首页 > 最新文献

Foundations of Computational Mathematics最新文献

英文 中文
Optimality of Robust Online Learning 稳健在线学习的最优性
IF 3 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-07-26 DOI: 10.1007/s10208-023-09616-9
Zheng-Chu Guo, Andreas Christmann, Lei Shi

In this paper, we study an online learning algorithm with a robust loss function (mathcal {L}_{sigma }) for regression over a reproducing kernel Hilbert space (RKHS). The loss function (mathcal {L}_{sigma }) involving a scaling parameter (sigma >0) can cover a wide range of commonly used robust losses. The proposed algorithm is then a robust alternative for online least squares regression aiming to estimate the conditional mean function. For properly chosen (sigma ) and step size, we show that the last iterate of this online algorithm can achieve optimal capacity independent convergence in the mean square distance. Moreover, if additional information on the underlying function space is known, we also establish optimal capacity-dependent rates for strong convergence in RKHS. To the best of our knowledge, both of the two results are new to the existing literature of online learning.

本文研究了一种具有鲁棒损失函数(mathcal {L}_{sigma })的在线学习算法,用于再现核希尔伯特空间(RKHS)上的回归。包含缩放参数(sigma >0)的损失函数(mathcal {L}_{sigma })可以涵盖广泛的常用鲁棒损失。该算法是在线最小二乘回归的鲁棒替代算法,旨在估计条件平均函数。对于正确选择(sigma )和步长,我们表明该在线算法的最后一次迭代可以在均方距离上实现最优容量无关的收敛。此外,如果底层函数空间的附加信息是已知的,我们还建立了RKHS中强收敛的最优容量依赖率。据我们所知,这两个结果对现有的在线学习文献来说都是新的。
{"title":"Optimality of Robust Online Learning","authors":"Zheng-Chu Guo, Andreas Christmann, Lei Shi","doi":"10.1007/s10208-023-09616-9","DOIUrl":"https://doi.org/10.1007/s10208-023-09616-9","url":null,"abstract":"<p>In this paper, we study an online learning algorithm with a robust loss function <span>(mathcal {L}_{sigma })</span> for regression over a reproducing kernel Hilbert space (RKHS). The loss function <span>(mathcal {L}_{sigma })</span> involving a scaling parameter <span>(sigma &gt;0)</span> can cover a wide range of commonly used robust losses. The proposed algorithm is then a robust alternative for online least squares regression aiming to estimate the conditional mean function. For properly chosen <span>(sigma )</span> and step size, we show that the last iterate of this online algorithm can achieve optimal capacity independent convergence in the mean square distance. Moreover, if additional information on the underlying function space is known, we also establish optimal capacity-dependent rates for strong convergence in RKHS. To the best of our knowledge, both of the two results are new to the existing literature of online learning.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"31 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138534307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Further $$exists {mathbb {R}}$$-Complete Problems with PSD Matrix Factorizations 进一步$$存在{mathbb{R}}$$-PSD矩阵分解的完全问题
IF 3 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-06-22 DOI: 10.1007/s10208-023-09610-1
Y. Shitov
{"title":"Further $$exists {mathbb {R}}$$-Complete Problems with PSD Matrix Factorizations","authors":"Y. Shitov","doi":"10.1007/s10208-023-09610-1","DOIUrl":"https://doi.org/10.1007/s10208-023-09610-1","url":null,"abstract":"","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"1 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42845528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Order Lohner-Type Algorithm for Rigorous Computation of Poincaré Maps in Systems of Delay Differential Equations with Several Delays 多时滞时滞微分方程系统poincar<e:1>映射严格计算的高阶lohner型算法
1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-06-09 DOI: 10.1007/s10208-023-09614-x
Robert Szczelina, Piotr Zgliczyński
Abstract We present a Lohner-type algorithm for rigorous integration of systems of delay differential equations (DDEs) with multiple delays, and its application in computation of Poincaré maps, to study the dynamics of some bounded, eternal solutions. The algorithm is based on a piecewise Taylor representation of the solutions in the phase space, and it exploits the smoothing of solutions occurring in DDEs to produce enclosures of solutions of a high order. We apply the topological techniques to prove various kinds of dynamical behaviour, for example, existence of (apparently) unstable periodic orbits in Mackey–Glass equation (in the regime of parameters where chaos is numerically observed) and persistence of symbolic dynamics in a delay-perturbed chaotic ODE (the Rössler system).
摘要提出了多时滞时滞微分方程(DDEs)系统严格积分的lohner型算法,并将其应用于poincar映射的计算,研究了一类有界永恒解的动力学问题。该算法基于相空间中解的分段泰勒表示,并利用DDEs中解的平滑来产生高阶解的外壳。我们应用拓扑技术来证明各种动力学行为,例如,在麦基-格拉斯方程中(在数值上观察到混沌的参数区)存在(显然)不稳定的周期轨道,以及延迟摄动混沌ODE (Rössler系统)中符号动力学的持久性。
{"title":"High-Order Lohner-Type Algorithm for Rigorous Computation of Poincaré Maps in Systems of Delay Differential Equations with Several Delays","authors":"Robert Szczelina, Piotr Zgliczyński","doi":"10.1007/s10208-023-09614-x","DOIUrl":"https://doi.org/10.1007/s10208-023-09614-x","url":null,"abstract":"Abstract We present a Lohner-type algorithm for rigorous integration of systems of delay differential equations (DDEs) with multiple delays, and its application in computation of Poincaré maps, to study the dynamics of some bounded, eternal solutions. The algorithm is based on a piecewise Taylor representation of the solutions in the phase space, and it exploits the smoothing of solutions occurring in DDEs to produce enclosures of solutions of a high order. We apply the topological techniques to prove various kinds of dynamical behaviour, for example, existence of (apparently) unstable periodic orbits in Mackey–Glass equation (in the regime of parameters where chaos is numerically observed) and persistence of symbolic dynamics in a delay-perturbed chaotic ODE (the Rössler system).","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"379 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135099805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bias in the Representative Volume Element method: Periodize the Ensemble Instead of Its Realizations 代表性体积元方法中的偏差:周期化集成而非其实现
1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-05-30 DOI: 10.1007/s10208-023-09613-y
Nicolas Clozeau, Marc Josien, Felix Otto, Qiang Xu
Abstract We study the representative volume element (RVE) method, which is a method to approximately infer the effective behavior $$a_{textrm{hom}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>a</mml:mi> <mml:mtext>hom</mml:mtext> </mml:msub> </mml:math> of a stationary random medium. The latter is described by a coefficient field a ( x ) generated from a given ensemble $$langle cdot rangle $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>⟨</mml:mo> <mml:mo>·</mml:mo> <mml:mo>⟩</mml:mo> </mml:mrow> </mml:math> and the corresponding linear elliptic operator $$-nabla cdot anabla $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>∇</mml:mi> <mml:mo>·</mml:mo> <mml:mi>a</mml:mi> <mml:mi>∇</mml:mi> </mml:mrow> </mml:math> . In line with the theory of homogenization, the method proceeds by computing $$d=3$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math> correctors ( d denoting the space dimension). To be numerically tractable, this computation has to be done on a finite domain: the so-called representative volume element, i.e., a large box with, say, periodic boundary conditions. The main message of this article is: Periodize the ensemble instead of its realizations. By this, we mean that it is better to sample from a suitably periodized ensemble than to periodically extend the restriction of a realization a ( x ) from the whole-space ensemble $$langle cdot rangle $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>⟨</mml:mo> <mml:mo>·</mml:mo> <mml:mo>⟩</mml:mo> </mml:mrow> </mml:math> . We make this point by investigating the bias (or systematic error), i.e., the difference between $$a_{textrm{hom}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>a</mml:mi> <mml:mtext>hom</mml:mtext> </mml:msub> </mml:math> and the expected value of the RVE method, in terms of its scaling w.r.t. the lateral size L of the box. In case of periodizing a ( x ), we heuristically argue that this error is generically $$O(L^{-1})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . In case of a suitable periodization of $$langle cdot rangle $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>⟨</mml:mo> <mml:mo>·</mml:mo> <mml:mo>⟩</mml:mo> </mml:mrow> </mml:math> , we rigorously show that it is $$O(L^{-d})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . In fact, we give a
摘要研究了代表性体积元(RVE)方法,它是一种近似推断平稳随机介质的有效行为$$a_{textrm{hom}}$$ a home的方法。后者由一个给定集合$$langle cdot rangle $$⟨·⟩和相应的线性椭圆算子$$-nabla cdot anabla $$ -∇·a∇生成的系数场a (x)来描述。根据均匀化理论,该方法首先计算$$d=3$$ d = 3个校正量(d表示空间维度)。为了在数值上易于处理,这种计算必须在有限域中完成:即所谓的代表性体积元素,即具有周期性边界条件的大盒子。本文的主要信息是:将集成周期化,而不是将其实现周期化。通过这一点,我们的意思是,从一个适当的周期化的集合中采样比从整个空间集合$$langle cdot rangle $$⟨·⟩中周期性地扩展实现a (x)的限制更好。我们通过研究偏差(或系统误差)来提出这一点,即$$a_{textrm{hom}}$$ a home与RVE方法的期望值之间的差异,根据其缩放w.r.t.盒子的横向大小L。在周期化a (x)的情况下,我们启发式地认为该误差一般为$$O(L^{-1})$$ O (L - 1)。在$$langle cdot rangle $$⟨·⟩的合适周期化的情况下,我们严格地表明它是$$O(L^{-d})$$ O (L - d)。事实上,我们给出了两种策略的首阶误差项的特征,并论证了即使在各向同性情况下,它也是一般非简并的。我们在高斯型的合集$$langle cdot rangle $$⟨·⟩的方便设置中进行严格的分析,它允许通过(可积的)协方差函数进行直接的周期化。这种设置还具有使Price定理和Malliavin演算可用于校正量的最优随机估计的优点。我们实际上需要控制二阶校正器来捕获前阶误差项。这是由于对格林函数应用双尺度展开时的反演对称性。作为奖励,我们提出了一种流线策略来估计格林函数的高阶双尺度展开中的误差。
{"title":"Bias in the Representative Volume Element method: Periodize the Ensemble Instead of Its Realizations","authors":"Nicolas Clozeau, Marc Josien, Felix Otto, Qiang Xu","doi":"10.1007/s10208-023-09613-y","DOIUrl":"https://doi.org/10.1007/s10208-023-09613-y","url":null,"abstract":"Abstract We study the representative volume element (RVE) method, which is a method to approximately infer the effective behavior $$a_{textrm{hom}}$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;a&lt;/mml:mi&gt; &lt;mml:mtext&gt;hom&lt;/mml:mtext&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; of a stationary random medium. The latter is described by a coefficient field a ( x ) generated from a given ensemble $$langle cdot rangle $$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;⟨&lt;/mml:mo&gt; &lt;mml:mo&gt;·&lt;/mml:mo&gt; &lt;mml:mo&gt;⟩&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; and the corresponding linear elliptic operator $$-nabla cdot anabla $$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;-&lt;/mml:mo&gt; &lt;mml:mi&gt;∇&lt;/mml:mi&gt; &lt;mml:mo&gt;·&lt;/mml:mo&gt; &lt;mml:mi&gt;a&lt;/mml:mi&gt; &lt;mml:mi&gt;∇&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; . In line with the theory of homogenization, the method proceeds by computing $$d=3$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;d&lt;/mml:mi&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mn&gt;3&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; correctors ( d denoting the space dimension). To be numerically tractable, this computation has to be done on a finite domain: the so-called representative volume element, i.e., a large box with, say, periodic boundary conditions. The main message of this article is: Periodize the ensemble instead of its realizations. By this, we mean that it is better to sample from a suitably periodized ensemble than to periodically extend the restriction of a realization a ( x ) from the whole-space ensemble $$langle cdot rangle $$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;⟨&lt;/mml:mo&gt; &lt;mml:mo&gt;·&lt;/mml:mo&gt; &lt;mml:mo&gt;⟩&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; . We make this point by investigating the bias (or systematic error), i.e., the difference between $$a_{textrm{hom}}$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;a&lt;/mml:mi&gt; &lt;mml:mtext&gt;hom&lt;/mml:mtext&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; and the expected value of the RVE method, in terms of its scaling w.r.t. the lateral size L of the box. In case of periodizing a ( x ), we heuristically argue that this error is generically $$O(L^{-1})$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;O&lt;/mml:mi&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;L&lt;/mml:mi&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;-&lt;/mml:mo&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;/mml:msup&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; . In case of a suitable periodization of $$langle cdot rangle $$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;⟨&lt;/mml:mo&gt; &lt;mml:mo&gt;·&lt;/mml:mo&gt; &lt;mml:mo&gt;⟩&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; , we rigorously show that it is $$O(L^{-d})$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;O&lt;/mml:mi&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;L&lt;/mml:mi&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;-&lt;/mml:mo&gt; &lt;mml:mi&gt;d&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msup&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; . In fact, we give a ","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135692550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-index Sequential Monte Carlo Ratio Estimators for Bayesian Inverse problems 贝叶斯反问题的多指标序列蒙特卡罗比率估计
1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-05-08 DOI: 10.1007/s10208-023-09612-z
Ajay Jasra, Kody J. H. Law, Neil Walton, Shangda Yang
Abstract We consider the problem of estimating expectations with respect to a target distribution with an unknown normalising constant, and where even the un-normalised target needs to be approximated at finite resolution. This setting is ubiquitous across science and engineering applications, for example in the context of Bayesian inference where a physics-based model governed by an intractable partial differential equation (PDE) appears in the likelihood. A multi-index sequential Monte Carlo (MISMC) method is used to construct ratio estimators which provably enjoy the complexity improvements of multi-index Monte Carlo (MIMC) as well as the efficiency of sequential Monte Carlo (SMC) for inference. In particular, the proposed method provably achieves the canonical complexity of $$hbox {MSE}^{-1}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mtext>MSE</mml:mtext> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> , while single-level methods require $$hbox {MSE}^{-xi }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mtext>MSE</mml:mtext> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>ξ</mml:mi> </mml:mrow> </mml:msup> </mml:math> for $$xi >1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> . This is illustrated on examples of Bayesian inverse problems with an elliptic PDE forward model in 1 and 2 spatial dimensions, where $$xi =5/4$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>5</mml:mn> <mml:mo>/</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:math> and $$xi =3/2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> , respectively. It is also illustrated on more challenging log-Gaussian process models, where single-level complexity is approximately $$xi =9/4$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>9</mml:mn> <mml:mo>/</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:math> and multilevel Monte Carlo (or MIMC with an inappropriate index set) gives $$xi = 5/4 + omega $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>5</mml:mn> <mml:mo>/</mml:mo> <mml:mn>4</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ω</mml:mi> </mml:mrow> </mml:math> , for any $$omega > 0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>ω</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> , whereas our method is again canonical. We also provide novel theoretical verification of the product-form convergence results which MIMC requires for Gaussian processes built in spaces of mixed regularity defined in the s
摘要:我们考虑了对具有未知归一化常数的目标分布的期望估计问题,并且即使是未归一化的目标也需要在有限分辨率下进行近似。这种设置在科学和工程应用中无处不在,例如在贝叶斯推理的背景下,由难以处理的偏微分方程(PDE)控制的基于物理的模型出现在可能性中。采用多指标序贯蒙特卡罗(MISMC)方法构造比率估计器,证明该方法具有多指标蒙特卡罗(MIMC)方法的复杂性改进和序贯蒙特卡罗(SMC)方法的推理效率。特别地,本文提出的方法可证明地实现了$$hbox {MSE}^{-1}$$ MSE - 1的正则复杂度,而单级方法对于$$xi >1$$ ξ &gt需要$$hbox {MSE}^{-xi }$$ MSE - ξ;1。在1维和2维空间中,分别为$$xi =5/4$$ ξ = 5 / 4和$$xi =3/2$$ ξ = 3 / 2的椭圆PDE前向模型贝叶斯反问题的例子说明了这一点。它还说明了更具挑战性的对数高斯过程模型,其中单级复杂性约为$$xi =9/4$$ ξ = 9 / 4,多级蒙特卡罗(或具有不适当索引集的MIMC)给出$$xi = 5/4 + omega $$ ξ = 5 / 4 + ω,对于任何$$omega > 0$$ ω &gt;0,而我们的方法也是规范的。我们还提供了新的理论验证,MIMC需要在谱域中定义的混合规则空间中构建高斯过程的乘积形式收敛结果,这有助于通过累积嵌入策略使用快速傅立叶变换方法进行加速,并且可能在空间统计和机器学习的背景下具有独立的兴趣。
{"title":"Multi-index Sequential Monte Carlo Ratio Estimators for Bayesian Inverse problems","authors":"Ajay Jasra, Kody J. H. Law, Neil Walton, Shangda Yang","doi":"10.1007/s10208-023-09612-z","DOIUrl":"https://doi.org/10.1007/s10208-023-09612-z","url":null,"abstract":"Abstract We consider the problem of estimating expectations with respect to a target distribution with an unknown normalising constant, and where even the un-normalised target needs to be approximated at finite resolution. This setting is ubiquitous across science and engineering applications, for example in the context of Bayesian inference where a physics-based model governed by an intractable partial differential equation (PDE) appears in the likelihood. A multi-index sequential Monte Carlo (MISMC) method is used to construct ratio estimators which provably enjoy the complexity improvements of multi-index Monte Carlo (MIMC) as well as the efficiency of sequential Monte Carlo (SMC) for inference. In particular, the proposed method provably achieves the canonical complexity of $$hbox {MSE}^{-1}$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msup&gt; &lt;mml:mtext&gt;MSE&lt;/mml:mtext&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;-&lt;/mml:mo&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;/mml:msup&gt; &lt;/mml:math&gt; , while single-level methods require $$hbox {MSE}^{-xi }$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msup&gt; &lt;mml:mtext&gt;MSE&lt;/mml:mtext&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;-&lt;/mml:mo&gt; &lt;mml:mi&gt;ξ&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msup&gt; &lt;/mml:math&gt; for $$xi &gt;1$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;ξ&lt;/mml:mi&gt; &lt;mml:mo&gt;&gt;&lt;/mml:mo&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; . This is illustrated on examples of Bayesian inverse problems with an elliptic PDE forward model in 1 and 2 spatial dimensions, where $$xi =5/4$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;ξ&lt;/mml:mi&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mn&gt;5&lt;/mml:mn&gt; &lt;mml:mo&gt;/&lt;/mml:mo&gt; &lt;mml:mn&gt;4&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; and $$xi =3/2$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;ξ&lt;/mml:mi&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mn&gt;3&lt;/mml:mn&gt; &lt;mml:mo&gt;/&lt;/mml:mo&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; , respectively. It is also illustrated on more challenging log-Gaussian process models, where single-level complexity is approximately $$xi =9/4$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;ξ&lt;/mml:mi&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mn&gt;9&lt;/mml:mn&gt; &lt;mml:mo&gt;/&lt;/mml:mo&gt; &lt;mml:mn&gt;4&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; and multilevel Monte Carlo (or MIMC with an inappropriate index set) gives $$xi = 5/4 + omega $$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;ξ&lt;/mml:mi&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mn&gt;5&lt;/mml:mn&gt; &lt;mml:mo&gt;/&lt;/mml:mo&gt; &lt;mml:mn&gt;4&lt;/mml:mn&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:mi&gt;ω&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; , for any $$omega &gt; 0$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;ω&lt;/mml:mi&gt; &lt;mml:mo&gt;&gt;&lt;/mml:mo&gt; &lt;mml:mn&gt;0&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; , whereas our method is again canonical. We also provide novel theoretical verification of the product-form convergence results which MIMC requires for Gaussian processes built in spaces of mixed regularity defined in the s","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135846075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Approach to Handle Curved Meshes in the Hybrid High-Order Method 一种高阶混合曲面网格处理新方法
1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-04-18 DOI: 10.1007/s10208-023-09615-w
Liam Yemm
Abstract We present here a novel approach to handling curved meshes in polytopal methods within the framework of hybrid high-order methods. The hybrid high-order method is a modern numerical scheme for the approximation of elliptic PDEs. An extension to curved meshes allows for the strong enforcement of boundary conditions on curved domains and for the capture of curved geometries that appear internally in the domain e.g. discontinuities in a diffusion coefficient. The method makes use of non-polynomial functions on the curved faces and does not require any mappings between reference elements/faces. Such an approach does not require the faces to be polynomial and has a strict upper bound on the number of degrees of freedom on a curved face for a given polynomial degree. Moreover, this approach of enriching the space of unknowns on the curved faces with non-polynomial functions should extend naturally to other polytopal methods. We show the method to be stable and consistent on curved meshes and derive optimal error estimates in $$L^2$$ L 2 and energy norms. We present numerical examples of the method on a domain with curved boundary and for a diffusion problem such that the diffusion tensor is discontinuous along a curved arc.
在混合高阶方法的框架下,提出了一种处理曲面网格的新方法。混合高阶方法是求解椭圆偏微分方程的一种现代数值格式。对弯曲网格的扩展允许在弯曲域上强制执行边界条件,并允许捕获在域内部出现的弯曲几何形状,例如扩散系数中的不连续。该方法利用曲面上的非多项式函数,不需要参考元素/面之间的任何映射。这种方法不要求曲面必须是多项式,并且对于给定的多项式度,曲面上的自由度个数有严格的上界。此外,这种用非多项式函数丰富曲面上的未知空间的方法应该自然地扩展到其他多边形方法。我们证明了该方法在弯曲网格上是稳定和一致的,并在$$L^2$$ l2和能量范数中得到了最优误差估计。给出了该方法在具有弯曲边界的区域和扩散张量沿弯曲弧线不连续的扩散问题上的数值例子。
{"title":"A New Approach to Handle Curved Meshes in the Hybrid High-Order Method","authors":"Liam Yemm","doi":"10.1007/s10208-023-09615-w","DOIUrl":"https://doi.org/10.1007/s10208-023-09615-w","url":null,"abstract":"Abstract We present here a novel approach to handling curved meshes in polytopal methods within the framework of hybrid high-order methods. The hybrid high-order method is a modern numerical scheme for the approximation of elliptic PDEs. An extension to curved meshes allows for the strong enforcement of boundary conditions on curved domains and for the capture of curved geometries that appear internally in the domain e.g. discontinuities in a diffusion coefficient. The method makes use of non-polynomial functions on the curved faces and does not require any mappings between reference elements/faces. Such an approach does not require the faces to be polynomial and has a strict upper bound on the number of degrees of freedom on a curved face for a given polynomial degree. Moreover, this approach of enriching the space of unknowns on the curved faces with non-polynomial functions should extend naturally to other polytopal methods. We show the method to be stable and consistent on curved meshes and derive optimal error estimates in $$L^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> and energy norms. We present numerical examples of the method on a domain with curved boundary and for a diffusion problem such that the diffusion tensor is discontinuous along a curved arc.","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"97 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135932461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Conormal Spaces and Whitney Stratifications 更正:Conormal空间和Whitney分层
IF 3 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-02-01 DOI: 10.1007/s10208-022-09602-7
M. Helmer, Vidit Nanda
{"title":"Correction to: Conormal Spaces and Whitney Stratifications","authors":"M. Helmer, Vidit Nanda","doi":"10.1007/s10208-022-09602-7","DOIUrl":"https://doi.org/10.1007/s10208-022-09602-7","url":null,"abstract":"","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"1 1","pages":"1-8"},"PeriodicalIF":3.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45899607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Optimal Polynomial Meshes Exist on any Multivariate Convex Domain 在任何多元凸域上都存在最优多项式网格
1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-23 DOI: 10.1007/s10208-023-09606-x
Feng Dai, Andriy Prymak
We show that optimal polynomial meshes exist for every convex body in $${mathbb {R}}^d$$ , confirming a conjecture by A. Kroó.
我们证明了$${mathbb {R}}^d$$中每个凸体都存在最优多项式网格,证实了a . Kroó的一个猜想。
{"title":"Optimal Polynomial Meshes Exist on any Multivariate Convex Domain","authors":"Feng Dai, Andriy Prymak","doi":"10.1007/s10208-023-09606-x","DOIUrl":"https://doi.org/10.1007/s10208-023-09606-x","url":null,"abstract":"We show that optimal polynomial meshes exist for every convex body in $${mathbb {R}}^d$$ , confirming a conjecture by A. Kroó.","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"248 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136297270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scattering and Uniform in Time Error Estimates for Splitting Method in NLS NLS中分裂法时间误差估计中的散射和均匀性
IF 3 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2022-11-16 DOI: 10.1007/s10208-022-09600-9
R. Carles, C. Su
{"title":"Scattering and Uniform in Time Error Estimates for Splitting Method in NLS","authors":"R. Carles, C. Su","doi":"10.1007/s10208-022-09600-9","DOIUrl":"https://doi.org/10.1007/s10208-022-09600-9","url":null,"abstract":"","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47665434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Sharp Bounds on the Approximation Rates, Metric Entropy, and n-Widths of Shallow Neural Networks 浅神经网络的近似率、度量熵和n-宽度的锐界
IF 3 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2022-11-09 DOI: 10.1007/s10208-022-09595-3
Jonathan W. Siegel, Jinchao Xu
{"title":"Sharp Bounds on the Approximation Rates, Metric Entropy, and n-Widths of Shallow Neural Networks","authors":"Jonathan W. Siegel, Jinchao Xu","doi":"10.1007/s10208-022-09595-3","DOIUrl":"https://doi.org/10.1007/s10208-022-09595-3","url":null,"abstract":"","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44959269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
期刊
Foundations of Computational Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1