首页 > 最新文献

Fortschritte Der Physik-Progress of Physics最新文献

英文 中文
T c $T_c$ , Photoproduction, Paramagnetic Anisotropic Plasma, IR Log-Gravitational-DBI Renormalization, and G 2 $G_2$ -Structure Induced (Almost) Contact 3-Structures in Hot Strongly Magnetic MQCD at Intermediate Coupling tc $T_c$,光产生,顺磁各向异性等离子体,IR log -重力- dbi重整化,以及G_2$ G_2$ -结构诱导(几乎)接触-结构在热强磁MQCD中
IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-11-28 DOI: 10.1002/prop.70044
Shivam Singh Kushwah, Aalok Misra
<p>After obtaining the gauge fields that can be supported on the world-volume of flavor <span></span><math> <semantics> <mrow> <mi>D</mi> <mn>6</mn> </mrow> <annotation>$D6$</annotation> </semantics></math>-branes in the type IIA dual of thermal QCD-like theories at high temperatures and intermediate coupling (the latter incorporated via the inclusion of <span></span><math> <semantics> <mrow> <mi>O</mi> <mo>(</mo> <msup> <mi>R</mi> <mn>4</mn> </msup> <mo>)</mo> </mrow> <annotation>${cal O}(R^4)$</annotation> </semantics></math> corrections in its <span></span><math> <semantics> <mi>M</mi> <annotation>${cal M}$</annotation> </semantics></math>-theory uplift), combining with the results of Yadav et al., it is shown that the deconfinement temperature <span></span><math> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> <annotation>$T_c$</annotation> </semantics></math> decreases in the presence of a strong magnetic field as in lattice QCD. By working out gauge-invariant fluctuations about the aforementioned world-volume gauge fields, in the (absence and) presence of a strong magnetic field (<span></span><math> <semantics> <mrow> <mi>B</mi> <mo>></mo> <msup> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>B</mi> <mo>=</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <annotation>$B>(T_c(B=0))^2$</annotation> </semantics></math> in <span></span><math> <semantics> <mrow> <mi>e</mi> <mo>=</mo> <mn>1</mn> </mrow> <annotation>$e=1$</annotation> </semantics></math>-units), we obtain the <span></span><math> <semantics> <mrow> <mfrac> <mi>χ</mi> <mrow> <msup> <mi>N</mi> <mn>2</mn> </msup>
在高温和中间耦合(后者通过加入O (r4)而结合)的热qcd类理论的IIA型对偶中,获得了可支持在世界体积的风味d6 $D6$ -膜上的规范场) ${cal O}(R^4)$修正其M ${cal M}$ -理论隆升),结合Yadav等人的结果表明,在晶格QCD中,在强磁场存在下,解晶态温度T c $T_c$降低。通过计算出上述世界-体积规范场的规范不变波动,(B &gt; (T c (B = 0)))) 2 $B&gt;(T_c(B=0))^2$ (e = 1 $e=1$ -单位),我们得到χ n2 T 2 ω - ω $frac{chi }{N^2 T^2omega }-omega$变化(χ $chi$为反应面光子偏振的光谱函数,N $N$为类热qcd理论的IIB型对偶中彩色d3 $D3$膜的数目。我们进一步得到了一个很好的一致性,例如,在测量超重力中,自下而上的全息各向异性背景。在世界体积规范场的视界上实现Dirichlet边界条件,我们还在EoS水平上证明了全息对偶原则上可以对应于T c $T_c$以上的几种情况。这些包括(i)各向异性等离子体在宇宙冷却时通过平滑交叉过渡到外来物质(在我们的设置中禁止相反的情况),(ii)稳定的虫洞(我们还注意到r = 0 $r=0$附近的已分解的concon折叠有点像半埃利斯虫洞),以及(iii)顺磁压力/能量各向异性等离子体。鉴于T c $T_c$以上的QGP预计是顺磁性的,第三种可能性似乎是首选的。将TOV方程推广到包括角质量/压力/能量分布,我们在G $G$中显示一阶,各向异性等离子体不可能导致致密恒星的形成。在此过程中,我们证明了DBI动作的IR重整化需要一个里奇张量的边界对数行列式计数器项。我们进一步推测(i)在没有磁场的情况下,由接收O (R 4) ${cal O}(R^4)$校正的世界-体积规范场波动确定的光产生谱函数、声速(以及体粘度)等量,如果复化,包括非分析复杂的仪表耦合依赖,并对应于接触3-结构;(ii)量,如压力/自由e 在强磁场存在下,由非O (R 4)$ {cal O}(R^4)$校正的世界体积规范场确定,如果复化,则在复化规范耦合中是解析的,并对应于几乎接触3-结构(AC3S);两者都是由M ${cal M}$理论圆的封闭七倍曲积和non-Kähler六倍曲积的g2 $G_2$结构引起的,其中六倍曲是具有非爱因斯坦变形t1的热圆的曲积,1 $T^{1,1}$,以及(iii)在与AC3S和C3S相关的参数空间中缺乏N$ N$ -路径连性,因此对应于规范场波动不可能是有限的,并且在零瞬时扇区中,O (R 4)$ {cal O}(R^4)$非重整化规范域产生O (R 4)$ {calO}(R^4)$ -修正的量规波动。
{"title":"T\u0000 c\u0000 \u0000 $T_c$\u0000 , Photoproduction, Paramagnetic Anisotropic Plasma, IR Log-Gravitational-DBI Renormalization, and \u0000 \u0000 \u0000 G\u0000 2\u0000 \u0000 $G_2$\u0000 -Structure Induced (Almost) Contact 3-Structures in Hot Strongly Magnetic MQCD at Intermediate Coupling","authors":"Shivam Singh Kushwah,&nbsp;Aalok Misra","doi":"10.1002/prop.70044","DOIUrl":"https://doi.org/10.1002/prop.70044","url":null,"abstract":"&lt;p&gt;After obtaining the gauge fields that can be supported on the world-volume of flavor &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mn&gt;6&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$D6$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-branes in the type IIA dual of thermal QCD-like theories at high temperatures and intermediate coupling (the latter incorporated via the inclusion of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;O&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;${cal O}(R^4)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; corrections in its &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;annotation&gt;${cal M}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-theory uplift), combining with the results of Yadav et al., it is shown that the deconfinement temperature &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$T_c$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; decreases in the presence of a strong magnetic field as in lattice QCD. By working out gauge-invariant fluctuations about the aforementioned world-volume gauge fields, in the (absence and) presence of a strong magnetic field (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mo&gt;&gt;&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$B&gt;(T_c(B=0))^2$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$e=1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-units), we obtain the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mfrac&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 ","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 12","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145772720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Gravastar-Like Structures with Strongly Interacting Quark Matter Shell in the Framework of f(Q) Gravity Under Conformal Symmetry 保形对称下f(Q)引力框架下具有强相互作用夸克物质壳的类gravastar结构的探索
IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-11-28 DOI: 10.1002/prop.70055
Debadri Bhattacharjee, Pradip Kumar Chattopadhyay

In this work, gravastars-like structures are investigated in spherically symmetric and static space-time within the f(Q)$f(Q)$ gravity framework, coupled with conformal symmetry. The conventional gravastar model is modified by introducing a strongly interacting quark matter shell, which maintains the apex of causal limit through the EoS, p=ρ2Bg$p=rho -2B_{g}$, where, Bg$B_{g}$ is the bag constant. Non-singular and non-vanishing solutions for the interior and shell regions are obtained, respectively. The Israel junction condition is used to evaluate the mass of the thin shell for different choices of characteristic radii. Interestingly, the mass of the shell is independent of the matter distribution in the shell region. For radii 9.009, 10.009, and 11.009 Km, the mass increases to 1.80,1.95$1.80,nobreakspace 1.95$, and 2.28M$2.28nobreakspace M_{odot }$, respectively. The physical features associated with the gravastars, such as, proper length, energy, and entropy of the shell region are studied within the parameter space. Surface redshift calculations were used to validate the proposed model.

在这项工作中,在f (Q) $f(Q)$重力框架内,结合保形对称,研究了球对称和静态时空中的类重力星结构。通过引入强相互作用的夸克物质壳层来修正传统的重力星模型,该壳层通过EoS p = ρ−2 B g $p=rho -2B_{g}$保持因果极限的顶点,其中:B g $B_{g}$是袋常数。得到了内区和壳区的非奇异解和非消失解。在选择不同的特征半径时,采用以色列结条件对薄壳的质量进行了计算。有趣的是,壳层的质量与壳层区域的物质分布无关。半径为9.009、10.009和11.009 Km时,质量分别增加到1.80、1.95 $1.80,nobreakspace 1.95$和2.28 M⊙$2.28nobreakspace M_{odot }$。在参数空间内研究了重力星的固有长度、壳区能量和熵等物理特征。利用表面红移计算验证了所提出的模型。
{"title":"Exploring Gravastar-Like Structures with Strongly Interacting Quark Matter Shell in the Framework of f(Q) Gravity Under Conformal Symmetry","authors":"Debadri Bhattacharjee,&nbsp;Pradip Kumar Chattopadhyay","doi":"10.1002/prop.70055","DOIUrl":"https://doi.org/10.1002/prop.70055","url":null,"abstract":"<p>In this work, gravastars-like structures are investigated in spherically symmetric and static space-time within the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mo>(</mo>\u0000 <mi>Q</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$f(Q)$</annotation>\u0000 </semantics></math> gravity framework, coupled with conformal symmetry. The conventional gravastar model is modified by introducing a strongly interacting quark matter shell, which maintains the apex of causal limit through the EoS, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>=</mo>\u0000 <mi>ρ</mi>\u0000 <mo>−</mo>\u0000 <mn>2</mn>\u0000 <msub>\u0000 <mi>B</mi>\u0000 <mi>g</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$p=rho -2B_{g}$</annotation>\u0000 </semantics></math>, where, <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>B</mi>\u0000 <mi>g</mi>\u0000 </msub>\u0000 <annotation>$B_{g}$</annotation>\u0000 </semantics></math> is the bag constant. Non-singular and non-vanishing solutions for the interior and shell regions are obtained, respectively. The Israel junction condition is used to evaluate the mass of the thin shell for different choices of characteristic radii. Interestingly, the mass of the shell is independent of the matter distribution in the shell region. For radii 9.009, 10.009, and 11.009 Km, the mass increases to <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>1.80</mn>\u0000 <mo>,</mo>\u0000 <mspace></mspace>\u0000 <mn>1.95</mn>\u0000 </mrow>\u0000 <annotation>$1.80,nobreakspace 1.95$</annotation>\u0000 </semantics></math>, and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>2.28</mn>\u0000 <mspace></mspace>\u0000 <msub>\u0000 <mi>M</mi>\u0000 <mo>⊙</mo>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$2.28nobreakspace M_{odot }$</annotation>\u0000 </semantics></math>, respectively. The physical features associated with the gravastars, such as, proper length, energy, and entropy of the shell region are studied within the parameter space. Surface redshift calculations were used to validate the proposed model.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"74 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146002527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deriving the Entropy Functional in f(Q) Gravity Consistent with Entanglement Entropy 导出与纠缠熵一致的f(Q)重力熵泛函
IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-11-24 DOI: 10.1002/prop.70059
Mrittunjoy Guha Majumdar

A generalized entropy functional for f(Q)$f(Q)$ gravity is derived by adapting the Noether charge formalism to the nonmetricity-based gravitational Lagrangian. The resulting functional, S=14Hd2xhf(Q)$S = frac{1}{4} int _H d^2x , h , f(Q)$ generalizes the Bekenstein–Hawking law and is shown to be consistent with the first law of entanglement thermodynamics. This consistency establishes a direct link between the modification of the gravitational action and the entanglement structure of spacetime, providing a robust thermodynamic and quantum information–theoretic interpretation for f(Q)$f(Q)$ gravity.

将Noether电荷形式应用于基于非规性的引力拉格朗日量,导出了f (Q) $f(Q)$引力的广义熵泛函。得到的函数,S = 14∫H d2 x H f (Q)$S = frac{1}{4} int _H d^2x , h , f(Q)$推广了贝肯斯坦-霍金定律,并被证明与纠缠热力学第一定律一致。这种一致性建立了引力作用的修正与时空纠缠结构之间的直接联系,为f (Q) $f(Q)$引力提供了强有力的热力学和量子信息理论解释。
{"title":"Deriving the Entropy Functional in f(Q) Gravity Consistent with Entanglement Entropy","authors":"Mrittunjoy Guha Majumdar","doi":"10.1002/prop.70059","DOIUrl":"https://doi.org/10.1002/prop.70059","url":null,"abstract":"<p>A generalized entropy functional for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mo>(</mo>\u0000 <mi>Q</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$f(Q)$</annotation>\u0000 </semantics></math> gravity is derived by adapting the Noether charge formalism to the nonmetricity-based gravitational Lagrangian. The resulting functional, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 <mo>=</mo>\u0000 <mfrac>\u0000 <mn>1</mn>\u0000 <mn>4</mn>\u0000 </mfrac>\u0000 <msub>\u0000 <mo>∫</mo>\u0000 <mi>H</mi>\u0000 </msub>\u0000 <msup>\u0000 <mi>d</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mi>x</mi>\u0000 <mspace></mspace>\u0000 <mi>h</mi>\u0000 <mspace></mspace>\u0000 <mi>f</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>Q</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$S = frac{1}{4} int _H d^2x , h , f(Q)$</annotation>\u0000 </semantics></math> generalizes the Bekenstein–Hawking law and is shown to be consistent with the first law of entanglement thermodynamics. This consistency establishes a direct link between the modification of the gravitational action and the entanglement structure of spacetime, providing a robust thermodynamic and quantum information–theoretic interpretation for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mo>(</mo>\u0000 <mi>Q</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$f(Q)$</annotation>\u0000 </semantics></math> gravity.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"74 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146002525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective Temperature of the FRW Universe FRW宇宙的有效温度
IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-11-24 DOI: 10.1002/prop.70052
Shi-Bei Kong

In this paper, a new definition of temperature is proposed for the FRW(Friedmann–Robertson–Walker) universe, i.e., the effective temperature Teff:=dE/dS$T_{eff}:=mathrm{d}E/mathrm{d}S$, where E$E$ is the energy and S$S$ is the entropy of the FRW universe. Based on this definition, the effective temperature is derived for the N$N$-dimensional FRW universe in Einstein gravity, Gauss–Bonnet gravity, and Lovelock gravity. For the 4-dimensional FRW universe, the effective temperature is found to be Teff=1/(4πRA)$T_{eff}=1/(4pi R_A)$, which is exactly the same form with the Hawking temperature of the Schwarzschild black hole. In higher-dimensional FRW universe, the form of the effective temperature depends on the choices of the gravitational theories or the corresponding coupling constants. The free energy of the FRW universe in the three theories of gravity is also obtained.

本文对FRW(friedman - robertson - walker)宇宙提出了一个新的温度定义,即有效温度为:= d E/ d S$ T_{eff}:=mathrm{d}E/mathrm{d}S$,其中E$ E$为FRW宇宙的能量,S$ S$为FRW宇宙的熵。基于这一定义,推导了爱因斯坦引力、高斯-邦纳引力和洛夫洛克引力下N$ N$维FRW宇宙的有效温度。对于四维FRW宇宙,有效温度为T ff = 1 / (4 π R A)$T_{eff}=1/(4pi R_A)$,这与史瓦西黑洞的霍金温度完全相同。在高维FRW宇宙中,有效温度的形式取决于引力理论或相应耦合常数的选择。得到了三种引力理论中FRW宇宙的自由能。
{"title":"Effective Temperature of the FRW Universe","authors":"Shi-Bei Kong","doi":"10.1002/prop.70052","DOIUrl":"https://doi.org/10.1002/prop.70052","url":null,"abstract":"<p>In this paper, a new definition of temperature is proposed for the FRW(Friedmann–Robertson–Walker) universe, i.e., the effective temperature <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>T</mi>\u0000 <mrow>\u0000 <mi>e</mi>\u0000 <mi>f</mi>\u0000 <mi>f</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mo>:</mo>\u0000 <mo>=</mo>\u0000 <mi>d</mi>\u0000 <mi>E</mi>\u0000 <mo>/</mo>\u0000 <mi>d</mi>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 <annotation>$T_{eff}:=mathrm{d}E/mathrm{d}S$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$E$</annotation>\u0000 </semantics></math> is the energy and <span></span><math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$S$</annotation>\u0000 </semantics></math> is the entropy of the FRW universe. Based on this definition, the effective temperature is derived for the <span></span><math>\u0000 <semantics>\u0000 <mi>N</mi>\u0000 <annotation>$N$</annotation>\u0000 </semantics></math>-dimensional FRW universe in Einstein gravity, Gauss–Bonnet gravity, and Lovelock gravity. For the 4-dimensional FRW universe, the effective temperature is found to be <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>T</mi>\u0000 <mrow>\u0000 <mi>e</mi>\u0000 <mi>f</mi>\u0000 <mi>f</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mo>=</mo>\u0000 <mn>1</mn>\u0000 <mo>/</mo>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>4</mn>\u0000 <mi>π</mi>\u0000 <msub>\u0000 <mi>R</mi>\u0000 <mi>A</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$T_{eff}=1/(4pi R_A)$</annotation>\u0000 </semantics></math>, which is exactly the same form with the Hawking temperature of the Schwarzschild black hole. In higher-dimensional FRW universe, the form of the effective temperature depends on the choices of the gravitational theories or the corresponding coupling constants. The free energy of the FRW universe in the three theories of gravity is also obtained.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 12","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145772628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
More on (Gauged) WZW Models Over Low-Dimensional Lie Supergroups and Their Integrable Deformations 更多关于低维李超群上的(测量)WZW模型及其可积变形
IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-11-24 DOI: 10.1002/prop.70056
Ali Eghbali, Meysam Hosseinpour-Sadid, Adel Rezaei-Aghdam
<p>In superdimension <span></span><math> <semantics> <mrow> <mo>(</mo> <mn>2</mn> <mo>|</mo> <mn>2</mn> <mo>)</mo> </mrow> <annotation>$(2|2)$</annotation> </semantics></math> there are only three non-Abelian Lie superalgebras admitting non-degenerate ad-invariant supersymmetric metric, the well-known Lie superalgebra <span></span><math> <semantics> <mrow> <mi>g</mi> <mi>l</mi> <mo>(</mo> <mn>1</mn> <mo>|</mo> <mn>1</mn> <mo>)</mo> </mrow> <annotation>$gl(1|1)$</annotation> </semantics></math>, and two more, <span></span><math> <semantics> <mrow> <mo>(</mo> <msup> <mi>C</mi> <mn>3</mn> </msup> <mo>+</mo> <mi>A</mi> <mo>)</mo> </mrow> <annotation>$({mathcal {C}}^3 + mathcal {A})$</annotation> </semantics></math> and <span></span><math> <semantics> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mn>0</mn> <mn>5</mn> </msubsup> <mo>+</mo> <mi>A</mi> <mo>)</mo> </mrow> <annotation>$({mathcal {C}}_0^5 +{mathcal {A}})$</annotation> </semantics></math>. After a brief review of the construction of the Wess–Zumino–Witten (WZW) models based on the <span></span><math> <semantics> <mrow> <mi>G</mi> <mi>L</mi> <mo>(</mo> <mn>1</mn> <mo>|</mo> <mn>1</mn> <mo>)</mo> </mrow> <annotation>$GL(1|1)$</annotation> </semantics></math> and <span></span><math> <semantics> <mrow> <mo>(</mo> <msup> <mi>C</mi> <mn>3</mn> </msup> <mo>+</mo> <mi>A</mi> <mo>)</mo> </mrow> <annotation>$(C^3 + A)$</annotation> </semantics></math> Lie supergroups, we proceed to construct the WZW model on the <span></span><math> <semantics> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mn>0</mn> <mn>5</mn> </msubsup> <mo>+</mo> <m
在超维(2|2)$(2|2)$中,只有三个非阿贝尔李超代数允许非简并变超对称度量,著名的李超代数gl(1|1)$ gl(1|1)$,还有两个,(C 3 + A)$ ({mathcal {C}}^3 + mathcal {A})$ and (C 0 5 + A)美元({ mathcal {C}} _0 ^ 5 + { mathcal { }})$ .在简要回顾了基于GL(1|1)$ GL(1|1)$和(c3 + a)的Wess-Zumino-Witten (WZW)模型的构建之后$(C^3 + A)$ Lie超群,在(C 0 5 + A)$ ({C}_0^5 +{A})$ Lie超群上构造WZW模型。不幸的是,这个模型不包括超级泊松-李对称。本文通过测量李超群的无异常子群SO(2),构造了三个新的WZW型精确共形场理论。这项工作最有趣的迹象是超集(C 3 + A)/ SO $(C^3 + A)/{rm SO}$(2)上的测量WZW模型具有超泊松-李对称;最重要的是,它的对偶模型在单环阶上是保形不变的,这是本文首次提出的。最后,为了研究(c0 5 + A)$ ({C}_0^5 +{A})$ WZW模型的Yang-Baxter (YB)变形,我们得到了(C 0 5 + A)$ ({mathcal {C}}_0^5 +{mathcal {A}})$ Lie超代数的(改进的)分级经典Yang-Baxter方程((m)GCYBE)的不等价解。然后,我们对(C 0 5 + A)$ ({C}_0^5 +{A})$的所有可能的YB变形进行分类,并解决了变形背景的单环一致性问题。分类结果是重要的,特别是在李超群情况下,分类结果是罕见的,需要大量艰苦的技术工作才能获得。
{"title":"More on (Gauged) WZW Models Over Low-Dimensional Lie Supergroups and Their Integrable Deformations","authors":"Ali Eghbali,&nbsp;Meysam Hosseinpour-Sadid,&nbsp;Adel Rezaei-Aghdam","doi":"10.1002/prop.70056","DOIUrl":"https://doi.org/10.1002/prop.70056","url":null,"abstract":"&lt;p&gt;In superdimension &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$(2|2)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; there are only three non-Abelian Lie superalgebras admitting non-degenerate ad-invariant supersymmetric metric, the well-known Lie superalgebra &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;mi&gt;l&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$gl(1|1)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, and two more, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$({mathcal {C}}^3 + mathcal {A})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mn&gt;5&lt;/mn&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$({mathcal {C}}_0^5 +{mathcal {A}})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. After a brief review of the construction of the Wess–Zumino–Witten (WZW) models based on the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$GL(1|1)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$(C^3 + A)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; Lie supergroups, we proceed to construct the WZW model on the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mn&gt;5&lt;/mn&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;m","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"74 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146002526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Replica Wormholes and Quantum Hair 复制虫洞和量子毛发
IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-11-21 DOI: 10.1002/prop.70057
Xavier Calmet, Stephen D. H. Hsu

The recent applications of Euclidean path integrals to the black hole information problem are discussed. In calculations with replica wormholes as the next-to-leading order correction to the Gibbons–Hawking saddlepoint, the radiation density matrix approaches a pure state at late times, following the Page curve. The unitary evaporation of black holes (in real time), mediated by calculable quantum hair effects, are compared with the replica wormhole results. Both the replica wormhole and quantum hair approaches imply that radiation states are macroscopic superpositions of spacetime backgrounds, invalidating firewall and monogamy of entanglement constructions. Importantly, identification of modes inside the horizon with radiation modes (i.e., large-scale nonlocality across the horizon) is not required to provide a physical picture of unitary evaporation. Radiation modes can encode the interior information while still remaining independent degrees of freedom.

讨论了欧几里得路径积分在黑洞信息问题中的最新应用。在将复制虫洞作为吉本斯-霍金鞍点的次一级修正的计算中,辐射密度矩阵在后期接近纯状态,遵循佩吉曲线。由可计算的量子毛效应介导的黑洞的单一蒸发(实时)与复制虫洞的结果进行了比较。复制虫洞和量子毛发方法都暗示辐射状态是时空背景的宏观叠加,使纠缠结构的防火墙和一夫一妻制失效。重要的是,用辐射模式识别视界内的模式(即跨视界的大规模非定域性)并不需要提供单一蒸发的物理图像。辐射模式可以在保持独立自由度的同时对内部信息进行编码。
{"title":"Replica Wormholes and Quantum Hair","authors":"Xavier Calmet,&nbsp;Stephen D. H. Hsu","doi":"10.1002/prop.70057","DOIUrl":"https://doi.org/10.1002/prop.70057","url":null,"abstract":"<p>The recent applications of Euclidean path integrals to the black hole information problem are discussed. In calculations with replica wormholes as the next-to-leading order correction to the Gibbons–Hawking saddlepoint, the radiation density matrix approaches a pure state at late times, following the Page curve. The unitary evaporation of black holes (in real time), mediated by calculable quantum hair effects, are compared with the replica wormhole results. Both the replica wormhole and quantum hair approaches imply that radiation states are macroscopic superpositions of spacetime backgrounds, invalidating firewall and monogamy of entanglement constructions. Importantly, identification of modes inside the horizon with radiation modes (i.e., large-scale nonlocality across the horizon) is not required to provide a physical picture of unitary evaporation. Radiation modes can <i>encode</i> the interior information while still remaining independent degrees of freedom.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"74 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.70057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146002552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observational Analysis of Exponentially Decaying Viscous Cosmology in f ( Q , C ) $f(Q,C)$ Gravity f(Q,C)$ f(Q,C)$引力中指数衰减粘性宇宙学的观测分析
IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-11-21 DOI: 10.1002/prop.70054
Amit Samaddar, S. Surendra Singh
<p>In this work, the effects of viscosity in <span></span><math> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>C</mi> <mo>)</mo> </mrow> <annotation>$f(Q,C)$</annotation> </semantics></math> gravity are investigated by considering the model <span></span><math> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>C</mi> <mo>)</mo> <mo>=</mo> <mi>α</mi> <mi>Q</mi> <mo>+</mo> <mi>γ</mi> <mi>C</mi> </mrow> <annotation>$f(Q,C)=alpha Q+gamma C$</annotation> </semantics></math> with an new exponential bulk viscosity of the form <span></span><math> <semantics> <mrow> <mi>ζ</mi> <mo>=</mo> <msub> <mi>ζ</mi> <mn>0</mn> </msub> <msup> <mi>e</mi> <mrow> <mo>−</mo> <mi>β</mi> <mi>H</mi> </mrow> </msup> </mrow> <annotation>$zeta = zeta _0 e^{-beta H}$</annotation> </semantics></math>. The Hubble parameter is derived in terms of redshift <span></span><math> <semantics> <mi>z</mi> <annotation>$z$</annotation> </semantics></math> and constrain the model parameters using observational datasets, including CC, DESI DR2 BAO and Pantheon+ datasets, via the MCMC approach. The best-fit values of the parameters are obtained and the evolution of cosmological parameters is analyzed. The results indicate a transition from a decelerated to an accelerated expansion phase, with the present deceleration parameter value <span></span><math> <semantics> <mrow> <msub> <mi>q</mi> <mn>0</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.3699</mn> </mrow> <annotation>$q_{0} = -0.3699$</annotation> </semantics></math> for the joint dataset. The equation of state parameter approaches <span></span><math> <semantics> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <annotation>$-1$</annotation> </semantics></math> at late times and the SEC is violated, supporting cosmic acceleration. The statefinder analysis shows that the
在这项工作中,通过考虑f (Q, C) $f(Q,C)$重力模型,研究了粘度对f (Q, C) 重力的影响。C) = α Q + γ C $f(Q,C)=alpha Q+gamma C$具有新的指数体粘度形式ζ = ζ 0 e−β H $zeta = zeta _0 e^{-beta H}$。哈勃参数是根据红移z $z$导出的,并通过MCMC方法使用观测数据集(包括CC, DESI DR2 BAO和Pantheon+数据集)约束模型参数。得到了参数的最佳拟合值,并分析了宇宙学参数的演化。结果表明,联合数据集从减速扩展阶段过渡到加速扩展阶段,目前减速参数值q 0 =−0.3699 $q_{0} = -0.3699$。状态参数方程在后期接近−1 $-1$,并且违反了SEC,支持宇宙加速。寻态器分析表明,该模型从Chaplygin气相到quintessence,最终收敛到Λ CDM $Lambda{rm CDM}$。此外,粘度的影响也进行了研究,表明它的影响在早期宇宙中是显著的,但随着时间的推移而减弱。这些发现表明,粘度在f (Q, C) $f(Q,C)$重力下的宇宙演化中起着至关重要的作用,为后期加速提供了一个可行的替代框架。
{"title":"Observational Analysis of Exponentially Decaying Viscous Cosmology in \u0000 \u0000 \u0000 f\u0000 (\u0000 Q\u0000 ,\u0000 C\u0000 )\u0000 \u0000 $f(Q,C)$\u0000 Gravity","authors":"Amit Samaddar,&nbsp;S. Surendra Singh","doi":"10.1002/prop.70054","DOIUrl":"https://doi.org/10.1002/prop.70054","url":null,"abstract":"&lt;p&gt;In this work, the effects of viscosity in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$f(Q,C)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; gravity are investigated by considering the model &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;γ&lt;/mi&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$f(Q,C)=alpha Q+gamma C$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; with an new exponential bulk viscosity of the form &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ζ&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;ζ&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mi&gt;β&lt;/mi&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$zeta = zeta _0 e^{-beta H}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. The Hubble parameter is derived in terms of redshift &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;z&lt;/mi&gt;\u0000 &lt;annotation&gt;$z$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and constrain the model parameters using observational datasets, including CC, DESI DR2 BAO and Pantheon+ datasets, via the MCMC approach. The best-fit values of the parameters are obtained and the evolution of cosmological parameters is analyzed. The results indicate a transition from a decelerated to an accelerated expansion phase, with the present deceleration parameter value &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;0.3699&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$q_{0} = -0.3699$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; for the joint dataset. The equation of state parameter approaches &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$-1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; at late times and the SEC is violated, supporting cosmic acceleration. The statefinder analysis shows that the","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"74 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145941715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Dark-Energy Enigma 关于暗能量之谜
IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-11-19 DOI: 10.1002/prop.70051
Ali H. Chamseddine, Jürg Fröhlich

A model is presented that provides an explanation for the presence of (Dark Matter and) Dark Energy in the universe. A key idea is to express the volume form of the Lorentzian metric on space–time in terms of a positive function of a new scalar field multiplying a certain four-form given by the wedge product of the differential of the mimetic scalar field and a certain closed three-form. An ansatz for this three-form related to one commonly used to determine the winding number of a map from a three-dimensional hypersurface to a three-sphere is discussed. An action functional depending on the space–time metric, the new scalar field, the mimetic scalar and the three-form is proposed, and the field equations are derived. Special solutions of these equations for a Friedmann–Lemaître universe are presented.

提出了一个模型,为宇宙中(暗物质和)暗能量的存在提供了解释。一个关键思想是将时空上洛伦兹度规的体积形式表示为一个新的标量场的正函数乘以一个由模拟标量场的微分与一个封闭的三形式的楔形积给出的四形式。本文讨论了这种三形式的一种解释,这种解释与通常用于确定三维超曲面到三球面映射的圈数的解释有关。提出了依赖于时空度量、新标量场、拟标量场和三形式的作用泛函,并推导了场方程。给出了一类friedman - lema宇宙下这些方程的特解。
{"title":"On the Dark-Energy Enigma","authors":"Ali H. Chamseddine,&nbsp;Jürg Fröhlich","doi":"10.1002/prop.70051","DOIUrl":"https://doi.org/10.1002/prop.70051","url":null,"abstract":"<p>A model is presented that provides an explanation for the presence of (Dark Matter and) Dark Energy in the universe. A key idea is to express the volume form of the Lorentzian metric on space–time in terms of a positive function of a new scalar field multiplying a certain four-form given by the wedge product of the differential of the mimetic scalar field and a certain closed three-form. An ansatz for this three-form related to one commonly used to determine the winding number of a map from a three-dimensional hypersurface to a three-sphere is discussed. An action functional depending on the space–time metric, the new scalar field, the mimetic scalar and the three-form is proposed, and the field equations are derived. Special solutions of these equations for a Friedmann–Lemaître universe are presented.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 12","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145766352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-Perturbative Origin of Electroweak Scale via Higgs-Portal: Dyson–Schwinger in Conformally Invariant Scalar Sector 通过Higgs-Portal的电弱尺度的非微扰起源:共形不变标量扇区中的Dyson-Schwinger
IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-11-19 DOI: 10.1002/prop.70050
Marco Frasca, Anish Ghoshal, Nobuchika Okada

A conformally extended Standard Model with a hidden scalar ϕ$phi$ is investigated. It is shown that due to non-perturbative dynamics in the hidden sector, ϕ$phi$ develops a vacuum expectation value (vev) in the form of a mass gap which triggers the electroweak symmetry breaking (EWSB) and dynamically generates the SM Higgs boson mass. To estimate the non-perturbatively generated mass scale, a hierarchy of Dyson–Schwinger equations is solved in form of partial differential equations using the exact solution known via a novel technique developed by Bender, Milton, and Savage. A Jacobi Elliptic function is employed as exact background solution and show that the mass gap that arises in the hidden sector can be transmuted to the EW sector, expressed in terms of Higgs-portal mixed quartic coupling β$beta$ and self interaction quartic coupling λϕ$lambda _{phi }$ of ϕ$phi$. The suitable parameter space where the observed SM Higgs boson can be successfully generated is identified. Finally, the idea of non-perturbative EW scale generation can serve as a new starting point for better realistic model building in the context of resolving the hierarchy problem in the Standard Model is discussed.

研究了一个包含隐藏标量φ $phi$的共形扩展标准模型。研究表明,由于隐藏扇区中的非摄动动力学,ϕ $phi$以质量间隙的形式产生真空期望值(vev),从而触发电弱对称破缺(EWSB)并动态产生SM希格斯玻色子质量。为了估计非扰动产生的质量尺度,Dyson-Schwinger方程的层次结构以偏微分方程的形式求解,使用由Bender, Milton和Savage开发的新技术已知的精确解。利用Jacobi椭圆函数作为精确的背景解,证明了隐藏扇区产生的质量间隙可以转化为电子束扇区。表示为Higgs-portal混合四次耦合β $beta$和自相互作用四次耦合λ ϕ $lambda _{phi }$的ϕ $phi$。确定了能成功产生观测到的SM希格斯玻色子的合适参数空间。最后,在解决标准模型中的层次问题的背景下,讨论了非摄动电子战尺度生成的思想,为更好地构建真实模型提供了新的起点。
{"title":"Non-Perturbative Origin of Electroweak Scale via Higgs-Portal: Dyson–Schwinger in Conformally Invariant Scalar Sector","authors":"Marco Frasca,&nbsp;Anish Ghoshal,&nbsp;Nobuchika Okada","doi":"10.1002/prop.70050","DOIUrl":"https://doi.org/10.1002/prop.70050","url":null,"abstract":"<p>A conformally extended Standard Model with a hidden scalar <span></span><math>\u0000 <semantics>\u0000 <mi>ϕ</mi>\u0000 <annotation>$phi$</annotation>\u0000 </semantics></math> is investigated. It is shown that due to non-perturbative dynamics in the hidden sector, <span></span><math>\u0000 <semantics>\u0000 <mi>ϕ</mi>\u0000 <annotation>$phi$</annotation>\u0000 </semantics></math> develops a vacuum expectation value (vev) in the form of a mass gap which triggers the electroweak symmetry breaking (EWSB) and dynamically generates the SM Higgs boson mass. To estimate the non-perturbatively generated mass scale, a hierarchy of Dyson–Schwinger equations is solved in form of partial differential equations using the exact solution known via a novel technique developed by Bender, Milton, and Savage. A Jacobi Elliptic function is employed as exact background solution and show that the mass gap that arises in the hidden sector can be transmuted to the EW sector, expressed in terms of Higgs-portal mixed quartic coupling <span></span><math>\u0000 <semantics>\u0000 <mi>β</mi>\u0000 <annotation>$beta$</annotation>\u0000 </semantics></math> and self interaction quartic coupling <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>λ</mi>\u0000 <mi>ϕ</mi>\u0000 </msub>\u0000 <annotation>$lambda _{phi }$</annotation>\u0000 </semantics></math> of <span></span><math>\u0000 <semantics>\u0000 <mi>ϕ</mi>\u0000 <annotation>$phi$</annotation>\u0000 </semantics></math>. The suitable parameter space where the observed SM Higgs boson can be successfully generated is identified. Finally, the idea of non-perturbative EW scale generation can serve as a new starting point for better realistic model building in the context of resolving the hierarchy problem in the Standard Model is discussed.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 12","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145772480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comments on the RG-Flow in Open String Field Theory 关于开弦场理论中rg流的几点评述
IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-11-18 DOI: 10.1002/prop.70045
Julius Hristov

We define a metric G$G$ on the KBc-subalgebra modulo gauge and describe the worldsheet RG-flow as the gradient flow of the action of cubic open string field theory, where the flow lines are kink-solitons. In particular, for a constant tachyon the gradient flow equations are equivalent to the RG-equations. Additionally, a more general family of gradient flow lines is presented, which describes the RG-flow from the conformal manifold of the D-brane under tachyon condensation. We also derive the stability operator of our solution and show that the zero-modes reflect the invariance of the flow under such marginal perturbations. In fact, the beta function is colinear to our solution such that it describes geodesics from the conformal manifold to the tachyon vacuum with respect to G$G$.

我们在kbc -子代数模规范上定义了一个度量G$ G$,并将世界表RG-flow描述为三次开弦场论作用的梯度流,其中流线为扭转孤子。特别地,对于常数速子,梯度流动方程等价于rg方程。此外,我们还提出了一个更一般的梯度流谱族,它描述了速子凝聚下d膜共形流形的rg流。我们还导出了解的稳定性算子,并证明了零模态反映了在这种边缘扰动下流动的不变性。事实上,函数与我们的解共线,使得它描述了从共形流形到关于G$ G$的速子真空的测地线。
{"title":"Comments on the RG-Flow in Open String Field Theory","authors":"Julius Hristov","doi":"10.1002/prop.70045","DOIUrl":"https://doi.org/10.1002/prop.70045","url":null,"abstract":"<p>We define a metric <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> on the KBc-subalgebra modulo gauge and describe the worldsheet RG-flow as the gradient flow of the action of cubic open string field theory, where the flow lines are kink-solitons. In particular, for a constant tachyon the gradient flow equations are equivalent to the RG-equations. Additionally, a more general family of gradient flow lines is presented, which describes the RG-flow from the conformal manifold of the D-brane under tachyon condensation. We also derive the stability operator of our solution and show that the zero-modes reflect the invariance of the flow under such marginal perturbations. In fact, the beta function is colinear to our solution such that it describes geodesics from the conformal manifold to the tachyon vacuum with respect to <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 12","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.70045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145766347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Fortschritte Der Physik-Progress of Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1