首页 > 最新文献

Foundations of Computational Mathematics最新文献

英文 中文
Time Splitting and Error Estimates for Nonlinear Schrödinger Equations with a Potential 带电位非线性Schrödinger方程的时间分裂和误差估计
IF 3 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-08-12 DOI: 10.1007/s10208-025-09727-5
Rémi Carles

We consider the nonlinear Schrödinger equation with a potential, also known as Gross-Pitaevskii equation. By introducing a suitable spectral localization, we prove low regularity error estimates for the time discretization corresponding to an adapted Lie-Trotter splitting scheme. The proof is based on tools from spectral theory and pseudodifferential calculus in order to obtain various estimates on the spectral localization, including discrete Strichartz estimates which support the nonlinear analysis.

我们考虑具有势的非线性Schrödinger方程,也称为Gross-Pitaevskii方程。通过引入合适的光谱定位,我们证明了时间离散化的低规则误差估计对应于自适应的Lie-Trotter分裂方案。利用谱理论和伪微分学的工具进行了证明,得到了谱局部化的各种估计,包括支持非线性分析的离散Strichartz估计。
{"title":"Time Splitting and Error Estimates for Nonlinear Schrödinger Equations with a Potential","authors":"Rémi Carles","doi":"10.1007/s10208-025-09727-5","DOIUrl":"https://doi.org/10.1007/s10208-025-09727-5","url":null,"abstract":"<p>We consider the nonlinear Schrödinger equation with a potential, also known as Gross-Pitaevskii equation. By introducing a suitable spectral localization, we prove low regularity error estimates for the time discretization corresponding to an adapted Lie-Trotter splitting scheme. The proof is based on tools from spectral theory and pseudodifferential calculus in order to obtain various estimates on the spectral localization, including discrete Strichartz estimates which support the nonlinear analysis.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"38 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144924522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Fisher–Rao Gradient Flow for Entropy-Regularised Markov Decision Processes in Polish Spaces 波兰空间中熵正则马尔可夫决策过程的Fisher-Rao梯度流
IF 3 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-08-11 DOI: 10.1007/s10208-025-09729-3
Bekzhan Kerimkulov, James-Michael Leahy, David Siska, Lukasz Szpruch, Yufei Zhang

We study the global convergence of a Fisher–Rao policy gradient flow for infinite-horizon entropy-regularised Markov decision processes with Polish state and action spaces. The flow is a continuous-time analogue of a policy mirror descent method. We establish the global well-posedness of the gradient flow and demonstrate its exponential convergence to the optimal policy. Moreover, we prove the flow is stable with respect to gradient evaluation, offering insights into the performance of a natural policy gradient flow with log-linear policy parameterisation. To overcome challenges stemming from the lack of the convexity of the objective function and the discontinuity arising from the entropy regulariser, we leverage the performance difference lemma and the duality relationship between the gradient and mirror descent flows. Our analysis provides a theoretical foundation for developing various discrete policy gradient algorithms.

研究了具有波兰状态和动作空间的无限视界熵正则马尔可夫决策过程的Fisher-Rao策略梯度流的全局收敛性。该流是策略镜像下降方法的连续时间模拟。建立了梯度流的全局适定性,并证明了其对最优策略的指数收敛性。此外,我们证明了流在梯度评估方面是稳定的,提供了对具有对数线性策略参数化的自然策略梯度流的性能的见解。为了克服目标函数缺乏凸性和熵正则化引起的不连续所带来的挑战,我们利用了性能差异引理以及梯度和镜像下降流之间的对偶关系。我们的分析为开发各种离散策略梯度算法提供了理论基础。
{"title":"A Fisher–Rao Gradient Flow for Entropy-Regularised Markov Decision Processes in Polish Spaces","authors":"Bekzhan Kerimkulov, James-Michael Leahy, David Siska, Lukasz Szpruch, Yufei Zhang","doi":"10.1007/s10208-025-09729-3","DOIUrl":"https://doi.org/10.1007/s10208-025-09729-3","url":null,"abstract":"<p>We study the global convergence of a Fisher–Rao policy gradient flow for infinite-horizon entropy-regularised Markov decision processes with Polish state and action spaces. The flow is a continuous-time analogue of a policy mirror descent method. We establish the global well-posedness of the gradient flow and demonstrate its exponential convergence to the optimal policy. Moreover, we prove the flow is stable with respect to gradient evaluation, offering insights into the performance of a natural policy gradient flow with log-linear policy parameterisation. To overcome challenges stemming from the lack of the convexity of the objective function and the discontinuity arising from the entropy regulariser, we leverage the performance difference lemma and the duality relationship between the gradient and mirror descent flows. Our analysis provides a theoretical foundation for developing various discrete policy gradient algorithms.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"56 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144924524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Irreducible Components of Sets of Points in the Plane that Satisfy Distance Conditions 平面上满足距离条件的点集的不可约分量
IF 3 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-08-07 DOI: 10.1007/s10208-025-09725-7
Niels Lubbes, Mehdi Makhul, Josef Schicho, Audie Warren

For a given graph whose edges are labeled with general real numbers, we consider the set of functions from the vertex set into the Euclidean plane such that the distance between the images of neighbouring vertices is equal to the corresponding edge label. This set of functions can be expressed as the zero set of quadratic polynomials and our main result characterizes the number of complex irreducible components of this zero set in terms of combinatorial properties of the graph. In case the complex components are three-dimensional, then the graph is minimally rigid and the component number is a well-known invariant from rigidity theory. If the components are four-dimensional, then they correspond to one-dimensional coupler curves of flexible planar mechanisms. As an application, we characterize the degree of irreducible components of such coupler curves combinatorially.

对于一个给定的图,其边用一般实数标记,我们考虑从顶点集到欧几里德平面的函数集,使得相邻顶点图像之间的距离等于相应的边标记。这个函数集可以表示为二次多项式的零集,我们的主要结果用图的组合性质刻画了这个零集的复不可约分量的个数。如果复分量是三维的,则图是最小刚性的,并且分量数是刚性理论中众所周知的不变量。如果部件是四维的,则它们对应于柔性平面机构的一维耦合器曲线。作为一种应用,我们对这类耦合器曲线的不可约分量的程度进行了组合表征。
{"title":"Irreducible Components of Sets of Points in the Plane that Satisfy Distance Conditions","authors":"Niels Lubbes, Mehdi Makhul, Josef Schicho, Audie Warren","doi":"10.1007/s10208-025-09725-7","DOIUrl":"https://doi.org/10.1007/s10208-025-09725-7","url":null,"abstract":"<p>For a given graph whose edges are labeled with general real numbers, we consider the set of functions from the vertex set into the Euclidean plane such that the distance between the images of neighbouring vertices is equal to the corresponding edge label. This set of functions can be expressed as the zero set of quadratic polynomials and our main result characterizes the number of complex irreducible components of this zero set in terms of combinatorial properties of the graph. In case the complex components are three-dimensional, then the graph is minimally rigid and the component number is a well-known invariant from rigidity theory. If the components are four-dimensional, then they correspond to one-dimensional coupler curves of flexible planar mechanisms. As an application, we characterize the degree of irreducible components of such coupler curves combinatorially.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"27 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144924570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multisymplecticity in Finite Element Exterior Calculus 有限元外演算中的多辛性
IF 3 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-07-14 DOI: 10.1007/s10208-025-09720-y
Ari Stern, Enrico Zampa

We consider the application of finite element exterior calculus (FEEC) methods to a class of canonical Hamiltonian PDE systems involving differential forms. Solutions to these systems satisfy a local multisymplectic conservation law, which generalizes the more familiar symplectic conservation law for Hamiltonian systems of ODEs, and which is connected with physically-important reciprocity phenomena, such as Lorentz reciprocity in electromagnetics. We characterize hybrid FEEC methods whose numerical traces satisfy a version of the multisymplectic conservation law, and we apply this characterization to several specific classes of FEEC methods, including conforming Arnold–Falk–Winther-type methods and various hybridizable discontinuous Galerkin (HDG) methods. Interestingly, the HDG-type and other nonconforming methods are shown, in general, to be multisymplectic in a stronger sense than the conforming FEEC methods. This substantially generalizes previous work of McLachlan and Stern [Found. Comput. Math., 20 (2020), pp. 35–69] on the more restricted class of canonical Hamiltonian PDEs in the de Donder–Weyl “grad-div” form.

研究了一类包含微分形式的正则哈密顿PDE系统的有限元外微积分方法的应用。这些系统的解满足一个局部多辛守恒定律,它推广了更熟悉的ODEs哈密顿系统的辛守恒定律,并且与物理上重要的互易现象有关,例如电磁学中的洛伦兹互易。我们描述了其数值迹线满足多辛守恒律的混合FEEC方法,并将这种描述应用于几种特定类型的FEEC方法,包括符合arnold - falk - winter型方法和各种可杂交不连续Galerkin (HDG)方法。有趣的是,hdg型和其他不符合的方法通常比符合的FEEC方法具有更强的多辛性。这在很大程度上概括了McLachlan和Stern之前的工作[发现]。第一版。数学。论文,20 (2020),pp. 35-69]在de Donder-Weyl“grad-div”形式下的更受限制的标准哈密顿偏微分方程。
{"title":"Multisymplecticity in Finite Element Exterior Calculus","authors":"Ari Stern, Enrico Zampa","doi":"10.1007/s10208-025-09720-y","DOIUrl":"https://doi.org/10.1007/s10208-025-09720-y","url":null,"abstract":"<p>We consider the application of finite element exterior calculus (FEEC) methods to a class of canonical Hamiltonian PDE systems involving differential forms. Solutions to these systems satisfy a local <i>multisymplectic conservation law</i>, which generalizes the more familiar symplectic conservation law for Hamiltonian systems of ODEs, and which is connected with physically-important reciprocity phenomena, such as Lorentz reciprocity in electromagnetics. We characterize hybrid FEEC methods whose numerical traces satisfy a version of the multisymplectic conservation law, and we apply this characterization to several specific classes of FEEC methods, including conforming Arnold–Falk–Winther-type methods and various hybridizable discontinuous Galerkin (HDG) methods. Interestingly, the HDG-type and other nonconforming methods are shown, in general, to be multisymplectic in a stronger sense than the conforming FEEC methods. This substantially generalizes previous work of McLachlan and Stern [Found. Comput. Math., 20 (2020), pp. 35–69] on the more restricted class of canonical Hamiltonian PDEs in the de Donder–Weyl “grad-div” form.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"1 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144924528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interlacing Polynomial Method for Matrix Approximation via Generalized Column and Row Selection 基于广义列行选择的矩阵逼近的交错多项式方法
IF 3 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-07-14 DOI: 10.1007/s10208-025-09719-5
Jian-Feng Cai, Zhiqiang Xu, Zili Xu
<p>This paper delves into the spectral norm aspect of the Generalized Column and Row Subset Selection (GCRSS) problem. Given a target matrix <span><span>textbf{A}in mathbb {R}^{ntimes d}</span><script type="math/tex">textbf{A}in mathbb {R}^{ntimes d}</script></span>, the objective of GCRSS is to select a column submatrix <span><span>textbf{B}_{:,S}in mathbb {R}^{ntimes k}</span><script type="math/tex">textbf{B}_{:,S}in mathbb {R}^{ntimes k}</script></span> from the source matrix <span><span>textbf{B}in mathbb {R}^{ntimes d_B}</span><script type="math/tex">textbf{B}in mathbb {R}^{ntimes d_B}</script></span> and a row submatrix <span><span>textbf{C}_{R,:}in mathbb {R}^{rtimes d}</span><script type="math/tex">textbf{C}_{R,:}in mathbb {R}^{rtimes d}</script></span> from the source matrix <span><span>textbf{C}in mathbb {R}^{n_Ctimes d}</span><script type="math/tex">textbf{C}in mathbb {R}^{n_Ctimes d}</script></span>, such that the residual matrix <span><span>(textbf{I}_n-textbf{B}_{:,S}textbf{B}_{:,S}^{dagger })textbf{A}(textbf{I}_d-textbf{C}_{R,:}^{dagger } textbf{C}_{R,:})</span><script type="math/tex">(textbf{I}_n-textbf{B}_{:,S}textbf{B}_{:,S}^{dagger })textbf{A}(textbf{I}_d-textbf{C}_{R,:}^{dagger } textbf{C}_{R,:})</script></span> has a small spectral norm. By employing the method of interlacing polynomials, we show that the smallest possible spectral norm of a residual matrix can be bounded by the largest root of a related expected characteristic polynomial. A deterministic polynomial time algorithm is provided for the spectral norm case of the GCRSS problem. We next apply our results to two specific GCRSS scenarios, one where <span><span>r=0</span><script type="math/tex">r=0</script></span>, simplifying the problem to the Generalized Column Subset Selection (GCSS) problem, and the other where <span><span>textbf{B}=textbf{C}=textbf{I}_d</span><script type="math/tex">textbf{B}=textbf{C}=textbf{I}_d</script></span>, reducing the problem to the submatrix selection problem. In the GCSS scenario, we connect the expected characteristic polynomials to the convolution of multi-affine polynomials, leading to the derivation of the first provable reconstruction bound on the spectral norm of a residual matrix. In the submatrix selection scenario, we show that for any sufficiently small <span><span>varepsilon >0</span><script type="math/tex">varepsilon >0</script></span> and any square matrix <span><span>textbf{A}in mathbb {R}^{dtimes d}</span><script type="math/tex">textbf{A}in mathbb {R}^{dtimes d}</script></span>, there exist two subsets <span><span>Ssubset [d]</span><script type="math/tex">Ssubset [d]</script></span> and <span><span>Rsubset [d]</span><script type="math/tex">Rsubset [d]</script></span> of sizes <span><span>O(dcdot varepsilon ^2)</span><script type="math/tex">O(dcdot varepsilon ^2)</script></span> such that <span><span>Vert textbf{A}_{S,R}Vert _2le varepsilon cdot Vert textbf{A}Vert _2</span><script type="math/tex">Vert textbf{A}_{S,R}
本文研究了广义列行子集选择(GCRSS)问题的谱范数。给定一个目标矩阵 textbf{a}in mathbb {r}^{ntimes d}textbf{a}in mathbb {r}^{ntimes d}, GCRSS的目标是选择一个列子矩阵 textbf{b}_{:, s}in mathbb {r}^{ntimes }textbf{kB}_{:, s}in mathbb {r}^{ntimes k} 从源矩阵 textbf{b}in mathbb {r}^{ntimes d_B}textbf{b}in mathbb {r}^{ntimes d_B} 一个行子矩阵 textbf{c}_{r,:}in mathbb {r}^{rtimes }textbf{直流}_{r,:}in mathbb {r}^{rtimes d} 从源矩阵 textbf{c}in mathbb {r}^{n_Ctimes d}textbf{c}in mathbb {r}^{n_Ctimes d},使得残差矩阵(textbf{I}_n-textbf{b}_{:,}textbf{某人}_{:, s}^{dagger })textbf{a}(textbf{I}_d-textbf{c}_{r,:}^{dagger } textbf{c}_{r,:})(textbf{I}_n-textbf{b}_{:,}textbf{某人}_{:, s}^{dagger })textbf{a}(textbf{I}_d-textbf{c}_{r,:}^{dagger } textbf{c}_{r,:})的谱范数较小。通过使用交错多项式的方法,我们证明了残差矩阵的最小可能谱范数可以被相关期望特征多项式的最大根所限定。针对GCRSS问题的谱范数情况,提出了一种确定性多项式时间算法。接下来,我们将我们的结果应用于两个特定的GCRSS场景,其中一个场景中r=0r=0,将问题简化为广义列子集选择(GCSS)问题,另一个场景中 textbf{b}=textbf{c}=textbf{I}_textbf{dB}=textbf{c}=textbf{I}_d,将问题简化为子矩阵选择问题。在GCSS场景中,我们将期望的特征多项式与多仿射多项式的卷积连接起来,从而推导出残差矩阵谱范数上的第一个可证明的重构界。在子矩阵选择场景中,我们证明了对于任何足够小的 varepsilon &gt;0varepsilon >0和任意方阵 textbf{a}in mathbb {r}^{dtimes d}textbf{a}in mathbb {r}^{dtimes d},则存在两个子集Ssubset [d] dsubset [d]和[R]subset [d]Rsubset [d]大小的cdot varepsilon ^2 O(dcdot varepsilon ^2)这样 Vert textbf{a}_{s, r}Vert _2le varepsilon cdot Vert textbf{a}Vert _2Vert textbf{a}_{s, r}Vert _2le varepsilon cdot Vert textbf{a}Vert _2。不像以前的研究对矩阵是零对角线或正半定矩阵的非常特殊的情况产生了类似的结果,我们的结果普遍适用于任何方阵 textbf{a}textbf{a}.
{"title":"Interlacing Polynomial Method for Matrix Approximation via Generalized Column and Row Selection","authors":"Jian-Feng Cai, Zhiqiang Xu, Zili Xu","doi":"10.1007/s10208-025-09719-5","DOIUrl":"https://doi.org/10.1007/s10208-025-09719-5","url":null,"abstract":"&lt;p&gt;This paper delves into the spectral norm aspect of the Generalized Column and Row Subset Selection (GCRSS) problem. Given a target matrix &lt;span&gt;&lt;span&gt;textbf{A}in mathbb {R}^{ntimes d}&lt;/span&gt;&lt;script type=\"math/tex\"&gt;textbf{A}in mathbb {R}^{ntimes d}&lt;/script&gt;&lt;/span&gt;, the objective of GCRSS is to select a column submatrix &lt;span&gt;&lt;span&gt;textbf{B}_{:,S}in mathbb {R}^{ntimes k}&lt;/span&gt;&lt;script type=\"math/tex\"&gt;textbf{B}_{:,S}in mathbb {R}^{ntimes k}&lt;/script&gt;&lt;/span&gt; from the source matrix &lt;span&gt;&lt;span&gt;textbf{B}in mathbb {R}^{ntimes d_B}&lt;/span&gt;&lt;script type=\"math/tex\"&gt;textbf{B}in mathbb {R}^{ntimes d_B}&lt;/script&gt;&lt;/span&gt; and a row submatrix &lt;span&gt;&lt;span&gt;textbf{C}_{R,:}in mathbb {R}^{rtimes d}&lt;/span&gt;&lt;script type=\"math/tex\"&gt;textbf{C}_{R,:}in mathbb {R}^{rtimes d}&lt;/script&gt;&lt;/span&gt; from the source matrix &lt;span&gt;&lt;span&gt;textbf{C}in mathbb {R}^{n_Ctimes d}&lt;/span&gt;&lt;script type=\"math/tex\"&gt;textbf{C}in mathbb {R}^{n_Ctimes d}&lt;/script&gt;&lt;/span&gt;, such that the residual matrix &lt;span&gt;&lt;span&gt;(textbf{I}_n-textbf{B}_{:,S}textbf{B}_{:,S}^{dagger })textbf{A}(textbf{I}_d-textbf{C}_{R,:}^{dagger } textbf{C}_{R,:})&lt;/span&gt;&lt;script type=\"math/tex\"&gt;(textbf{I}_n-textbf{B}_{:,S}textbf{B}_{:,S}^{dagger })textbf{A}(textbf{I}_d-textbf{C}_{R,:}^{dagger } textbf{C}_{R,:})&lt;/script&gt;&lt;/span&gt; has a small spectral norm. By employing the method of interlacing polynomials, we show that the smallest possible spectral norm of a residual matrix can be bounded by the largest root of a related expected characteristic polynomial. A deterministic polynomial time algorithm is provided for the spectral norm case of the GCRSS problem. We next apply our results to two specific GCRSS scenarios, one where &lt;span&gt;&lt;span&gt;r=0&lt;/span&gt;&lt;script type=\"math/tex\"&gt;r=0&lt;/script&gt;&lt;/span&gt;, simplifying the problem to the Generalized Column Subset Selection (GCSS) problem, and the other where &lt;span&gt;&lt;span&gt;textbf{B}=textbf{C}=textbf{I}_d&lt;/span&gt;&lt;script type=\"math/tex\"&gt;textbf{B}=textbf{C}=textbf{I}_d&lt;/script&gt;&lt;/span&gt;, reducing the problem to the submatrix selection problem. In the GCSS scenario, we connect the expected characteristic polynomials to the convolution of multi-affine polynomials, leading to the derivation of the first provable reconstruction bound on the spectral norm of a residual matrix. In the submatrix selection scenario, we show that for any sufficiently small &lt;span&gt;&lt;span&gt;varepsilon &gt;0&lt;/span&gt;&lt;script type=\"math/tex\"&gt;varepsilon &gt;0&lt;/script&gt;&lt;/span&gt; and any square matrix &lt;span&gt;&lt;span&gt;textbf{A}in mathbb {R}^{dtimes d}&lt;/span&gt;&lt;script type=\"math/tex\"&gt;textbf{A}in mathbb {R}^{dtimes d}&lt;/script&gt;&lt;/span&gt;, there exist two subsets &lt;span&gt;&lt;span&gt;Ssubset [d]&lt;/span&gt;&lt;script type=\"math/tex\"&gt;Ssubset [d]&lt;/script&gt;&lt;/span&gt; and &lt;span&gt;&lt;span&gt;Rsubset [d]&lt;/span&gt;&lt;script type=\"math/tex\"&gt;Rsubset [d]&lt;/script&gt;&lt;/span&gt; of sizes &lt;span&gt;&lt;span&gt;O(dcdot varepsilon ^2)&lt;/span&gt;&lt;script type=\"math/tex\"&gt;O(dcdot varepsilon ^2)&lt;/script&gt;&lt;/span&gt; such that &lt;span&gt;&lt;span&gt;Vert textbf{A}_{S,R}Vert _2le varepsilon cdot Vert textbf{A}Vert _2&lt;/span&gt;&lt;script type=\"math/tex\"&gt;Vert textbf{A}_{S,R}","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"18 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144924529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gradient Flows and Riemannian Structure in the Gromov-Wasserstein Geometry Gromov-Wasserstein几何中的梯度流和黎曼结构
IF 3 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-07-08 DOI: 10.1007/s10208-025-09722-w
Zhengxin Zhang, Ziv Goldfeld, Kristjan Greenewald, Youssef Mroueh, Bharath K. Sriperumbudur

The Wasserstein space of probability measures is known for its intricate Riemannian structure, which underpins the Wasserstein geometry and enables gradient flow algorithms. However, the Wasserstein geometry may not be suitable for certain tasks or data modalities. Motivated by scenarios where the global structure of the data needs to be preserved, this work initiates the study of gradient flows and Riemannian structure in the Gromov-Wasserstein (GW) geometry, which is particularly suited for such purposes. We focus on the inner product GW (IGW) distance between distributions on mathbb {R}^d, which preserves the angles within the data and serves as a convenient initial setting due to its analytic tractability. Given a functional textsf{F}:mathcal {P}_2(mathbb {R}^d)rightarrow mathbb {R} to optimize and an initial distribution rho _0in mathcal {P}_2(mathbb {R}^d), we present an implicit IGW minimizing movement scheme that generates a sequence of distributions {rho _i}_{i=0}^n, which are close in IGW and aligned in the 2-Wasserstein sense. Taking the time step to zero, we prove that the (piecewise constant interpolation of the) discrete solution converges to an IGW generalized minimizing movement (GMM) (rho _t)_t that follows the continuity equation with a velocity field v_tin L^2(rho _t;mathbb {R}^d), specified by a global transformation of the Wasserstein gradient of textsf{F} (viz., the gradient of its first variation). The transformation is given by a mobility operator that modifies the Wasserstein gradient to encode not only local information, but also global structure, as expected for the IGW gradient flow. Our gradient flow analysis leads us to identify the Riemannian structure that gives rise to the intrinsic IGW geometry, using which we establish a Benamou-Brenier-like formula for IGW. We conclude with a formal derivation, akin to the Otto calculus, of the IGW gradient as the inverse mobility acting on the Wasserstein gradient. Numerical experiments demonstrating the global nature of IGW interpolations are provided to complement the theory.

概率测度的Wasserstein空间以其复杂的黎曼结构而闻名,黎曼结构支撑着Wasserstein几何并使梯度流算法成为可能。然而,沃瑟斯坦几何可能不适合某些任务或数据模式。在需要保存数据全局结构的情况下,这项工作启动了对Gromov-Wasserstein (GW)几何中的梯度流动和黎曼结构的研究,这特别适合于此类目的。我们关注分布间距离的内积GW (IGW) mathbb {r}^dmathbb {r}^d,它保留了数据内的角度,并由于其分析可追溯性而作为方便的初始设置。给定一个函数 textsf{f}:mathcal {p}_2(mathbb {r}^d)rightarrow mathbb {}textsf{射频}:mathcal {p}_2(mathbb {r}^d)rightarrow mathbb {r} 优化和初始分布 rho _0in mathcal {p}_2(mathbb {r}^d)rho _0in mathcal {p}_2(mathbb {r}^d),我们提出了一个隐式的IGW最小化运动方案,该方案生成一系列分布{rho _i}_{i=0}^n{rho _i}_{i=0}^n,它们在IGW上接近并且在2-Wasserstein意义上对齐。当时间步长趋近于0时,我们证明了离散解的(分段常数插值)收敛于IGW广义最小化运动(GMM) (rho _t()rho 在速度场为v_t的连续性方程之后in l ^2(rho _t;mathbb {r}^d)v_tin l ^2(rho _t;mathbb {r}^d),由的Wasserstein梯度的全局变换指定 textsf{f}textsf{f} (即它的第一个变化的梯度)。变换由一个迁移算子给出,该算子修改Wasserstein梯度,不仅编码局部信息,而且编码全局结构,正如IGW梯度流所期望的那样。我们的梯度流分析使我们确定了产生IGW固有几何形状的黎曼结构,利用它我们建立了IGW的Benamou-Brenier-like公式。我们用类似于Otto演算的形式推导来总结IGW梯度作为作用于Wasserstein梯度的逆迁移率。数值实验证明了IGW插值的全局性,以补充理论。
{"title":"Gradient Flows and Riemannian Structure in the Gromov-Wasserstein Geometry","authors":"Zhengxin Zhang, Ziv Goldfeld, Kristjan Greenewald, Youssef Mroueh, Bharath K. Sriperumbudur","doi":"10.1007/s10208-025-09722-w","DOIUrl":"https://doi.org/10.1007/s10208-025-09722-w","url":null,"abstract":"<p>The Wasserstein space of probability measures is known for its intricate Riemannian structure, which underpins the Wasserstein geometry and enables gradient flow algorithms. However, the Wasserstein geometry may not be suitable for certain tasks or data modalities. Motivated by scenarios where the global structure of the data needs to be preserved, this work initiates the study of gradient flows and Riemannian structure in the Gromov-Wasserstein (GW) geometry, which is particularly suited for such purposes. We focus on the inner product GW (IGW) distance between distributions on <span><span>mathbb {R}^d</span><script type=\"math/tex\">mathbb {R}^d</script></span>, which preserves the angles within the data and serves as a convenient initial setting due to its analytic tractability. Given a functional <span><span>textsf{F}:mathcal {P}_2(mathbb {R}^d)rightarrow mathbb {R}</span><script type=\"math/tex\">textsf{F}:mathcal {P}_2(mathbb {R}^d)rightarrow mathbb {R}</script></span> to optimize and an initial distribution <span><span>rho _0in mathcal {P}_2(mathbb {R}^d)</span><script type=\"math/tex\">rho _0in mathcal {P}_2(mathbb {R}^d)</script></span>, we present an implicit IGW minimizing movement scheme that generates a sequence of distributions <span><span>{rho _i}_{i=0}^n</span><script type=\"math/tex\">{rho _i}_{i=0}^n</script></span>, which are close in IGW and aligned in the 2-Wasserstein sense. Taking the time step to zero, we prove that the (piecewise constant interpolation of the) discrete solution converges to an IGW generalized minimizing movement (GMM) <span><span>(rho _t)_t</span><script type=\"math/tex\">(rho _t)_t</script></span> that follows the continuity equation with a velocity field <span><span>v_tin L^2(rho _t;mathbb {R}^d)</span><script type=\"math/tex\">v_tin L^2(rho _t;mathbb {R}^d)</script></span>, specified by a global transformation of the Wasserstein gradient of <span><span>textsf{F}</span><script type=\"math/tex\">textsf{F}</script></span> (viz., the gradient of its first variation). The transformation is given by a mobility operator that modifies the Wasserstein gradient to encode not only local information, but also global structure, as expected for the IGW gradient flow. Our gradient flow analysis leads us to identify the Riemannian structure that gives rise to the intrinsic IGW geometry, using which we establish a Benamou-Brenier-like formula for IGW. We conclude with a formal derivation, akin to the Otto calculus, of the IGW gradient as the inverse mobility acting on the Wasserstein gradient. Numerical experiments demonstrating the global nature of IGW interpolations are provided to complement the theory.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"13 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144924530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Optimal Lower Bound for Smooth Convex Functions 光滑凸函数的最优下界
IF 3 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-06-25 DOI: 10.1007/s10208-025-09712-y
Mihai I. Florea, Yurii E. Nesterov

First order methods endowed with global convergence guarantees operate using global lower bounds on the objective. The tightening of the bounds leads to an increase in theoretical guarantees and in observed practical performance. In this work, we define a global lower bound for smooth objectives that is optimal with respect to the collected oracle information. Our bound can be readily employed by the Gradient Method with Memory to improve its performance. Further using the machinery underlying the optimal bounds, we introduce a modified version of the estimate sequence that we use to construct an Optimized Gradient Method with Memory possessing the best known convergence guarantees for its class of algorithms up to the proportionality constant. We additionally equip the method with an adaptive convergence guarantee adjustment procedure that is an effective replacement for line-search. Simulation results on synthetic but otherwise difficult smooth problems validate the theoretical properties of the bound and of the proposed methods.

具有全局收敛保证的一阶方法在目标上使用全局下界进行操作。边界的收紧导致理论保证和观察到的实际性能的增加。在这项工作中,我们为光滑目标定义了一个全局下界,该下界相对于收集到的oracle信息是最优的。我们的边界可以很容易地被用于带记忆的梯度方法,以提高其性能。进一步利用最优边界的机制,我们引入了一个改进版本的估计序列,我们使用它来构造一个优化梯度方法,该方法具有最著名的收敛保证,其算法类达到比例常数。此外,我们还为该方法配备了自适应收敛保证调整程序,这是对线搜索的有效替代。对复杂光滑问题的仿真结果验证了边界和所提方法的理论性质。
{"title":"An Optimal Lower Bound for Smooth Convex Functions","authors":"Mihai I. Florea, Yurii E. Nesterov","doi":"10.1007/s10208-025-09712-y","DOIUrl":"https://doi.org/10.1007/s10208-025-09712-y","url":null,"abstract":"<p>First order methods endowed with global convergence guarantees operate using global lower bounds on the objective. The tightening of the bounds leads to an increase in theoretical guarantees and in observed practical performance. In this work, we define a global lower bound for smooth objectives that is optimal with respect to the collected oracle information. Our bound can be readily employed by the Gradient Method with Memory to improve its performance. Further using the machinery underlying the optimal bounds, we introduce a modified version of the estimate sequence that we use to construct an Optimized Gradient Method with Memory possessing the best known convergence guarantees for its class of algorithms up to the proportionality constant. We additionally equip the method with an adaptive convergence guarantee adjustment procedure that is an effective replacement for line-search. Simulation results on synthetic but otherwise difficult smooth problems validate the theoretical properties of the bound and of the proposed methods.\u0000</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"13 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144924555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniform Distribution via Lattices: From Point Sets to Sequences 格的均匀分布:从点集到序列
IF 3 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-06-24 DOI: 10.1007/s10208-025-09706-w
Damir Ferizović

In this work we construct many sequences S=Sb,d and S=Sb,d

本文在d维单位超立方体上构造了多个序列S=Sb,d =S^ Box _b,d{和S=Sb,d =S =S^ }boxplus _b,d{,它们对于d=1d=1分别是基底b上的(广义)van der Corput序列或Niederreiter的(0,1)序列。此外,我们引入了f-次可加性的概念,并使用它来定义差异函数,该函数包含LpL^p-差异,Wasserstein p-距离的概念,以及许多将经验测度与基础测度进行比较的方法。我们将把投影格集(作为经验测度)的多集P(b−mZdP(b^}-mmathbb Z{^ D)的给定差异函数D }{}mathscr D的界与D(EZN) {}mathscr D{(}E_Z_N)的界联系起来,即对于任意N{∈NN }inmathbb N,序列Z=P(S)Z=P(S)的初始段。我们证明了这种关系在任意维D和定义在超立方体上的任意映射P中成立。可以{得到}D(EP(b−mZd+v)) mathscr D{(}E_P{(b^-{m }mathbb Z{^} D +v))上的界。在d=1d=1条件下,我们应用该定理得到了van der Corput和Niederreiter(0,1)序列的LpL^p-差异在所有0&lt;p≤∞0条件下的数字和的界。在d=2d=2条件下,我们构造的一个应用在两球上得到了许多序列,使得初始段ZNZ_N具有很小的L∞L^ }infty -差异。
{"title":"Uniform Distribution via Lattices: From Point Sets to Sequences","authors":"Damir Ferizović","doi":"10.1007/s10208-025-09706-w","DOIUrl":"https://doi.org/10.1007/s10208-025-09706-w","url":null,"abstract":"<p>In this work we construct many sequences <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msubsup&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mi&gt;&amp;#x25FB;&lt;/mi&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.315ex\" role=\"img\" style=\"vertical-align: -1.207ex;\" viewbox=\"0 -907.7 3563.9 1427.2\" width=\"8.277ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use x=\"923\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><g transform=\"translate(1979,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"926\" xlink:href=\"#MJAMS-25A1\" y=\"488\"></use><g transform=\"translate(613,-327)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-62\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"429\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"708\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi><mo>=</mo><msubsup><mi>S</mi><mrow><mi>b</mi><mo>,</mo><mi>d</mi></mrow><mi>◻</mi></msubsup></math></span></span><script type=\"math/tex\">S=S^Box _{b,d}</script></span> and <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msubsup&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;&amp;#x229E;&lt;/mo&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.315ex\" role=\"img\" style=\"vertical-align: -1.207ex;\" viewbox=\"0 -907.7 3563.9 1427.2\" width=\"8.277ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use x=\"923\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><g transform=\"translate(1979,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"926\" xlink:href=\"#MJAMS-229E\" y=\"488\"></use><g transform=\"translate(613,-327)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-62\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"429\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"708\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi><mo>=</mo><msubsup><mi>S</mi><mrow><mi>b</mi><mo>,</mo><mi>d</mi></mrow><mo>⊞</mo></msubsup></","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"38 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144924556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduction of Plane Quartics and Cayley Octads 平面四分位和Cayley八分位的约化
IF 3 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-06-02 DOI: 10.1007/s10208-025-09704-y
Raymond van Bommel, Jordan Docking, Vladimir Dokchitser, Reynald Lercier, Elisa Lorenzo García

We give a conjectural characterisation of the stable reduction of plane quartics over local fields in terms of their Cayley octads. This results in p-adic criteria that efficiently give the stable reduction type amongst the 42 possible types, and whether the reduction is hyperelliptic or not. These criteria are in the vein of the machinery of “cluster pictures” for hyperelliptic curves. We also construct explicit families of quartic curves that realise all possible stable types, against which we test these criteria. We give numerical examples that illustrate how to use these criteria in practice.

我们给出了局部场上平面四分体在Cayley八元上的稳定约简的一个推测特征。这导致p进准则有效地给出42种可能类型中的稳定约简类型,以及约简是否是超椭圆的。这些标准与超椭圆曲线的“星团图”机制是一致的。我们还构造了显式的四次曲线族,实现了所有可能的稳定类型,并对这些标准进行了测试。我们给出了数值例子来说明如何在实际中使用这些准则。
{"title":"Reduction of Plane Quartics and Cayley Octads","authors":"Raymond van Bommel, Jordan Docking, Vladimir Dokchitser, Reynald Lercier, Elisa Lorenzo García","doi":"10.1007/s10208-025-09704-y","DOIUrl":"https://doi.org/10.1007/s10208-025-09704-y","url":null,"abstract":"<p>We give a conjectural characterisation of the stable reduction of plane quartics over local fields in terms of their Cayley octads. This results in <i>p</i>-adic criteria that efficiently give the stable reduction type amongst the 42 possible types, and whether the reduction is hyperelliptic or not. These criteria are in the vein of the machinery of “cluster pictures” for hyperelliptic curves. We also construct explicit families of quartic curves that realise all possible stable types, against which we test these criteria. We give numerical examples that illustrate how to use these criteria in practice.\u0000</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"27 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144924560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Unified Framework for Multiscale Spectral Generalized FEMs and Low-Rank Approximations to Multiscale PDEs 多尺度谱广义fem的统一框架及多尺度偏微分方程的低秩逼近
IF 3 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-04-29 DOI: 10.1007/s10208-025-09711-z
Chupeng Ma

Multiscale partial differential equations (PDEs), featuring heterogeneous coefficients oscillating across possibly non-separated scales, pose computational challenges for standard numerical techniques. Over the past two decades, a range of specialized methods has emerged that enables the efficient solution of such problems. Two prominent approaches are numerical multiscale methods with problem-adapted coarse approximation spaces, and structured inverse methods that exploit a low-rank property of the associated Green’s functions to obtain approximate matrix factorizations. This work presents an abstract framework for the design, implementation, and analysis of the multiscale spectral generalized finite element method (MS-GFEM), a particular numerical multiscale method originally proposed in Babuska and Lipton (Multiscale Model Simul 9:373–406, 2011). MS-GFEM is a partition of unity method employing optimal local approximation spaces constructed from local spectral problems. We establish a general local approximation theory demonstrating exponential convergence with respect to the number of local degrees of freedom under certain assumptions, with explicit dependence on key problem parameters. Our framework applies to a broad class of multiscale PDEs with (L^{infty })-coefficients in both continuous and discrete, finite element settings, including highly indefinite problems and higher-order problems. Notably, we prove a local convergence rate of (O(e^{-cn^{1/d}})) for MS-GFEM for all these problems, improving upon the (O(e^{-cn^{1/(d+1)}})) rate shown by Babuska and Lipton. Moreover, based on the abstract local approximation theory for MS-GFEM, we establish a unified framework for showing low-rank approximations to multiscale PDEs. This framework applies to the aforementioned problems, proving that the associated Green’s functions admit an (O(|log epsilon |^{d}))-term separable approximation on well-separated domains with error (epsilon >0). Our analysis improves and generalizes the result in Bebendorf and Hackbusch (Numerische Mathematik 95:1–28, 2003) where an (O(|log epsilon |^{d+1}))-term separable approximation was proved for Poisson-type problems. It provides a rigorous theoretical foundation for diverse structured inverse methods, and also clarifies the intimate connection between approximation mechanisms in such methods and MS-GFEM.

多尺度偏微分方程(PDEs)具有非均匀系数在可能的非分离尺度上振荡的特点,对标准数值技术提出了计算挑战。在过去的二十年中,出现了一系列能够有效解决这类问题的专门方法。两种突出的方法是具有自适应问题的粗近似空间的数值多尺度方法,以及利用相关格林函数的低秩性质来获得近似矩阵分解的结构化逆方法。本文为多尺度谱广义有限元法(MS-GFEM)的设计、实现和分析提供了一个抽象框架,MS-GFEM是一种特殊的数值多尺度方法,最初由Babuska和Lipton提出(multiscale Model Simul 9:373-406, 2011)。MS-GFEM是一种利用局部谱问题构造的最优局部逼近空间的单位划分方法。我们建立了一个广义的局部逼近理论,证明了在一定的假设条件下,局部自由度的数目是指数收敛的,并且与关键问题参数有显式的依赖关系。我们的框架适用于连续和离散、有限元设置中具有(L^{infty }) -系数的广泛类别的多尺度偏微分方程,包括高度不确定问题和高阶问题。值得注意的是,我们证明了MS-GFEM对所有这些问题的局部收敛率为(O(e^{-cn^{1/d}})),比Babuska和Lipton给出的(O(e^{-cn^{1/(d+1)}}))收敛率有所提高。此外,基于MS-GFEM的抽象局部逼近理论,建立了多尺度偏微分方程低秩逼近的统一框架。该框架适用于上述问题,证明了相关的格林函数在分离良好的域上承认(O(|log epsilon |^{d}))项可分离近似,误差为(epsilon >0)。我们的分析改进并推广了Bebendorf和Hackbusch (Numerische Mathematik 95:1 - 28,2003)的结果,其中证明了泊松型问题的(O(|log epsilon |^{d+1}))项可分离近似。为各种结构化逆方法提供了严谨的理论基础,也阐明了这些方法中的逼近机制与MS-GFEM之间的密切联系。
{"title":"A Unified Framework for Multiscale Spectral Generalized FEMs and Low-Rank Approximations to Multiscale PDEs","authors":"Chupeng Ma","doi":"10.1007/s10208-025-09711-z","DOIUrl":"https://doi.org/10.1007/s10208-025-09711-z","url":null,"abstract":"<p>Multiscale partial differential equations (PDEs), featuring heterogeneous coefficients oscillating across possibly non-separated scales, pose computational challenges for standard numerical techniques. Over the past two decades, a range of specialized methods has emerged that enables the efficient solution of such problems. Two prominent approaches are numerical multiscale methods with problem-adapted coarse approximation spaces, and structured inverse methods that exploit a low-rank property of the associated Green’s functions to obtain approximate matrix factorizations. This work presents an abstract framework for the design, implementation, and analysis of the multiscale spectral generalized finite element method (MS-GFEM), a particular numerical multiscale method originally proposed in Babuska and Lipton (Multiscale Model Simul 9:373–406, 2011). MS-GFEM is a partition of unity method employing optimal local approximation spaces constructed from local spectral problems. We establish a general local approximation theory demonstrating exponential convergence with respect to the number of local degrees of freedom under certain assumptions, with explicit dependence on key problem parameters. Our framework applies to a broad class of multiscale PDEs with <span>(L^{infty })</span>-coefficients in both continuous and discrete, finite element settings, including highly indefinite problems and higher-order problems. Notably, we prove a local convergence rate of <span>(O(e^{-cn^{1/d}}))</span> for MS-GFEM for all these problems, improving upon the <span>(O(e^{-cn^{1/(d+1)}}))</span> rate shown by Babuska and Lipton. Moreover, based on the abstract local approximation theory for MS-GFEM, we establish a unified framework for showing low-rank approximations to multiscale PDEs. This framework applies to the aforementioned problems, proving that the associated Green’s functions admit an <span>(O(|log epsilon |^{d}))</span>-term separable approximation on well-separated domains with error <span>(epsilon &gt;0)</span>. Our analysis improves and generalizes the result in Bebendorf and Hackbusch (Numerische Mathematik 95:1–28, 2003) where an <span>(O(|log epsilon |^{d+1}))</span>-term separable approximation was proved for Poisson-type problems. It provides a rigorous theoretical foundation for diverse structured inverse methods, and also clarifies the intimate connection between approximation mechanisms in such methods and MS-GFEM.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"45 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143889834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Foundations of Computational Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1