stratigraphy, and burial history. Diagenetic processes include cementation by grain rim cement and syntaxial calcite overgrowths, formation of moldic porosity by dissolution of allochems, dolomitization and dolomite cementation, cementation by gypsum and anhydrite, and stylolitization. Partial eogenetic calcite and dolomite cementation has prevented porosity loss in grainstones during burial diagenesis. Dolomitization and sulphate cementation of peritidal mud are suggested to have occurred in an evaporative sabkha setting, whereas dolomitization of subtidal packstones and grainstones was driven by seepage reflux of lagoon brines formed during major falls in relative sea level. Recrystallization of dolomite occurred by hot saline waters (Th 85–100°C; and salinity 14–18 wt% NaCl). Anhydrite and gypsum cements (Th 95–105°C; fluid salinity 16–20 wt% NaCl), were subjected to extensive dissolution, presumably caused by thermal sulfate reduction followed by a major phase of oil emplacement. The last cement recorded was a second phase of anhydrite and gypsum (Th 95–120°C; 16–22 wt% NaCl), which fills fractures associated with faults.","PeriodicalId":55118,"journal":{"name":"Geoarabia","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68185111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-07-01DOI: 10.2113/geoarabia1703180
{"title":"Selected Abstracts from ICGAPOM January 7–9, 2012, Sultanate of Oman","authors":"","doi":"10.2113/geoarabia1703180","DOIUrl":"https://doi.org/10.2113/geoarabia1703180","url":null,"abstract":"","PeriodicalId":55118,"journal":{"name":"Geoarabia","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68185123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-07-01DOI: 10.2113/geoarabia1703133
M. Farooqui, Khamis Farhoud, D. Mahmoud, A. El-Barkooky
The South Diyur exploration block of nearly 38,000 sq km is located in the Farafra Oasis region in the Western Desert of Egypt. It is a frontier exploration area, the nearest well being Ammonite-1, a dry hole drilled by Conoco in 1979 immediately outside the southwestern corner of the block. The South Diyur Block is located on the probable northeast extension of the Kufra Basin in southeast Libya. Although prolific reserves of oil and gas occur in Paleozoic basins in North Africa and throughout the Middle East, to date, the targets for petroleum exploration in the northern Western Desert have been in Jurassic and Cretaceous rocks. The regional structural surface features in the South Diyur Block are the NE-trending Bahariya and Farafra anticlines interpreted as a deeply eroded and inverted Late Cretaceous structure on the southern extension of the Syrian Arc system. The oldest exposed rocks are a Cretaceous sequence of sublittoral sediments (the Campanian Wadi Hennis Formation) in the core of the anticline. The interpretation of the subsurface is based on 1,175 line-km of reprocessed 1970s-vintage 2-D seismic. Four sequence boundaries have been identified from the seismic data. SB-1 correlates with the Jurassic/Cretaceous boundary in Ammonite-1. SB-2 is regionally correlated with the Late Devonian to Early Carboniferous Hercynian unconformity that overlies deeply eroded and truncated Paleozoic sequences and possibly marks the regionally extensive Late Paleozoic basin inversion. SB-3 near the base of the interpreted Silurian sequence coincides with the ‘hot shale’ petroleum source rock that is present throughout North Africa and the Middle East. SB-4 is interpreted as a major unconformity at the top of an Upper Proterozoic sedimentary section that was misinterpreted as the Precambrian acoustic basement in Ammonite-1. Five seismic sequences relate to the seismic boundaries. SS-1, from the surface to SB-1 is characterized by subparallel seismic stratification and is composed mainly of sandstone with shale interbeds in Ammonite-1. SS-2, bounded by SB-1 and SB-2, is distinguished by parallel to subparallel seismic stratification. In Ammonite-1, the sequence of interbedded sandstone and shale is fresh-water bearing and lacking in top seals, thus reducing its prospectivity. The underlying SS-3 (SB-2 to SB-3) directly underlies the Hercynian unconformity and is characterized by semi-transparent seismic facies that may correspond to a thick Silurian shale sequence. SS-4 (SB-3 to SB-4) of probable Cambrian–Ordovician age has parallel seismic stratification. Deep channels are interpreted as evidence of a Late Ordovician–Early Silurian glacial phase that is present throughout North Africa and the Middle East. SS-5 (below SB-4) is marked by partial subparallel seismic stratification and block faulting. It probably belongs to the Late Proterozoic (Pan-African) phase of block faulting and pull-apart basins. Similar seismic geometries and facies occur in th
{"title":"Petroleum potential of the interpreted Paleozoic geoseismic sequences in the South Diyur Block, Western Desert of Egypt","authors":"M. Farooqui, Khamis Farhoud, D. Mahmoud, A. El-Barkooky","doi":"10.2113/geoarabia1703133","DOIUrl":"https://doi.org/10.2113/geoarabia1703133","url":null,"abstract":"\u0000 The South Diyur exploration block of nearly 38,000 sq km is located in the Farafra Oasis region in the Western Desert of Egypt. It is a frontier exploration area, the nearest well being Ammonite-1, a dry hole drilled by Conoco in 1979 immediately outside the southwestern corner of the block. The South Diyur Block is located on the probable northeast extension of the Kufra Basin in southeast Libya. Although prolific reserves of oil and gas occur in Paleozoic basins in North Africa and throughout the Middle East, to date, the targets for petroleum exploration in the northern Western Desert have been in Jurassic and Cretaceous rocks.\u0000 The regional structural surface features in the South Diyur Block are the NE-trending Bahariya and Farafra anticlines interpreted as a deeply eroded and inverted Late Cretaceous structure on the southern extension of the Syrian Arc system. The oldest exposed rocks are a Cretaceous sequence of sublittoral sediments (the Campanian Wadi Hennis Formation) in the core of the anticline.\u0000 The interpretation of the subsurface is based on 1,175 line-km of reprocessed 1970s-vintage 2-D seismic. Four sequence boundaries have been identified from the seismic data. SB-1 correlates with the Jurassic/Cretaceous boundary in Ammonite-1. SB-2 is regionally correlated with the Late Devonian to Early Carboniferous Hercynian unconformity that overlies deeply eroded and truncated Paleozoic sequences and possibly marks the regionally extensive Late Paleozoic basin inversion. SB-3 near the base of the interpreted Silurian sequence coincides with the ‘hot shale’ petroleum source rock that is present throughout North Africa and the Middle East. SB-4 is interpreted as a major unconformity at the top of an Upper Proterozoic sedimentary section that was misinterpreted as the Precambrian acoustic basement in Ammonite-1.\u0000 Five seismic sequences relate to the seismic boundaries. SS-1, from the surface to SB-1 is characterized by subparallel seismic stratification and is composed mainly of sandstone with shale interbeds in Ammonite-1. SS-2, bounded by SB-1 and SB-2, is distinguished by parallel to subparallel seismic stratification. In Ammonite-1, the sequence of interbedded sandstone and shale is fresh-water bearing and lacking in top seals, thus reducing its prospectivity. The underlying SS-3 (SB-2 to SB-3) directly underlies the Hercynian unconformity and is characterized by semi-transparent seismic facies that may correspond to a thick Silurian shale sequence. SS-4 (SB-3 to SB-4) of probable Cambrian–Ordovician age has parallel seismic stratification. Deep channels are interpreted as evidence of a Late Ordovician–Early Silurian glacial phase that is present throughout North Africa and the Middle East. SS-5 (below SB-4) is marked by partial subparallel seismic stratification and block faulting. It probably belongs to the Late Proterozoic (Pan-African) phase of block faulting and pull-apart basins. Similar seismic geometries and facies occur in th","PeriodicalId":55118,"journal":{"name":"Geoarabia","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68185079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}